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Analysis of gene expression has contributed to a plethora of biological andmedical research studies. Microarrays
have been intensively used for the profiling of gene expression during diverse developmental processes, treat-
ments and diseases. New massively parallel sequencing methods, often named as RNA-sequencing (RNA-seq)
are extensively improving our understanding of gene regulation and signalingnetworks. Computationalmethods
developed originally formicroarrays analysis can nowbe optimized and applied to genome-wide studies in order
to have access to a better comprehension of the whole transcriptome. This review addresses current challenges
on RNA-seq analysis and specifically focuses on new bioinformatics tools developed for time series experiments.
Furthermore, possible improvements in analysis, data integration as well as future applications of differential ex-
pression analysis are discussed.

© 2015 Spies, Ciaudo. Published by Elsevier B.V. on behalf of the Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license
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1. Introduction

Profiling of gene expression via high-throughput methods has been
achieved for the first time in 1992 with the development of Differential
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Display protocols [1] followed in 1995 by the implementation of com-
plementary DNA microarrays [2]. Subsequently, several other large
scale techniqueswere developed like Serial Analysis of Gene Expression
(SAGE) [3],Massive Parallel Signature Sequencing (MPSS) [4], CapAnal-
ysis Gene Expression (CAGE) [5] and tiling arrays [6]. Finally, the break-
through of RNA-seq [7] technology now offers scientist greater power,
lower costs and new tools to better understand a wide spectrum of sci-
entific and complex medical problems [8].
of Computational and Structural Biotechnology. This is an open access article under the CC

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.csbj.2015.08.004
mailto:cciaudo@ethz.ch
http://dx.doi.org/10.1016/j.csbj.2015.08.004
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/18077
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2015.08.004&domain=pdf
www.elsevier.com/locate/csbj


470 D. Spies, C. Ciaudo / Computational and Structural Biotechnology Journal 13 (2015) 469–477
RNA-seq allows the assessment of the whole transcriptome (known
and novel transcripts), including: allele specific expression, gene fu-
sions, non coding transcripts such as long non coding RNAs (lncRNA),
enhancer RNAs (eRNA) and the possibility to detect alternatively
spliced variants (reviewed in [9,10]). Compared to microarrays ap-
proach, RNA-seq data is highly reproducible and allows the identifica-
tion of alternative splice variants as well as novel transcripts [11].
Expression or tiling microarrays and capture arrays are still used inten-
sively in biology and medicine for specialized tasks and diagnosis [12]
due to the standardized protocols and gold standard bioinformatics
analysis.

Several RNA-seq protocols for differential expression or detection of
novel transcripts have been developed and can be classified into two
main methods: enrichment of messenger RNA (mRNA) or depletion of
ribosomal RNA (rRNA). For eukaryote genomes, the most common
and so far standardized protocol is the selection of poly(A+) transcripts
(mRNA) via oligo-dT beads enriching non rRNA fractions. The second
category consists of the depletion of ribosomal RNA [13]. Several of
these protocols, have been compared and reviewed in regards to differ-
ent applications [14,15].

When studying dynamic biological processes [16] such as develop-
ment or drug responses, datasets have to be captured continually in a
Time Course (TC) experiment. Therefore, these data are sampled at sev-
eral Time Points (TP) in order to recapitulate the whole regulatory net-
work involved, identifying possible regulators and genes switches
responsible e.g. for cyclic behavior or correct differentiation of cells. TC
experiments can be classified into three groups [17]:

i) Single-time series investigating only one condition. Here, all time
points are compared to the first one, which is considered as con-
trol. This approach requires fewer samples, but will not properly
control for e.g. varying temperature in the incubator, as the con-
trol was not sampled over time.

ii) Multi-time series accessing several conditions simultaneously.
The TC data sets are compared to a control TC. This approach
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Fig. 1. RNA-seq analysis workflow.
allows to better control the experiment, due to the fact that con-
trols are sampled over the time in parallel across the samples. Al-
ternatively, the comparison can be performed directly between
the different condition TCs. The drawback of this approach is
higher costs, as more samples have to be sequenced and
analyzed.

iii) Periodicity and cyclic TC consisting of single or multiple time se-
ries. A cyclic event of interest (e.g. cell cycle of proliferating cells)
is investigated for reoccurring expression patterns and their dif-
ferences between conditions. As at least two full cycles should
be sampled for each condition, a large number of total samples
are required to perform such experiments. Furthermore, differ-
entiating between phases within the cyclic event might be chal-
lenging and may lead to “mixed datasets” due to non-uniform
cell identities of mixed cell populations. Therefore, synchroniza-
tion of cells prior the experiment is of importance to avoid
“mixed datasets”.

