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Abstract
Most artificial intelligence (AI) studies have focused primarily on adult imaging, with less attention to the unique aspects 
of pediatric imaging. The objectives of this study were to (1) identify all publicly available pediatric datasets and determine 
their potential utility and limitations for pediatric AI studies and (2) systematically review the literature to assess the cur-
rent state of AI in pediatric chest radiograph interpretation. We searched PubMed, Web of Science and Embase to retrieve 
all studies from 1990 to 2021 that assessed AI for pediatric chest radiograph interpretation and abstracted the datasets used 
to train and test AI algorithms, approaches and performance metrics. Of 29 publicly available chest radiograph datasets, 
2 datasets included solely pediatric chest radiographs, and 7 datasets included pediatric and adult patients. We identified 
55 articles that implemented an AI model to interpret pediatric chest radiographs or pediatric and adult chest radiographs. 
Classification of chest radiographs as pneumonia was the most common application of AI, evaluated in 65% of the studies. 
Although many studies report high diagnostic accuracy, most algorithms were not validated on external datasets. Most AI 
studies for pediatric chest radiograph interpretation have focused on a limited number of diseases, and progress is hindered 
by a lack of large-scale pediatric chest radiograph datasets.
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Introduction

Chest radiography is one of the most frequently used imag-
ing modalities in children. It is often used to assess disorders 
of the pediatric lung parenchyma, airways, heart and medi-
astinum. Chest radiographs play a significant role in screen-
ing and diagnosing disease across all pediatric care settings, 
including the emergency department and inpatient settings 
such as neonatal and pediatric intensive care units. Chest 
radiographs also play a critical role in assessing support 
devices, including chest tube and catheter positions, and are 
vital in diagnosing a number of life-threatening conditions 

and their complications, such as pneumonia, pneumothorax 
and diaphragmatic hernia [1].

It is well known that the interpretation of pediatric chest 
radiographs differs from that in adult chest radiographs. 
There is a varying radiographic appearance of the normal 
growing child, ranging from tiny premature neonates to 
adolescents. Pediatric radiography often utilizes differing 
techniques of acquisition, and frequently, differing patholo-
gies are encountered that are not commonly seen in adults. 
For example, the developmental appearance of the normal 
thymus in young infants can mimic a parenchymal lung 
infection or mediastinal mass to the unwary. Additionally, 
children often present with differing appearances of common 
pathologies encountered throughout life, such as the “round” 
pneumonia seen in younger children. Radiographic findings 
in children also have broader differential diagnoses, such as 
the inclusion of congenital lung disorders and other malfor-
mations [2]. These differences in radiographic interpretation 
pose additional challenges for any artificial intelligence (AI) 
models developed for chest radiography.
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Background

The application of AI and its subset of machine learning 
(ML), especially deep learning (DL), is of growing clinical, 
research and commercial interest within medical imaging. 
Initial applications of AI have spanned all imaging modali-
ties and now include the detection of stroke and acute intrac-
ranial hemorrhage with CT, the assessment of breast lesions 
with mammography and US, the detection of fractures with 
wrist radiographs and the assessment of a number of lung 
and cardiac abnormalities with chest radiographs [3]. There 
are many promising benefits of incorporating AI into the 
interpretation of chest radiographs, such as the potential for 
improved detection and diagnosis, quantification, triage and 
streamlined workflow [4, 5]. Assessment of chest imaging 
represents one of the most rapidly growing research areas, 
with determination of the presence of lung nodules, tuber-
culosis, pneumonia, pneumothorax and cardiomegaly being 
among the most common applications [4, 6]. Several excel-
lent review articles have detailed AI and DL techniques and 
their applications for chest imaging; however, these reviews 
have primarily focused on adult chest radiograph applica-
tions [4, 7] without a dedicated summary of related benefits 
and limitations for pediatric patients.

Machine learning models or algorithms are trained with 
datasets. The designed model uses the training dataset to 
learn the data characteristics and then predicts the target 
task on new input data [8]. Dataset characteristics including 
size and domain, availability of labels and annotated data, 
class type, data balance (frequency of each class in the data-
set) and the quantity and quality of features have a critical 
impact on the model’s performance and can be a source of 
bias [9]. AI training is typically done with supervision pro-
vided by labeled images. Categorical labels might be clini-
cally based, such as the presence or absence of pneumonia, 
or related to radiographic findings such as consolidation or 
pneumothorax. Categorical labels can be derived either by 
separate review from radiologists or other experts or derived 
by natural language processing (NLP) of radiologist reports. 
Annotated images where individual lesions are marked with 
boundary boxes placed on the image provide better informa-
tion for object localization and class recognition, allowing 
the location and size of any lesions, such as lung consoli-
dation, to be captured. Annotated images provide a better 
opportunity to develop explainable AI to identify where 
an algorithm localizes pathology such as pneumonia using 
methods such as Gradient-weighted Class Activation Map-
ping (Grad-CAM) [10] and SHapley Additive exPlanations 
(SHAP) [11]. However, annotation generally requires sig-
nificant expert input and time.

