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Abstract: This paper analyses the complexity of electroencephalogram (EEG) signals in different
temporal scales for the analysis and classification of focal and non-focal EEG signals. Futures
from an original multiscale permutation Lempel–Ziv complexity measure (MPLZC) were obtained.
MPLZC measure combines a multiscale structure, ordinal analysis, and permutation Lempel–Ziv
complexity for quantifying the dynamic changes of an electroencephalogram (EEG). We also show
the dependency of MPLZC on several straight-forward signal processing concepts, which appear in
biomedical EEG activity via a set of synthetic signals. The main material of the study consists of EEG
signals, which were obtained from the Bern-Barcelona EEG database. The signals were divided into
two groups: focal EEG signals (n = 100) and non-focal EEG signals (n = 100); statistical analysis was
performed by means of non-parametric Mann–Whitney test. The mean value of MPLZC results in the
non-focal group are significantly higher than those in the focal group for scales above 1 (p < 0.05). The
result indicates that the non-focal EEG signals are more complex. MPLZC feature sets are used for the
least squares support vector machine (LS-SVM) classifier to classify into the focal and non-focal EEG
signals. Our experimental results confirmed the usefulness of the MPLZC method for distinguishing
focal and non-focal EEG signals with a classification accuracy of 86%.

Keywords: multiscale approach; permutation Lempel–Ziv complexity measure; focal EEG signals

1. Introduction

Electroencephalography (EEG) is a non-invasive procedure to measure the bioelectric
activity of the brain. The analysis of EEG signals contributes to a better understanding of
brain functions and malfunctions. Electroencephalographic signals from epilepsy patients
are of interest to researchers in particular.

Epilepsy is one of the most common chronic neurological diseases, characterized
by recurrent seizures that can be single or complex in nature and are manifested by
disturbances in consciousness, behavior, perception, movement, or sensation. According
to WHO data [1], over 50 million people suffer from epilepsy, and every year, an average
of 2.4 million patients are diagnosed with epilepsy. If an appropriate diagnosis and
treatment are made, 70% of the patients with disease can live without seizures. The clinical
picture of the seizure is a result of a discharge of improperly synchronized neurons, and it is
influenced by the size of the abnormally stimulated area and its location. In 2017, the current
seizure classification was published [2], which includes the division into focal seizures,
generalized seizures, and seizures with unknown onset. In the focal-onset seizures category,
there are seizures with and without the state of consciousness, with the coexistence of motor
symptoms and the development of focal seizures to bilateral tonic-clonic seizures. Among
generalized seizures, there are motor seizures and non-motor seizures (absences). In the
case of seizures with unknown onset, there are seizures with or without the coexistence
of motor symptoms as well as unclassified seizures. The new classification noted that
some tonic and flexion seizures may also have a focal onset. International League Against
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Epilepsy (ILAE) also presented a new classification of epilepsy and epilepsy syndromes
that takes into account the following diagnostic criteria: seizure type, epilepsy types, and
epilepsy syndromes [2].

The diagnosis of epilepsy patients sometimes requires EEG recording directly from the
brain surface or from deeper brain structures [3]. Intracranial records can be used to locate
the areas of the brain where seizures begin and to evaluate the benefits of neurosurgical
resection of these parts of the brain. It turns out that the recordings show variable dynamics
not only during acute epileptic seizures but also in the non-seizure period. There is a need to
develop new methods for analyzing signals from epilepsy patients in the seizure-free period
to identify them at an early stage of diagnosis to implement the appropriate treatment
method as soon as possible.

Nonlinear analysis of EEG signals includes many measures that allow for extraction of
useful information from dynamical systems. There are many methods of detecting dynamic
changes in physiological systems; some complexity indexes in particular, such as Lempel–
Ziv complexity [4], permutation Lempel–Ziv complexity [5], approximate entropy [6],
sample entropy [7], fuzzy entropy [8], permutation entropy [9], multi-scale entropy [10–13],
recurrence quantification analysis [14], detrended fluctuation analysis [15], and fractal
dimension [16] are used as effective features of EEG signals [17–24].