As the complexity of the obtained data is increased by at least onedi-
mension per TP of each sample, specific algorithms andmethods are re-
quired to analyze TC experiments. Some have already been successfully
implemented for microarray data. However, only few have been
adapted for RNA-seq data (reviewed in [18]).

In the following sections of this review, wewill discuss current chal-
lenges and available methods as well as promising improvements and
extensions of RNA-seq Time Course experiments.

2. Methods

Time course experiments follow the same workflow as static RNA-
seq experiments, starting with preprocessing and normalization of the
data, followed by differential gene expression (DEG) and downstream
analysis by clustering and network construction (Fig. 1).

In this review, we are only considering the analysis of RNA-seq TC
data, therefore assuming that the datawas already pre-processed (qual-
ity controlled, mapped and if necessary read count files created). We
only consider whole population RNA-seq data, not including single
cell RNA-seq approaches. For a complete overview and comparison of
sequencing platforms as well as available tools for mapping reads the
reader is referred to [19,20].

2.1. Biases/Challenges

2.1.1. Experimental Design
Well known biases, such as GC content, gene/fragment length or

batch effects [19] are currently assessed during the quality control
step using QC tools like FastQC (available online under http://www.
bioinformatics.babraham.ac.uk/projects/fastqc). Time course experi-
ments introduce additional experimental and computational challenges
that have to be addressed and will be further discussed.

As in other sequencing experiments, the experimental design is of
utmost importance. Setting the sampling rate by defining the number
of replicates per time point (TP) and the number of TP is still dictated
by relatively high sequencing costs. In the case of microarray experi-
ments, under-sampling has been shown to cause aggregation of effects
due to insufficient temporal resolution [21]. Some tools are already
available to facilitate sample size calculation for RNA-seq data [22,23].
These methods calculate a sample size of 20 to 79 or between 8 and
40 in order to detect differential expression (for the detection of a log
fold change of 2 and power of 80%). However, such number of samples
is for several experiments not feasible andmost of these approaches do
not considermulti-factor experiments. Recent estimations of power and
sample size for RNA-seq have been performed on different datasets.
This work revealed that 10 replicates on a 10,000$ budget restrain al-
ready yield maximum predictive power, a number of replicates that

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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nevertheless could be still to high for static and especially time course
experiments [24].

Moreover, choosing a feasible method to analyze data is depending
on the experimental setup. This depends on whether it is a long or
short time course (b5 TP) experiment, or whether the time course
was sampled uniformly and on howmany replicates are needed for re-
liable and robust final statistics evaluation. Depending on the system in-
vestigated, it might also be necessary to synchronize the data in order to
accomplish a uniform starting point to exclude phase (e.g. cell cycle, de-
velopment, circadian rhythm) or patient specific (e.g. age or diseases)
differences and therefore improve normalization and DEG analysis.

So far no gold standardmethod is established for RNA-seq data anal-
ysis, though for some specific applications guidelines have been recently
published [25]. The sequencing depth is usually not posing a problem
(unless when rare or novel transcripts have to be detected, which re-
quire a 100–200× coverage for human or mouse genomes). A protocol
of 100 bp paired end library preparation coupled with a minimum of
three replicates should be established as minimum requirement for
powerful statistics of DEG analysis [26]. When having to make a trade-
off between sequencing depth and biological samples, Liu and col-
leagues showed that adding more replicates is increasing predictive
power of detecting DEGs to a greater extend than sequencing depth
[27].