This review article summarizes the available literature 
on the application of AI to pediatric chest radiograph 

interpretation. Given that datasets are critical to algorithm 
training, testing and validation, this paper also compiles 
data on all publicly available chest radiograph datasets to 
determine pediatric image availability and potential utility 
and limitations for pediatric AI-related studies. We hope 
this paper helps researchers understand the state of AI 
for pediatric chest radiograph interpretation and catalyzes 
fruitful progress in this area.

Methods

Search strategy

We performed a systematic literature review to capture rel-
evant studies that either designed or evaluated AI for chest 
radiograph interpretation in the pediatric population. We uti-
lized the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses of Diagnostic Test Accuracy (PRISMA-
DTA) checklist [12]. Figure 1 shows the study selection dia-
gram. We conducted the literature search in the PubMed, 
Embase and Web of Science databases from Jan. 1, 1990, to 
July 5, 2021. Each database was queried with the following 
keywords: (“artificial intelligence” OR “machine learning” 
OR “neural networks” OR “deep learning”) AND (“pediat-
ric” OR “child” OR “toddler” OR “infant” OR “neonate”) 
AND (“radiograph” OR “chest film” OR “X-rays”). Only 
articles written in English were considered. Two review-
ers independently searched the databases to capture eligible 
studies (S.P. with 2 years of research fellowship experience 
and M.R.M., AI-electrical engineer with 6 years of research 
experience). They also reviewed references from selected 
studies to identify further relevant studies. In addition, we 
identified all publicly available chest radiograph datasets by 
analyzing the publications found in the literature search, as 
well as a narrative review of the databases. We also reviewed 
each dataset and contacted the dataset’s provider to clarify 
some of the dataset’s properties and availability.

Study selection

Inclusion criteria were as follows: (a) studies related to 
developing or evaluating AI for chest radiograph inter-
pretation and (b) articles that included a pediatric popula-
tion either alone or in combination with adult patients. We 
screened the retrieved articles based on the title and the 
abstract and reviewed full texts of selected articles. Pediat-
ric patients were defined as patients younger than 18 years 
based on the World Health Organization (WHO) definition 
of children [13]. Studies differed to some extent in their 
definition or inclusion of pediatric age ranges; therefore, for 
clarity, the tables of studies included in this review include 
descriptions of the age ranges. We excluded articles if they 
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did not include pediatric patients, contained both adult and 
pediatric populations without separately reporting evaluation 
metrics for the pediatric group, did not define the age of the 
target population, or were not published in peer-reviewed 
journals (i.e. conference papers, posters, etc.).

Data abstraction

The data collected from each article included year of pub-
lication, the country in which the study originated, study 
design, reference standard, sample size and age distribu-
tion. In cases for which this information was not publicly 
available, the dataset’s provider was contacted to determine 
dataset characteristics and availability.

The names of all chest radiograph datasets utilized in the 
selected articles were also collated. Given that the datasets 
usually have an associated article to introduce the dataset, 

we reviewed the articles, access sources and metadata files 
of each dataset to understand the quantity and quality of 
the dataset, including patient inclusion criteria, available 
annotations and labeling, chest radiograph acquisition tech-
nique (anteroposterior or lateral views) and age range of the 
included patients. We collected labels used for the dataset, 
along with the definition of the ground truth and whether 
abnormal regions on each image were annotated.

Results

The initial search retrieved 2,117 articles from the data-
bases. Because of duplication, we removed 148 articles. 
After assessing the title and abstract, we chose 106 papers 
for full-text review. We subsequently excluded 51 papers 

Fig. 1  Study selection diagram
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because they did not meet inclusion criteria, resulting in 55 
papers being included in the study (Fig. 1).

Review of publicly available chest radiograph 
datasets

The 55 articles that were eligible for inclusion in the study 
used a total of 20 proprietary and 9 publicly available chest 
radiograph datasets. We found an additional seven publicly 
available chest radiograph databases and multiple coronavi-
rus disease 2019 (COVID-19) datasets from other sources. 
Of the 16 publicly available datasets, 2 were solely pediatric 
[14–16] and 7 had mixed pediatric and adult populations; the 
others included only adult populations [17–24]. We identi-
fied a total of 20,337 unique pediatric images (5,948 normal 
and 14,389 abnormal) from 7 datasets, including Guangzhou 
Women and Children’s Medical Center (GWCMC) [14], 
Pneumonia Etiology Research for Child Health (PERCH), 
PadChest, the National Institutes of Health (NIH) NIH-14, 
the National Institute of Allergy and Infectious Diseases 
(NIAID) TB dataset, the Shenzhen database and the Mont-
gomery County datasets. In addition, the Radiological 
Society of North America (RSNA) and Society for Imag-
ing Informatics in Medicine (SIIM)–American College of 
Radiology (ACR) datasets include 1,276 and 617 pediatric 
images, respectively, which are reannotated images from the 
NIH-14 dataset. Figure 2 and Online Supplementary Mate-
rial 1 show the age distribution in the available pediatric 
chest radiographs. The most frequent labels were pneu-
monia, infiltration, consolidation and cardiomegaly, repre-
senting 58% of the abnormal labels. Further details of the 
publicly available chest radiograph datasets are presented in 
Online Supplementary Material 2 [14–23].