Related researches have indicated that LZC [4] is powerful in analysing biomedical
signals, especially in EEG analysis [25–29]. LZC based on a coarse-graining process is
a nonlinear measure of signal complexity and irregularity for short and nonstationary
time series. Higher value of LZC implies a more complex structure of the signal. The
original Lempel–Ziv complexity algorithm consists of transformation of the signal into
a binary sequence by comparing it with the threshold (e.g., mean or median) and cal-
culating the unique subsequence in a sequence. However, the LZC measure is artifact
sensitive and cannot distinguish between deterministic chaos and noise [5,30,31]. The
binary coarse-graining process is associated with loss of signal dynamics and important
system information. Ordinal patterns [9] have been used to quantify dynamical information
of signals as an improvement of binary coarse-graining process. Bai et al. [5] developed
permutation Lempel–Ziv complexity measures (PLZC) to quantify dynamic changes in
EEG signals. However, the existing PLZC methods have one common problem when
analyzing EEG signals: EEG information is embedded in different scale domains. PLZC
algorithm is a single-scale analysis, and therefore, it fails to account for multiple electrical
activities that are inherent in the brain. Using the multiscale approach to measure the
complexity of EEG recordings over multiple time scales of signals instead of using a single
scale [10] is a solution to this problem. Therefore, we proposed the multiscale permuta-
tion Lempel–Ziv complexity measure (MPLZC) that combines permutation Lempel–Ziv
complexity methods and a multiscale approach. The concept of multiscale Lempel–Ziv
measure has already been introduced in the analysis of short, non-stationary, and noisy
EEG signals [32]. However, this method uses multiple thresholds for binarization, which
is obtained by comparing each element of EEG signals with its smoothed versions in
the window.

The purpose of the research presented in this article is to evaluate MPLZC measure in
identification of focal signals.

The structure of the paper is organized as follows: Section 2 presents the description
of simulated and empirical data, methods of Lempel–Ziv complexity, permutation Lempel–
Ziv complexity, multiscale permutation Lempel–Ziv complexity, and the classification.
The results are summarized in Section 3. Finally, Section 4 presents the discussion of the
obtained results with corresponding analysis.

2. Materials and Methods

The Python language, an interpreted high-level performance programming language,
was used for the analysis of the synthetic signals and EEG signals.
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2.1. Simulated Data

In this subsection, the simulated signals used to evaluate the MPLZC measure in
terms of classical signal-processing concept (frequency, amplitude, noisy power, signal
bandwidth) are described. Some of them have been used to evaluate the Lempel–Ziv
complexity measure [26], auto-mutual information function [33], and composite multiscale
permutation entropy [34]. These generated signals have a sampling frequency ( fs) of
100 Hz and a length of 100 s. Additionally, white Gaussian noise (WGN) and 1/ f noise
were used to verify the performance of MPLZC measures. The simulated signals used are
listed as follows:

• Gaussian noise

White Gaussian noise is a random signal having equal intensity at different frequencies,
giving it a constant power spectral density S( f ):

S( f ) =
cw

| f |0
(1)

where cw is constant. It is a discrete signal whose samples are regarded as a sequence of
serially uncorrelated random variables with zero mean and finite variance (Figure 1a).
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Figure 1. Example of simulated signals: (a) white Gaussian noise; (b) 1/f noise.

Pink noise, or 1/ f noise, is a signal or a process with such a frequency spectrum that
the power spectral density S( f ) (power-per-frequency interval) is inversely proportional
to the frequency of the signal:

S( f ) =
c f

| f |α
(2)

where c f is constant, and 0 < α < 2. The complexity of pink noise is greater than that
of white noise, with pink noise being more regular and predictable than white noise [35]
(Figure 1b).

Each type of noise was generated 50 times.

• Sinusoidal signals with variable amplitude and frequency

Sinusoidal signals with variable amplitude and frequency were generated in order to
explain how the MPLZC change when the amplitude and frequency of sinusoidal signals
are changed. The first signal consists of constant amplitude of the chirp signal, with a
logarithmically variable frequency in the range of 0.1 Hz to 20 Hz in 100 s (Figure 2). In the
second signal, the frequency changes logarithmically from 0.25 Hz to 5 Hz in 100 s with
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chirp amplitude modulation of the signal (Figure 2). The signal analysis was performed
using a window.
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Figure 2. Examples of simulated signals: chirp signal with constant amplitude, signal with chirp
amplitude modulation of the signal, quasi-periodic signal with additive WGN of diverse power,
and coloured Gaussian noise with different bandwidth, spectral content of the colour noise using
an autoregressive process of order 1; MIX signal (1− z) x + zy includes a periodic and a stochastic
process [34].