The quality of the raw data is of importance for the subsequent bio-
informatics analysis. Therefore, a good experimental design including a
statistically relevant number of controls and replicates are essential for
the quality control, mapping and normalization steps. Erroneous de-
signs, includingno replicates,will result in less powerful statistics, an in-
crease of false positive candidates and will cause unnecessary and
enormous costs in downstream analysis and validation experiments.
Possible attempts to improve data quality are mentioned in the discus-
sion of this review.

2.1.2. Analysis
Several methods/tools have been developed for microarrays (e.g.

lumi [28], affy [29]) or static RNA-seq (e.g. edgeR [30] or DESeq2 [31])
analysis. The most recent tools are able to solve the problems of differ-
ences in sequencingdepth (library size), outliers and batch effects intro-
duced by library preparation protocols, sequencing platform and
technical variability between sequencing runs [32]. Even if some tools
developed for static experiments can be used for TC data, one major
issue is that they do not consider correlations of genes between previ-
ous and subsequently TP. Indeed, random patterns, overall time trends
in expression or time shifts are therefore not taken into account for nor-
malization, noise correction and differential expression steps. For exam-
ple, a drug treatment could induce a slower metabolism of a cell
population, resulting in a delay or change in the establishment of gene
expression patterns. Such delay effects can be recognized only when
using all TP data for analysis.

2.2. Differential Gene Expression Methods for Static RNA-seq Data Analysis

Most established methods for DEG analysis are parametric using
count-based input and apply their own normalization approaches to
rawdata. Themajority of parametricmethods apply a negative binomial
model to the read counts in order to account not only for the technical
variance but also address the biological variance. Previously, Poisson
distributions [11] were used to correct for the technical variance. The
one-parameter distribution is not able to describe biological variance,
which is higher than a calculated mean expression making the Poisson
distribution unsuitable. Therefore a negative binomial distribution is
used, adding a dispersion parameter to be more flexible accounting for
biological variance and appropriately identifying DEGs [31,33,34].

Several non-parametric methods like NOISeq [35], or more recently
NPEBseq [36] and LFCseq [37] offer an alternative way to normalize and
model expression data, which are not fitting with negative binomial or
Poisson distributions. Nevertheless, these methods are usually more
computationally exhausting and need a higher number of replicates to
perform equally well [26,38].

Major methods perform equally well in normalizing the data [39],
but show significant differences in the number of DEGs identified, in ac-
curacy and in power. In this review, we will not discuss each method in
detail and we will not make a statement regarding which method to
use. These methods were designed for a specific context and might be
more appropriate for certain experiments. In conclusion, there is no
overall best method for all types of analysis. However, we would like
to emphasize the importance of considering the following aspects
when choosing amethod for analyzing the data tomeet the experimen-
tal design:

- How many replicates are needed for this method?
- Is a simple two-way comparison sufficient or is a more complex
multi-factor model needed for DEG analysis?

- Is it desirable to detect differentially expressed RNA isoforms as
well?

2.3. Differential Gene Expression Methods for TC RNA-seq Data Analysis

Time Series experiments have been extensively conducted in the
past using microarrays, providing algorithms such as spline fitting [40,
41], Bayes statistics [42,43] or Gaussian processes [44,45] to account
for temporal aspects of DEG. Moreover, algorithms detecting periodic
patterns have been also developed (e.g. Lomb–Scargle periodograms
[46]). Most of them have been implemented into pipelines such as
STEM [46], maSigPro [47], BETR [48], TIALA [49] and platforms for re-
searchers like PESTS [50].

To date, there are only five tools available to implement RNA-seq TC
data for DEG analysis that we would like to describe in more detail
(Table 1. Of Note, more detailed explanations of standard statistic
models and tests can be found in text books [51,52] and detailed infor-
mation about new approaches are described in the corresponding liter-
ature cited).

Next maSigPro [53] is an updated version of maSigPro, an R package
on Bioconductor (http://www.bioconductor.org) initially developed for
microarray TC experiments. The updated version allows the analysis of
RNA-seq TC data as well. It uses generalized linear models instead of a
linear model in order to allow the modeling of count data. This is
achieved by fitting to a negative binomial distribution followed by a
polynomial regression. In order to be detected as DEG, the difference
of Log Likelihood Ratio of the hypotheses has to be greater than a user
defined significance threshold. This ensures a best-fit model for each
gene by only keeping significant coefficients. Though, Next maSigPro
does not offer built-in normalization methods, the package is equipped
with functions for clustering and visualization of processed data.