Guangzhou Women and Children’s Medical Center 
(GWCMC) dataset

This dataset, also known as the Kermany dataset, is from 
Guangzhou Women and Children’s Medical Center in 
Guangzhou, Guangdong, China [14]. This dataset consists of 
5,856 anteroposterior (AP) chest radiographs from children 
ages 1–5 years. The dataset includes three labels: normal, 
bacterial pneumonia or viral pneumonia, including 5,232 
and 624 training and test samples, respectively. Two physi-
cians labeled all images, with a third physician verifying 
all test dataset labels. It is not clear what, if any, additional 
clinical criteria were used to determine these labels (Fig. 3).

Pneumonia Etiology Research for Child Health (PERCH) 
dataset

The PERCH project attempted to identify the etiology of 
severe childhood pneumonia requiring hospital admission. 
Children who were hospitalized with pneumonia were 
included from nine sites in seven countries (Bangladesh, The 
Gambia, Kenya, Mali, South Africa, Thailand and Zambia) 
between Aug. 15, 2011, and Jan. 30, 2014 [15, 16, 25]. The 
data are held by Johns Hopkins University and are avail-
able for research purposes under a data-sharing agreement 
[26]. The PERCH chest radiograph dataset consists of 3,587 
images that were randomly interpreted and labeled by two 
members of a reading panel. This panel included 14 radiolo-
gists and pediatricians from 7 countries trained with WHO 
methodology. In cases of disagreement, a second group of 
arbitrators consisting of two experienced radiologists who 
were unaware of the initial assessment made the final con-
sensus by discussion. All image readers were blinded to the 
clinical and demographic information associated with each 

Fig. 2  The age distributions 
of the pediatric population for 
the seven pediatric and mixed 
adult datasets containing unique 
pediatric images. *Note that the 
Radiological Society of North 
America (RSNA) and Society 
for Imaging Informatics in Med-
icine (SIIM)–American College 
of Radiology (ACR) datasets 
are subsets of the National Insti-
tutes of Health NIH-14 dataset
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chest radiograph, and readers did not interpret chest radio-
graphs from their site. The chest radiographs were assigned 
with five labels, including (1) consolidation only (alveolar 
consolidation, including pleural effusion if present), (2) 
other infiltrate only, (3) both consolidation and other infil-
trate, (4) normal (no consolidation or infiltrate) and (5) unin-
terpretable for consolidation and/or other infiltrate [15, 16].

PadChest dataset

This dataset contains 160,861 chest radiographs of 67,000 
patients from the Hospital Universitario de San Juan, Ali-
cante, Spain. Of the 160,861 chest radiographs, 5,533 are 
of patients younger than 18 years [17]. Cases are catego-
rized into a hierarchical structure and annotated with 174 
different radiographic findings, 19 differential diagnoses and 
104 anatomical locations. NLP was used to label 73% of the 
cases while trained physicians manually labeled 27% from 
radiology reports. This dataset contains the largest number 
of manual labels among the large public datasets. PadChest 
provides some metadata, including patients’ year of birth, 
gender, image projection, positioning, type and manufacturer 
of the equipment used to acquire the chest radiograph, and 
annotation method (manually or by NLP).

National Institutes of Health Clinical Center (NIH)‑14 
dataset

The National Institutes of Health (NIH) Clinical Center 
released a chest radiograph dataset with 112,120 

frontal-view chest radiograph images of 32,717 patients 
from the NIH Clinical Center [18]. There are 5,242 pedi-
atric images in this collection, spanning ages 1–17 years 
(Fig. 3). Fourteen keywords of common radiologic findings 
were searched within the picture archiving and communica-
tion system (PACS) to extract all related radiologic reports 
and their associated images. NLP was employed to label the 
images based on the text of the radiology report. The data-
set has 993 images annotated with bounding boxes to show 
1,600 regions of interest for 8 labels.

Radiological Society of North America (RSNA) pneumonia 
dataset

The RSNA’s AI challenge in 2018 focused on pneumonia 
detection on chest radiographs. To facilitate this challenge, 
30,227 chest radiographs from the NIH-14 dataset were 
relabeled by 18 radiologist volunteers from the Society of 
Thoracic Radiology (STR) and the RSNA. The test set was 
labeled based on the majority assessments of three radiolo-
gists (two from STR and one from RSNA). The pediatric 
subset of the RSNA dataset includes normal cases (n=462), 
cases with a lung opacity (n=1,074) and cases with no 
lung opacity but another abnormality (n=429), for a total 
of 1,965 pediatric images. Cases with lung opacities were 
manually labeled with bounding boxes to highlight regions 
of opacity [19, 27] (Fig. 3). This dataset has an age range 
of 1–17 years. Training and test sets are provided by the 
challenge holder.