In a comparisonwith edgeRpackage, NextmaSigPro can control bet-
ter the False Discovery Rate (FDR). Candidates identified by both ap-
proaches or solely by Next maSigPro have highly significant and well-
fitted models, while the majority of the candidates selected only by
edgeR do not pass the second significance threshold step. The small
number of DEG not pre-selected by Next maSigPro has a high variance
as well as a little fold change. One first drawback of the pipeline is that
the threshold for DEG detection is not set automatically according to
the data but it is a user defined threshold, making it more challenging
to indirectly determining a FDR. Furthermore, the user has to define
the number of clusters,whereas it would be better if thenumber of clus-
ters would be determined based on the actual data. Finally, replicates
are not merged with error bars in the output graph but data points are
plotted one after each other.

DyNB [54] uses negative binomial likelihood distribution to model
count data taking a temporal correlation of genes into account. It is
also correcting for time shifts between replicates and time-series by

http://www.bioconductor.org


Table 1
Properties of available time course analysis tools: a negative binomialmodel, b polynomial regression, c log likelihood ratio, d gaussian process, e marginal likelihood, f Markov ChainMonte
Carlo, g over representation analysis, h pathway topology based analysis, i log fold change, j input output Hidden Markov Model, k randomization test, l auto regressive Hidden Markov
model, m empirical Bayesian method. If a tool has several normalization methods, the standard method is underlined.

Method Normalization method Model DEG test FDR
corr.
p-values

Multi-factor
experiment

Uneven
TP
allowed

Isoform
detection

Clustering Random
pattern
detection

Delay
detection

Ref

Next
maSigPro

— NBa + PRb LLRc Yes Yes No No Yes No No [53]

DyNB Variance estimation + scaling
factors on GP

NB + GPd MLe by
MCMCf

Yes Yes Yes No No – Yes [54]

TRAP FPKM/poisson quartile/geometric ORAg + PTh LFCi Yes No No Yes Yes No No [57]
SMARTS Pairwise weighted alignment GP + IOHMMj LLR + RTk No Yes Yes No Yes No Yes [64]
EBSeq-HMM Median/quantile beta NB +

AR-HMMl

EBm Yes Yes Yes Yes Yes Yes Yes [66]
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Gaussian processes introducing time-scaling factors. Normalization is
performed by variance estimation and rescaling of counts similar to
DESeq [55], but on the previously calculated Gaussian process function
rather then directly on the samples. In the next step DyNB uses a
Markov-Chain-Monte-Carlo (MCMC) sampling algorithm for marginal
likelihoods that enables the DEG analysis. A comparison of the DyNB
and DESeq candidates showed that the DyNB outperforms DESeq for
the detection of weakly expressed or high noise level genes as well as
genes affected by variable differentiation efficiency. A drawback is the
implementation in MATLAB® (The MathWorks Inc.), thereby making
it less accessible to a broad range of users. Additional drawbacks are:
long running times due to MCMC sampling; genes not expressed in
one condition are removed; the test output is a Bayes factor calculated
by the ratios of hypothesis probabilities, which is less intuitive than
the more common p-value. Finally, according to Jeffreys et al. [56], a
Bayes Factor value higher than 10 is referring to a strong evidence of dif-
ferential expression, though this threshold might not hold true for all
types of datasets and users will have to adapt filtering to identify their
candidates of interest.