Fig. 3  Example images from two datasets containing pediatric 
patients illustrate the variation in labeling used. a Anteroposterior 
chest radiograph of a 1-year-old boy from the National Institutes of 
Health (NIH) NIH-14 dataset demonstrates extensive perihilar infil-
trates without effusion. This radiograph has two labels in the NIH-
14 dataset: infiltration and effusion (identification number 6649). b 
Anteroposterior chest radiograph of a child age 1–5  years from the 
Guangzhou Women and Children’s Medical Center (GWCMC) data-

set. This radiograph is labeled as bacterial pneumonia in the data-
set. Note the presence of support tubes and lines that are not labeled 
(identification number person1946_bacteria_4875-Kermany). c 
Anteroposterior chest radiographs of a boy age 13  years from the 
Radiological Society of North America (RSNA) dataset. This radio-
graph is labeled as lung opacity and the bounding box localizes the 
pathology (identification number: 089a996e-425c-4,311-b473-
6948b3eb1060)
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Society for Imaging Informatics in Medicine (SIIM)–American 
College of Radiology (ACR) pneumothorax segmentation 
dataset

The SIIM and the ACR created a dataset for a pneumothorax 
detection challenge. The dataset is a subset of the NIH-14 
dataset and consists of a 12,047-image training set. Because 
the dataset has been published for competition purposes, the 
test set is not publicly available. Six radiologists from SIIM 
and 13 radiologists from ACR were involved in labeling each 
image manually [21, 28]. The dataset contains 617 pediat-
ric cases ranging 1–17 years old. This dataset also provides 
training and test sets.

National Institute of Allergy and Infectious Diseases (NIAID) 
tuberculosis dataset

The United States National Institute of Allergy and Infec-
tious Diseases (NIAID) led the development of the Tuber-
culosis Portals Program, an international collaboration for 
tuberculosis data-sharing and analysis to promote tubercu-
losis research. It has a database containing clinical, imag-
ing and bacterial genomic information from drug-sensitive 
and resistant tuberculosis cases sourced from 40 sites across 
different countries. The dataset contains 6,251 chest radio-
graphs and CT images from members of the collaboration. 
Among these, 4,656 images are unique images from 3,149 
unique patients and have been labeled manually or by a con-
volutional neural network (CNN) classifier. There are 71 
chest radiographs from 45 pediatric patients in total [23].

Shenzhen dataset

This dataset was obtained from the outpatient clinics of 
Shenzhen No. 3 People’s Hospital, Guangdong Medical 
College, Shenzhen, China, over 1 month in 2012. Associ-
ated available metadata include gender, age, radiologic diag-
nosis and, in some cases, the location of the abnormality. 

However, the annotation method and ground truth of labe-
ling were not reported [24]. The dataset includes 662 chest 
radiographs, including 31 pediatric chest radiographs (from 
children ages 2 months to 17 years).

Montgomery County dataset

This dataset was collected from the tuberculosis screening 
program in Montgomery County, MD, United States. It com-
prises 58 chest radiographs of tuberculosis and 80 normal 
chest radiographs, with only 17 images of pediatric patients 
(ranging 4–17 years old). Images in the dataset are associ-
ated with a segmentation mask to illustrate the involved lung 
region as well as metadata including gender, age, abnormal-
ity seen in the lung, diagnosis and location of abnormalities. 
Some cases also contain labels indicating chronic or acute 
tuberculosis patterns and the treatment received and dura-
tion [24].

Review of artificial intelligence studies for pediatric 
chest radiographs

The comprehensive literature review showed that 36 (65%) 
of the 55 eligible studies published between 1990 and 2021 
focused predominantly on pneumonia. Of the studies focus-
ing on pneumonia, 32 used publicly available datasets and 4 
used private datasets. Beyond pneumonia, other studies have 
focused on detecting and classifying thoracic diseases such 
as hyaline membrane disease and meconium aspiration syn-
drome, quantitative and scoring prediction, catheter and tube 
detection and classification, and lung segmentation (Fig. 4).

Studies to detect pneumonia on pediatric chest 
radiographs

Online Supplementary Materials  3 and 4 summarize 
reviewed papers pertaining to detecting pneumonia on pedi-
atric chest radiographs [14, 26, 29–62]. Most early studies 

Fig. 4  Chart shows a summary 
of conditions studied in the 
55 selected pediatric artificial 
intelligence and chest radio-
graph articles, listing the total 
numbers and percentages
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on the classification of pediatric chest radiographs as pneu-
monia being present vs. absent used conventional texture 
analysis and conventional machine learning classifiers such 
as k-nearest neighbors [29] and support vector machines 
[30].