TRAP's [57] is a method that aims to identify and analyze differen-
tially activated biological pathways. In a first step, reads are mapped
to a reference genome by the Tophat [58] software and further proc-
essed to estimate the expression by Cufflink [59]. In the second step,
the DEG analysis is performed by the Cuffdiff software [60], generating
a FPKM (“reads per kilobase of transcript per million reads mapped”)
output file for each sample. The novelty is the downstream analysis,
by directing DEG candidates from the Tophat/Cufflinks/Cuffdiff pipeline
into a KEGG analysis [61,62]. This approach offers three options: One
Time Point pathway analysis, Time Series pathway analysis or Time Se-
ries clustering. The one time point analysis identifies significant path-
ways for each time point separately, whereas the Time Series pathway
analysis takes all TP into account. For pathway analysis two methods
are performed and their p-values combined: Over-representation Anal-
ysis (ORA) using the Gene Ontology (GO) [63] database and a Signaling
Pathway Impact Analysis (SPIA) [63]. Briefly, ORA identifies significant
pathways by hyper-geometric tests that compares the ratios of DEGs
to the complete number of genes on a total and pathway level. SPIA
takes the effect of other genes in a pathway into account. This is
achieved by calculating a perturbation factor of fold change of upstream
genes divided by the fold change of downstream genes. Additionally, it
introduces a time-lag factor for Time Series analysis.

For Time Series Clustering, each gene is assigned to a label at each
time point, depending onwhether the log-fold change of FPKM is either
positively/negatively above a threshold or otherwise categorized as
constant. Clusters are generated by grouping genes with the same
label and further analyzed by ORA using ratios of pathway genes to
total genes and all genes in the cluster. Users can directly start the
downstream analysis by providing Cufflink/Cuffdiff data avoiding the
time demanding preprocessing steps. The main pipeline is performing
a pairwise comparison of TPs. Of notes, it is not making use of the
time series parameter of Cuffdiff, but only takes the temporal character
in later analysis into account. For the analysis itself, a possible complica-
tion is the conversion of genename Identifiers tomatch the ones used in
the pathway files. Moreover only the first of possible several gene name
identifiers for a given pathway is used to find matches among candi-
dates. In our opinion, the major drawback of the pipeline, similar to
DyNB, is that the genes that are not expressed in one condition are ex-
cluded from further analysis. This is due to an infinite log fold change
ratio caused by non-expressed genes, which are assigned zero as ex-
pression level.

SMARTS [64] is designed to create dynamic regulatory networks
based on time series data frommultiple samples by iteratively creating
models extending the DREM method [65]. First, samples are synchro-
nized to a common biological time scale by pairwise alignment followed
by sampling of points. This allows a continuous representation, correc-
tion of alignment parameters and a computation of an error metric in
order to create aweighted alignment. A second alignment error is calcu-
lated between samples to create a matrix for an initial clustering by
spectral clustering or affinity propagation for cases with two or more
clusters, respectively. Clustering is calculated on the basis of all genes
and contains noise. SMARTS takes advantage of the fact that a certain
condition is only affecting a small number of genes that are regulated
by an even smaller number of transcription factors (TFs) and up-
stream pathways. This in turn, reduces the dimensionality of the data.
The clustering is the basis for a first regulatory model that is iteratively
adapted to create a final clustering of groups that are co-expressed and
regulated throughout the time-series. To iteratively improve the regula-
tory models, static protein–DNA interaction data, such as DNA-binding
motifs or ChIP-seq data, is used to define the path of each gene by
modeling the transition between time points applying an Input–Output
HiddenMarkovModel framework. The regulatorymodel converges into
a final clustering that identifies split timepointswhere a subset of genes
that have previously been co-expressed diverge into another path. The
resulting graph offers a view of gene sets and their path throughout
the timeline illustrating the differences in TF at splits that aremost likely
responsible for the differences in expression and regulation of subse-
quent time points. In our opinion, the only drawback of this tool is the
requirement of prior knowledge of TF binding to genes of interest
used as input to the pipeline.

EBSeq-HMM [66] is an extension of the EBSeq package [67] account-
ing for ordered data (e.g. such as time, space, gradients) by applying an
auto-regressive Hidden Markov Model (HMM). EBSeq-HMM identifies
dynamic processes (genes that are neither unchanged nor sporadically
expressed) and classifies genes according to their state (up/down/un-
changed) into expression paths taking dependencies to prior time
points into account. The analysis is based on two steps: first, the condi-
tional distribution of data at each time point followed by the transition
of states over time. Parameter estimation for the conditional distribu-
tion is performed using a beta-negative-binomial model. Second, an ad-
ditional implementation to correct for the uncertainty of read counts of
genes with several isoforms is offered. Subsequently, a state for each
gene at each time point is determined applying a Markov-switching



473D. Spies, C. Ciaudo / Computational and Structural Biotechnology Journal 13 (2015) 469–477
auto-regressive model to account for the dependencies of expression
and state of the previous state. Finally, all the states of a gene are com-
bined and classified into an expression path.

The developers also tested EBSeq-HMM together with existing static
methods and Next maSigPro on simulated and case study data. On the
simulated data EBSeq-HMM performed with greater power and F1
scores (a score to access a test's accuracy) but had a higher false discover
rate (FDR) of 4.5% in comparison to amaximumof 0.5% compared to the
othermethods. On clinical data, EBSeq-HMMhad a 90% overlap of iden-
tified genes with othermethods and outperformed these on genes with
subtle and consistent changes over time. However, the authors did not
make any statement about the genes, which EBSeqHMM was not able
to identify. When using EBSeqHMM, the user has to keep in mind that
its purpose is to identify dynamic genes; in theory it also identifies con-
stant genes and clusters them accordingly. Practically, in order to be
constant, the previous and following TP have to have the exact same
mean expression value, resulting that most genes will be classified as
up or down regulated at affected TPs and hiding possible non DEG
time intervals of genes.

2.4. Downstream Analysis

DEG analysis may result in hundreds of putative candidates, if not
more, a number that cannot be experimentally validated. Therefore, sci-
entists tried to reduce the number of candidates by searching for ex-
pression patterns and shared pathways to narrow down essential
candidates. This field has been extensively researched and improved
over the last two decades offering a great abundance of tools, leading
to new scientific questions and simplifying their validation.

2.4.1. Clustering Methods
The purpose of clustering is to statistically group samples according

to a certain treat, e.g. for gene expression, to reduce complexity and di-
mensionality of the data, predict function or identify shared regulatory
mechanisms. Depending on the data structure a fitting clusteringmeth-
od has to be used to account for the specific data (reviewed in [68]).
Considerations should include:

- Was the data transformed or does it consist of read counts?
- How is it distributed?
- Is the data originating from static, short or long TC experiments?

A plethora of clustering methods have been published, many of
them available as R packages on the CRAN Task View page (http://
cran.r-project.org/web/views/Cluster.html), the Bioconductor website
(http://www.bioconductor.org) or in other scripting/programming lan-
guages made available on the publishers' web sites. However, we can-
not discuss the whole spectrum of these methods. Therefore, we
would like to point out certainmethodswhich are specific for TC exper-
iments employed for microarray [69–71] and RNA-seq data [72,73] and
refer to the afore mentioned reviews for the selection of a fitting
method.

2.4.2. Functional Enrichment Analysis and Network Construction
To gain new insights into complex data, one of the most common

methods used is functional enrichment analysis (FEA). FEA identifies
candidates sharing biological function or pathway by statistical over-
representation using annotated databases such as Gene Ontology [63]
or KEGG [61,62] and can easily be performed using available free web
interfaces or R packages such as DAVID [74], WebGestalt [75],
PANTHER [76] or FGNet [77], Finally, several commercial software also
exist, such as Ingenuity [78] or Metacore [79]. Other options are the in-
vestigation of direct and indirect protein–protein interactions via the
STRING database [80] or via Cytoscape applications [81]. Detailed
descriptions, comparison and overview of FEA tools can be found in re-
cently published reviews [82–84].

2.5. Discussion

In the last few years, many algorithms were developed to increase
the quality and methodology of existing approaches. A usual procedure
is to extend, adapt or update an existing establishedmethod. For exam-
ple, edgeR was updated by multifactor experiments [85] and observa-
tion weights factor [34] to more robustly account for outliers.
Combining existing methods and new strategies could offer a great im-
provement in quality of analysis, in static as well as in TC experiments.