More recently, deep learning has become the domi-
nant ML approach for chest radiograph classification for 
pneumonia, with a variety of CNNs used over the last few 
years. While larger datasets have generally been required 
for training deep learning algorithms compared to conven-
tional texture analysis, many deep learning algorithms have 
achieved higher performance. Kermany et al. [14] employed 
an Inception v3 architecture to classify optical coherence 
tomography (OCT) images of the retina and subsequently 
demonstrated the generalizability of this technique for the 
classification of pediatric chest radiographs. They achieved 
area under the receiver operating characteristic curve (AUC) 
of 0.968 for classifying radiographs as pneumonia present 
vs. absent. The GWCMC dataset was first released in this 
project.

Since the GWCMC dataset was released, multiple addi-
tional studies have used this dataset for classifying pediat-
ric chest radiographs as pneumonia present vs. absent, or 
bacterial pneumonia vs. viral pneumonia vs. normal, using 
different architectures such as AlexNet, ResNet, DenseNet, 
SqueezeNet, VGG16, VGG19, ResNet-18, ResNet-50 and 
Inception v3 (Online Supplementary Material 4) [14, 26, 
33–62].

In addition to pre-training models with general image 
datasets such as ImageNet (which is commonly employed 
in many algorithms in medical imaging [63]), pre-training 
models with large datasets of adult chest radiographs provide 
a promising approach to reducing the number of pediatric 
chest radiographs required for training [37, 54]. Tang et al. 
[54] used GoogleNet (Inception v3) to classify pediatric 
chest radiographs from the GWCMC dataset as pneumonia 
present vs. absent. When trained on an adult dataset (NIH 
ChestX-ray 14), the model achieved an AUC of 0.916 in the 
test subset of the GWCMC dataset. When the same model 
was trained exclusively on a subset of the GWCMC dataset, 
the model achieved an AUC of 0.975, and when the same 
architecture was pre-trained on NIH ChestX-ray 14 and then 
fine-tuned on a training subset of the GWCMC dataset using 
a transfer learning approach, AUC increased to 0.985.

Ensemble approaches have also shown excellent 
results. Chouhan et al. [45] individually trained AlexNet, 
DenseNet121, Inception v3, GoogleNet 50 and ResNet-18 
on a training subset from the GWCMC dataset and sub-
sequently developed an ensemble model by majority vot-
ing; accuracy of 96.4% was achieved, higher than each of 
the individual models. A similar approach was utilized by 
Hashmi et al. [46], who achieved an accuracy of 98.4% and 
an AUC of 0.999. Other groups have similarly combined 

well-known CNNs and conventional machine learning clas-
sifiers, as well as combined handcrafted features from tex-
ture analysis and features extracted from CNNs, with prom-
ising results [60, 61].

Qu et al. [55] highlighted the effect of class imbalance 
on pneumonia present vs. absent classification performance. 
They utilized ResNet-18 and showed that a close-to-bal-
anced training set (with relatively equal numbers of images 
with pneumonia present or absent) resulted in the best per-
formance. Furthermore, oversampling and under-sampling 
methods were successful in mitigating class imbalance.

To capture multi-scale image features while minimizing 
computational costs, Hu et al. [38] developed a multi-kernel 
depth-wise convolution (MD-Conv). In addition to assessing 
the network using NIH-14, they assessed the network for 
classifying pediatric chest radiographs using the GWCMC 
dataset and achieved an AUC of 0.98, slightly higher than 
the original paper of Kermany et al. [14], which achieved 
an AUC of 0.96.

Studies using artificial intelligence to detect other 
pathologies

Few AI studies have considered the broad range of patholo-
gies other than pneumonia that are common on pediatric 
chest radiographs (Online Supplementary Materials 5 and 6) 
[64–82]. A pioneering study by Gross et al. [64] first imple-
mented a neural network to assist in neonatal chest radio-
graph interpretation. Zaglam et al. [65] and Chen et al. [66] 
used machine learning models to classify chest radiographs 
of children for respiratory distress syndrome, bronchiolitis/
bronchitis, bronchopneumonia/interstitial pneumonitis, lobar 
pneumonia or pneumothorax.

Artificial intelligence has also been used to automate the 
quantitative scoring of pediatric chest radiographs. Toba 
et al. [71] achieved an accuracy of 86% and AUC 0.88 in 
predicting the pulmonary-to-systemic blood flow ratio based 
on chest radiographs. These performance metrics were equal 
to or higher than three pediatric cardiologists’ predictions. 
Predicting Brasfield chest radiographic score in children 
with cystic fibrosis is another AI use case that has been 
shown to achieve similar performance to radiologist scores 
[72]. A combination of an artificial neural network and tex-
ture analysis was performed by Clark et al. [76] to classify 
pediatric chest radiographs of children with cystic fibrosis. 
A strength of the study is its comparison to CT images as a 
gold standard, but a substantial limitation — both for train-
ing and testing the algorithm — is the small dataset.