Here, we present novel advancements in the field that might offer
improvements to existing methods and pipelines. Major issues at the
level of mapping and the quantification of reads are: ambiguous (over-
lapping genes), multi-alignment (repeats) and exon-junction reads,
which are usually discarded at the counting step. Recent approaches
such as GIIRA [86], ORMAN [87] and Rcounts [88] account for multi-
mapping reads by introducing a maximum-flow optimization,
minimum-weighted set cover problem of partial transcripts and
weighting alignment scores, respectively. These recent improvements
allow a better quantification of genes and isoforms, as well as the inves-
tigation of repeat elements, which was up do date not very feasible. On
the isoform level, WemIQ [89] applies a weighted-log-likelihood expec-
tationmaximization for each gene region separately to improve quanti-
fication of isoforms and gene expression.

Samples that differ highly in read counts (extreme high counts) cre-
ate a bias at the normalization step due to the adjustment to a common
scale that is calculated over all samples. This problem is addressed by
the RAIDA algorithm [90], which accounts for differences in abundance
levels rather than modifying the read counts for normalization. Further
studies of the SEQC/MAQC—III Consortium elucidated the negative in-
fluence of lowly expressed genes on the DEG detection [19,91,92].
Therefore, filtering out genes with low expression might offer another
possibility to increase predictive power.

Another problematic aspect in analysis arises when working with
small sample size (less than 4 replicates per TP). In such cases, for
RNA-seq experiments, the calculation of the dispersion factor of nega-
tive binomial methods is less accurate. Therefore, a new shrinkage esti-
mation [93] has been introduced in order to analyze data with few
replicates (4 or less), which was incorporated into a new tool sSeq
[33]. Moreover, resampling of at least three biological replicates per
time point was shown to improve the identification of oscillating
genes without increasing false positives rates [94]. Recently, a new
adapted exact test has been developed to increase power in order to de-
tect DEGs for experimental designs containing only two replicates. This
R package is also able to identify differentially expressed genes that are
not abundant [95].

As there is no best fittingmethod for DEG analysis so far, we recom-
mend using several tools and compare and combine the results in order
to obtain confident candidates. To increase precision, sensitivity and re-
duce the detection of false positives candidates, a combination of statis-
tical tests should be applied. The PANDORA algorithm [96] combines p-
values, using one of six possible methods, which have been weighted
based on the performance of each statistical test. On the other hand,
multiple testing and combination of results involve an increase in time
and resources needed to run the analysis, which might outweigh the
gain in the power of the statistics. In the beginning of multi-Omics anal-
ysis, RNA-seq data was used to improve results of other approaches
when the initial method reached it limits. With further advancement
and availability of technologies, scientists started to combine several
Omics data to ask new scientific questions and to add additional layers
of information to their data. Further, a great increase and expansion
of databases such as ENCODE [97], Cancer Genome Atlas (http://
cancergenome.nih.gov), GEO [98], KEGG [61,62] and analysis platforms
have also facilitated the access to multi-Omics analysis. Nevertheless,

http://cran.r-project.org/web/views/Cluster.html
http://cran.r-project.org/web/views/Cluster.html
http://www.bioconductor.org
http://cancergenome.nih.gov
http://cancergenome.nih.gov
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the integration of several Omics datasets still harbors several challenges
such as quality assurance, data/dimension reduction and clustering/
classification of combined data sets [99], which have to be properly ad-
dressed and taken into account when designing experiments and
performing analysis. In the following paragraph we would like to high-
light methods that combine static or TC RNA-seq experiments with
other Omics data. These tools can be categorized on whether they are
multi-staged or meta-dimensional approaches, performing different
Omics analysis sequentially or combining several data types into a sin-
gle analysis [99,100].

In the past decade, great efforts were undertaken to develop and im-
prove tools combining microarrays and ChIP-seq data (e.g: ChIP Array
[101], EMBER [102] for static experiments, and for TC experiments
[103,104]). Up to date, there are several multi-stage tools available to
analyze RNA-seq and ChIP-seq, e.g. INsPeCT [105] and metaseq [106],
but only few integrated meta-dimensional approaches e.g. Beta [107],
CMGRN [108] and Ismara [109]. Nevertheless, none of the mentioned
methods offer specific TC algorithms for analysis, and most tools either
aim to identify targets of transcription factors (TFs) and create Gene
Regulatory Networks (GRN),whereas others usemethylation or histone
modification data to predict regulatory functions [110].