Artificial intelligence for catheter and tube assessment — 
particularly for neonatal radiographs — is another important 
yet underdeveloped area for AI in pediatric imaging. Vari-
ous techniques, including image segmentation using deep 
learning [73] and image classification based on a CNN [80], 
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are used to detect and classify tubes and catheters. AI has 
also been used extensively for lung segmentation, both as a 
pre-processing step to increase the accuracy of other clas-
sification models focused on lung pathology, as well as a 
method of estimating lung capacity. Mansoor et al. [74] 
developed a deep-learning-based method of lung segmen-
tation generalizable to both adult and pediatric chest radio-
graphs for the purpose of identifying lung fields. Their algo-
rithm achieved Dice similarity coefficients, which measure 
the overlap between the ground truth and model segmented 
regions, ranging from 0.969 to 0.975. Other pediatric chest 
radiograph datasets, including the GWCMC dataset and a 
pediatric chest radiograph dataset from the University of 
Michigan, have also been used in training and testing algo-
rithms for lung segmentation [66, 83]. It has been shown 
that applying age-specific models (using age groupings of 
0–23 months, 2–10 years and 11–18 years), instead of adopt-
ing a model for all ages, improves algorithm performance 
[84].

Beyond image interpretation, efforts have focused on 
applications of AI that might be useful in PACS. Hržić et al. 
[77] used a transfer-learning approach based on ResNet, 
VGG16, and AlexNet to correct the orientation and align-
ment of radiographic images, achieving 99.3% accuracy. 
Kim et al. [69] performed classification of anteroposterior 
and posteroanterior chest radiographs by training a CNN. 
The CNN that was trained on both adult and pediatric chest 
radiographs achieved AUCs ranging from 0.985 to 0.999 
when tested on three pediatric datasets — two of which were 
external. The CNN trained using only pediatric chest radio-
graphs achieved an AUC of only 0.997, possibly because of 
the substantially smaller training dataset on which the CNN 
was trained.

Discussion

Chest radiography is one of the most frequently performed 
imaging tests, being easy to perform, low in cost and readily 
available even in low-resource settings. It provides important 
information regarding pediatric thoracic pathology; however, 
chest radiographs can be challenging to interpret, with sig-
nificant variability and discrepancy in findings often noted. 
Machine learning, especially deep learning, is a rapidly 
developing field with great promise for medical imaging, 
offering the potential for enhanced accuracy, faster diagno-
ses and standardized interpretations. Specific AI applications 
for chest radiography have rapidly proliferated within the last 
5 years, with several commercial products for abnormality 
detection, including detection of lung nodules and cancer, 
pneumonia and pneumothorax, among others now available 

[3]. Despite this activity, there has been limited application 
of machine learning to pediatric chest radiography.

The availability of appropriate pediatric image datasets is 
critical for training, testing and validating AI algorithms in 
pediatric radiology. Indeed, the performance of any model 
is dependent on the dataset used for training. Our systematic 
review found a paucity of gold standard open-source datasets 
for pediatric ML training and testing. We found a limited 
number of pediatric-specific datasets with an overall quite 
limited number and age-limited pediatric images available. 
The development and public release of the GWCMC data-
set [14] can be considered a turning point that has brought 
AI researchers’ attention to the pediatric population. The 
GWCMC dataset has resulted in the generation of multiple 
studies predominantly exploring the diagnosis of pediatric 
pneumonia using deep learning. However, several studies 
had been conducted on pediatrics before the release of this 
dataset; most of these studies utilized traditional machine 
learning techniques and generally small size and proprie-
tary datasets. In the GWCMC dataset, the ground truth was 
established using only radiologic features, without using 
clinical and paraclinical information. On the other hand, 
the PERCH chest radiograph dataset has strength in this 
area and includes infants, with well-defined patient inclu-
sion criteria, multi-institutional data sources and associated 
clinical and paraclinical information [15, 16]. It is hoped 
that making this dataset available for AI research and devel-
opment will mark another milestone in pediatric imaging 
AI development. There is a need for additional open-source 
pediatric-specific datasets that include a broader range of 
children across different age ranges and across additional 
pediatric conditions and diseases.

Important considerations for datasets include whether 
they were retrospectively or prospectively collected, the 
reference standards used, and how labels and annotations 
were obtained. For example, labels in the NIH training set 
were obtained by natural language processing, which is 
considered to represent weak or noisy supervision in the 
training process. Labeling images based on NLP from radi-
ology reports is intrinsically associated with uncertainty 
[85] because radiologists might mention a disease only as a 
possibility, not as a definitive diagnosis (Fig. 3). The assem-
bled datasets sometimes have poorly defined criteria for the 
presence or absence of the disease and might not reflect the 
uncertainty of radiologists’ diagnoses for some cases. It can 
be costly and time-consuming to create large-scale, richly 
labeled datasets because this generally requires extensive 
effort by experts. Appropriate datasets are not yet available 
for many diseases, especially for the pediatric population. 
Only a small pool of pediatric imagers is available, making 
obtaining these datasets a multi-institutional challenge. The 
use of transfer learning might assist in addressing the small 
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size of available pediatric datasets and help reduce computa-
tion time for training models.