Different approaches and tools for the integration of other Omics
data have been extensively reviewed for proteomics [111], metabolo-
mics [112] and phenotypic data [113]. Indeed, re-analyzing externally
obtained data using the same pipelines used for in-house produced
data sets is the best approach in order to guarantee comparable results.

In general, more powerful algorithms, which so far have not been
implemented due to technical infeasibilities, become more and more
available. Nevertheless, the optimization through parallelization and
cloud computing is a major goal for the development of such new
tools. As the amount of data produced in each experiment is massively
increasing, improved pipelines and algorithms are in demand in order
to supply the users with a good trade-off between accuracy and re-
sources needed for their analysis.

3. Conclusion and Perspectives

Recently, two approaches emerged, namely co-expression analysis
and single cell RNA-seq, that are very promising to improve DEG analy-
sis and offer new application fields such as the study of subpopulations.

The assumption behind co-expression analysis is that genes in the
same pathway very likely share regulatory mechanisms and therefore
should have the similar expression patterns. This allows the identifica-
tion of biological entities that are involved in the same biological pro-
cesses and has already successfully been applied to microarray data
[114]. Moreover, microarray co-expression data has been also integrat-
ed with other data types such as microRNA [115] or phenotypic [116]
data and been used for differential co-expression to identify biomarkers
[117]. It has further been shown that co-expression analysis is able to
improve sensitivity of RNA-seq DEG analysis [118] and more recently
to outperform existing clustering approaches [119]. Similarities and dif-
ferences of co-expression networks in microarrays and RNA-seq as well
as factors driving variance at each stage of co-expression analysis have
already been investigated [120]. However, no gold standard for RNA-
seq co-expression analysis has been established.

Single-cell RNA-seq, in contrast to population sequencing, enables to
access the heterogeneity of gene expression in cells which otherwise is
averagedout or even lost for small subpopulations of cells in bulk exper-
iments. This heterogeneity in expression arises due to differences in ki-
netics of response to a certain condition, treatment or cell fate decisions
of each cell. Single-cell RNA-seq allows studying the subpopulation of
interest and investigating mechanisms explaining differences between
subpopulations, which might offer advances in drug development, per-
sonalized medicine or the creation of differentiation networks. Im-
provement in protocols and sequencing lead to new methods at a
rapid rate: STRT [121], CEL-Seq [122], Smart-seq [123], Quartz-seq
[124] and microfluidic platforms [125], enabling scientists to ask new
questions. Nevertheless, protocols andmethods for single-cell sequenc-
ing are not yet completely optimized and still harbor uncertainties such
as noise, sequencing and normalization biases aswell as proper tools for
analysis. There is great effort to address these problems. It has been re-
cently reported that explicit calculation of gene expression levels using
External RNAControls Consortiumspike in controls [126,127] improved
normalization and noise reduction [128]. Finally, up to date the lack of
validated genome-wide data slows down the development of new algo-
rithms andmodels can only approximate the real extent of regulation or
networks [129]. There are tools to simulate expression data incorporat-
ing noise, such as SimSeq [130], but still this noise estimation does not
completely capture a biological situation and again is just an estimation
of the whole picture. As more and more genome-wide experiments are
conducted, networks created and candidates validated, the data of sev-
eral sources could be compiled into a database offering frameworks for
model validation.

To conclude, in the last decades a plethora of new models, system
and networks were created, with the caveat of over-generalization of
results in order to fit hypotheses and models. By combining high-
throughput data, scientists are now able to correct for this over-
generalization by filling gaps with complementary data, allowing fine-
tuning anddissection of existingmodels andnetworks aswell as theup-
coming of new intuitive, integrative and explorative tools. Further, the
integration of several kinds of Omics data remains the biggest challenge
[131] as we have to understand the limitations of each technique before
conducting a joint analysis [111] and to develop several tools according
to the specific data types and underlying genomic models for powerful
integrative analysis [99].
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