Our literature review on AI for pediatric chest radio-
graph interpretation found pneumonia detection to be by far 
the most common task for which AI algorithms have been 
developed. This is a particularly important use case in pedi-
atric radiology, given that pneumonia is one of the leading 
causes of morbidity and mortality in children, accounting 
for an estimated 900,000 deaths worldwide annually [86, 
87]. The diagnosis of pneumonia is essentially clinical, and 
radiographic findings such as consolidation, infiltration or 
pleural effusion only support the diagnosis [88]. However, 
many images of the large-scale public chest radiograph 
datasets have been labeled with just “pneumonia” [17, 18, 
85]. When labeling images with clinical diagnoses rather 
than radiographic observations, it is important to ensure 
that both radiographic observations and clinical informa-
tion are incorporated when images are labeled, or that the 
images are obtained from a population of children with a 
high pre-test probability of having that diagnosis. In addi-
tion, many algorithms in our review were trained only by 
the image features present without incorporating any clini-
cal information as inputs. The drawback of this approach 
is that the AI algorithm might provide a clinical diagnosis 
that does not fit with the child’s clinical presentation as an 
output, even if it is consistent with the imaging findings. 
Therefore, we recommend that researchers consider the 
distinction between radiographic observations and clinical 
diagnoses when labeling images in future chest radiograph 
dataset construction.

The challenges of developing pediatric AI models are 
not just limited to the lack of appropriate datasets. Recog-
nition of what is considered normal is defined differently 
in the various datasets identified in this review. The chest 
wall and lungs, ossification centers and cardiothymic width 
grow and change during normal development. This makes 
some tasks such as lung segmentation more difficult for AI 
models, and separate models for specific age groups might 
be required. Children with medical devices, including a vari-
ety of chest tubes and catheters and pacemakers, are often 
included within the group called normal. In a scenario that 
a chest radiograph demonstrates catheters, tubes or other 
medical devices, the model might easily find the device as 
an abnormality, leading to a high false-positive rate. Care 
must be taken to mitigate the bias that this can introduce 
into the results.

Another challenge is the need for the integration of clini-
cal data. For example, neonatal pneumonia and meconium 
aspiration syndrome can have similar radiographic observa-
tions, and only knowledge of a specific patient’s clinical data 
makes differentiation possible [89]. An additional concern 
is a fact that specific pediatric age groups have differing 
disease predispositions. For example, transient tachypnea of 

the newborn is diagnosed only in neonates [90]. Studies have 
demonstrated that AI models might show false positives in 
cases with insufficient inflation, inappropriate positioning, 
non-standard exposure, clothing, or external or implanted 
medical devices [5, 91]. These challenges can be particu-
larly problematic in pediatric populations because provid-
ing optimum conditions for taking high-quality images in 
pediatrics can be difficult [72]. Different radiologists have 
varying levels of sensitivity and specificity, which they 
alter to fit the clinical situation. In the diagnosis of lung 
nodules in children with a known malignancy, for example, 
high sensitivity is essential, but sensitivity can be reduced 
to boost specificity in the identification of incidental pulmo-
nary nodules in asymptomatic individuals. In children with 
established immunodeficiency, high sensitivity is essential, 
while a greater specificity is preferred in the case of commu-
nity-acquired respiratory infections and fevers of unknown 
origin. Similarly, different operating points could be defined 
for AI algorithms based on clinical information, though this 
work has not been undertaken.

Deep learning models in radiology frequently suffer 
from generalization issues because of large source and tar-
get domain divergence and sometimes need fine-tuning for 
target domains, including patient age, as in pediatrics. For 
example, Tang et al. [54] showed that there is a significant 
domain shift between adult and pediatric datasets, as dem-
onstrated by substantially higher AUC values for a model 
trained on a pediatric dataset compared to the same CNN 
architecture trained on an adult dataset when both models 
were tested on a pediatric dataset. Transfer learning can 
learn the common characteristics of both domains, leading 
to a better initialization of the model parameters and faster 
training.

Some reporting guidelines have recently proposed spe-
cific AI extensions to develop and report AI-related stud-
ies, including the Standards for Reporting of Diagnostic 
Accuracy Studies (STARD) [92], Transparent Reporting of 
a Multivariable Prediction Model for Individual Prognosis or 
Diagnosis (TRIPOD) [93] and Checklist for Artificial Intel-
ligence in Medical Imaging (CLAIM) [94]. These guidelines 
provide enhanced transparency and reproducibility and help 
readers assess the generalizability of results. Many studies 
included in this systematic review lack at least some of the 
reporting items recommended in these guidelines. In this 
review we found a wide variety of machine learning archi-
tectures used with significant study heterogeneity in method-
ologies, sizes of datasets for training and testing, validation 
techniques, reference standards, terminology and reporting, 
which is not surprising given the time period covered by this 
review and the recent technological progress. Many stud-
ies reported high diagnostic accuracy; however, there was 
often poor study design, which can lead to bias and overes-
timation of the accuracy of these algorithms. Some of these 
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study limitations are noted in the tables provided in Online 
Supplementary Material. For example, many of the studies 
summarized here did not report their performance indices’ 
average and standard deviation. Furthermore, according to 
the prevalence of abnormalities, some indices like AUC, 
F1-score and Matthews correlation coefficient (MCC) [95] 
should be reported in addition to accuracy but are often not 
reported. Clinical trials involving AI and DL interventions 
with rigorous standardized reporting guidelines are expected 
to be valuable in determining the future clinical implications 
of algorithms in real life [54]. According to the STARD 
checklist, confidence intervals give information about a 
range within which the real value is likely to be found, as 
well as the direction and strength of the observed effect. This 
allows for conclusions to be formed regarding the study’s 
statistical validity and clinical usefulness. In addition, full 
access to the dataset and code is unavailable for the vast 
majority of AI studies, which limits the reproducibility of 
AI research that has been published [95]. These limitations 
in pediatric AI research make progress in this domain more 
challenging.

The performance of DL models as currently reported in 
the literature might not reflect the actual performance of 
the models in clinical practice. For example, despite recom-
mendations that an external test dataset be used, almost all 
of the studies identified in this review used the same dataset 
for training, testing and validation. Algorithm performance 
might be significantly different when used in clinical settings 
with different patient populations, imaging equipment and 
acquisition parameters. Further, the performance of most 
algorithms included in our review was not compared with 
the performance of radiologists.

In radiology, AI products can be used for triage or along-
side a radiologist as a second reader [96]. While commercial 
software is increasingly becoming available for adult imag-
ing, our review highlights that progress for pediatric chest 
radiographs interpretation lags. Many commercially avail-
able United States Food and Drug Administration (FDA) 
approved/cleared tools are not at this time applicable to pedi-
atric populations [97, 98]. In addition to common use cases 
such as pneumonia detection, there are a number of distinct 
use cases for AI development in pediatric imaging, such as 
neonatal catheter and tube assessment and cystic fibrosis 
scoring. How best to integrate the output of AI into clinical 
practice and workflow remain unanswered questions.

There are many opportunities to develop AI for pediatric 
imaging. Use cases range from correctly orienting images 
in PACS, flagging abnormal images to prioritize them for 
interpretation by a radiologist (particularly for life-threat-
ening conditions like pneumothorax), automatic labeling 
of images to support the creation of annotated datasets for 
development of other AI algorithms, automatically detect-
ing radiographic features (“lung sequencing”) and localizing 

potential abnormalities in the various lobes, performing 
automatic scoring of diffuse lung abnormalities (such as for 
cystic fibrosis) and providing preliminary interpretations to 
referring clinicians in resource-limited settings where many 
radiographs go unreported.

This systematic review has several limitations. First, our 
literature search strategy did not encompass conference 
papers or articles that were only included in open-access 
repositories such as arXiv, resulting in some pediatric AI 
studies likely being missed. Second, while we performed 
a systematic review, we did not perform a meta-analysis as 
part of this study. This is a result of the rapid evolution of 
AI approaches over the last decade, the fact that most stud-
ies did not assess AI algorithms on external datasets, and 
the substantial heterogeneity of the studies included (includ-
ing heterogeneity in terms of patient population, classifica-
tion approaches used and classification tasks). Third, while 
we considered the strengths and limitations of each study 
included in the systematic review, we did not use a vali-
dated checklist to assess study quality. As AI in pediatric 
chest radiographs interpretation continues to advance and a 
growing body of clinical evidence is established, formally 
assessing study quality will be increasingly important as AI 
is considered for clinical use in pediatric radiology.

Conclusion

In this article, we presented a systematic review of the appli-
cation of AI to pediatric chest radiograph interpretation. 
Although ML in pediatric radiology holds great promise, it 
clearly remains in its infancy and has a long way to go before 
adding value to the pediatric radiology workflow. Designing 
appropriate AI models requires significant work with reli-
able features derived from diagnostic images. Radiologists 
with knowledge of AI bring ideas to solve problems and act 
as a link between radiology and biomedical engineering. For 
AI to progress in pediatric radiology, they suggest improving 
the awareness of radiologists about AI science, providing 
better publicly available image datasets, and creating devel-
opmental research to design AI models and validate AI’s 
utility and reliability in the clinical workflow.
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