• Amplitude modulated quasi-periodic signal with the addition of WGN of diverse power

Amplitude modulated quasi-periodic signals with the addition of WGN of diverse
power were used to verify how the MPLZC change with the level of noise. Amplitude
modulated quasi-periodic signals were generated as a sum of two sinusoidal waveforms
with the frequencies of 0.5 Hz and 1 Hz. The first 20 s of the resulting signal do not contain
noise. After that time, white noise was added to the signal with increasing power every
10 s (Figure 2).

• Bandwidth of coloured Gaussian noise signal

The bandwidth of coloured Gaussian noise signal was generated in order to determine
the relationship between MPLZC and the noise bandwidth. The signal consists of five
segments of coloured noise in different bands. The color noise frequency spectra are
centered at fs/4, and their bandwidth increases from fs/15 to fs/3 in five equal steps
(Figure 2).

• Signal with spectral colour noise content
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The signals are generated to investigate the relationship of the MPLZC and the spectral
content of the colour noise using an autoregressive process of order 1 for the time table t
with the parameter going from +0.9 to −0.9 linearly (Figure 2).

• Periodic deterministic process

The MIX process is defined as:

MIX = (1− z)x + zy (3)

where z is a random variable equal to 1 for probability p and equal to 0 for probability 1−p,
x is a periodic time series made of xk =

√
2 sin

(
2πk
12

)
, and y is a random variable with a

distribution in the range
〈
−
√

3,
√

3
〉

. A synthetic time series is based on the MIX process
for parameters between 0.01 and 0.99 (Figure 2).

2.2. Data Collection

In the present work, we used Bern-Barcelona EEG database (https://www.upf.edu/
web/ntsa/downloads, accessed on 1 March 2021) [3] to verify the usefulness of MPLZC
measure for long-term intracranial electroencephalographic recordings (EEG) from patients
suffering from pharmaco-resistant, focal-onset epilepsy. The clinical purpose of those
recordings was to determine the brain areas to be surgically removed in each individual
patient in order to achieve seizure control. The EEG data contains 3750 pairs of signals
recorded from the areas of the brain where the first ictal EEG signal changes were de-
tected (focal signals) and 3750 pairs of signals recorded from the areas of the brain that
were not involved at seizure onset (non-focal signals) obtained from five temporal-lobe
epilepsy patients. Multichannel EEG signals were recorded with intracranial strip and
depth electrodes manufactured by AD-TECH (Racine, WI, USA). All EEG signals were
digitally band-pass filtered between 0.5 and 150 Hz using a fourth-order Butterworth filter.
The sampling frequency was 512 Hz. The length of each signal was 10,240 samples. The
recordings of seizure activity and recordings made three hours after the last seizure were
excluded. Each individual signal pair was selected randomly from the pool of all signals
measured at focal EEG channels. This random sample was drawn without replacement and
using a uniform random number generator. In the same way, non-focal signals measured
at non-focal EEG channels were randomly selected. Focal and non-focal signals came from
independent areas of the brain. The first 50 pairs of records were used for that analysis and
were made to form 100 signals in the focal and non-focal group.

2.3. Lempel–Ziv Complexity

The Lempel–Ziv complexity measure can characterize the degree of order or disorder
and development of spatiotemporal patterns [4]. The signal x(n) = {x1, x2, . . . , xn}must
be converted by a coarse-graining process into a finite sequence {s(n)} whose elements
contain zeros and ones. The coarse-graining process is very important because it determines
how much information can be preserved from the original signal. A commonly used coarse-
graining method is to select threshold Td as the mean value of the window time series
and transform the original signal into a 0− 1 sequence by comparing the signal with Td.
Another way is to adopt a method using the Hilbert transform approach to generate a
0− 1 sequence [16,17]. The Lempel–Ziv algorithm counts all distinct patterns in a sequence
{s(n)}. The complexity counter c(n) increments by one when a new pattern is found.
The LZC measure has a range from 0 to 1 after normalization, where 0 means order, and
1 means random pattern. The calculation of c(n) can be represented as follows:

Step 1: Transform the signal into a finite sequence {s(n)} that contains zeros and ones.
Step 2: Let A and B denote a subsequence of the sequence {s(n)}.
Step 3: Connect A and B into AB. Sequence ABc is derived from AB and c (c means

that the last digit has to be deleted). Suppose that A = s(1), s(2), . . . s(k), B = s(k + 1);

https://www.upf.edu/web/ntsa/downloads
https://www.upf.edu/web/ntsa/downloads
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then ABc = s(1), s(2), . . . s(k). Let f (ABc) express the vocabulary of all different subse-
quences of ABc.

Step 4: The rule if B belongs to f (ABc) or not. If B ∈ f (ABc), then B is not a new sequence,
and A does not change. Update B as s(k + 1), s(k + 2). If B = s(k + 1), s(k + 2), . . . s(k + i)
and is not a subsequence of ABc = s(1), s(2), . . . , s(k), s(k + 1), . . . s(k + i− 1), then
B is a new sequence, and A is changed. Update B as B = s(k + i + 1) and A as
A = s(1), s(2), . . . s(k), s(k + 1), . . . s(k + i). The complexity counter c(n) is incremented
by one. Go to step 3.

Step 5: c(n) means the number of distinct patterns of sequence {s(n)}. Normalized
Lempel–Ziv complexity can be defined as:

C(n) = (c(n) log2 n)n (4)

2.4. Permutation Lempel–Ziv Complexity

The permutation Lempel–Ziv complexity measure combines the permutation scheme
and Lempel–Ziv complexity [5]. In the first step of PLZC, a finite sequence of symbols
{s(n)} was generated that included a total of m! types of symbols, where m is the number
of data points in each motif. The permutation Lempel–Ziv complexity measure depends
on an order m and time delay τ. Given a scalar time series x(n) = {x1, x2, . . . , xn }, a
vector ym(N) =

[
yN , yN+τ , . . . , yN+τ(m−1)

]
composed of the m-th subsequent values

is constructed, where m is the number of samples belonging to the subsequence, and τ
represents the distance between the samples spanned by each section of the motif. Then, the
permutation s =

(
s0, s1, . . . , sτ(m−1)

)
is defined as an ordinal pattern associated with the

vector ym(N), which is arranged in increasing order: yN+s0 ≤ yN+s1 ≤ · · · ≤ yN+sτ(m−1)
.

These symbols are used in the procedure of calculation of the Lempel–Ziv complexity
measure, which is normalized as follows:

PLZC = (c(n)logm!n)n (5)

2.5. Multiscale Permutation Lempel–Ziv Complexity

MPLZC combine two topics. First, a coarse-graining procedure is applied to the
original time series x(n) = {x1, x2, . . . , xn}. The coarse-grained time series are constructed
in non-overlapping windows of increasing length s (called scale factors) for which the
number of data points is averaged. Each element of the coarse-grained time series is
calculated as follows:

ys
j =

1
s

js

∑
i = (j−1)s+1

xi 1 ≤ j ≤
⌊

N
s

⌋
(6)

where bac denotes the largest integer not greater than a. The length of each coarse-grained
time series is s times shorter than x(n) ( s = 1→ the original time series ). Next, PLZC
is calculated for each scaled series and plotted as a function of the scale factor s. The
coarse-grained process uses a procedure similar to sub-sampling.

2.6. Classfication

The support vector machine (SVM) algorithm can be used for both classification and
regression [19]. The SVM method transforms the original space in which the problem of
classification has been defined to n-dimensional space (n-the number of features). The
transformation is made in such a way that after it is made in the new space, objects are
separable by means of a hyperplane (this separation is usually impossible in the original
space). The hyperplane can be found using the least squares support vector machine
(LS-SVM). The main element of the transformation is the selection of the kernel function
responsible for mapping the points to the new space. The SVM algorithm works very well
in practical applications, such as biomedical data analysis.
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LS-SVM classification was applied to confirm the usefulness of the obtained twenty
MPLZC features. Scikit-Learn tool [36] implemented in Python was used to measure the
accuracy performance of a LS-SVM classifier, and traditional C-support vector classification
(C-SVC) was used as the support vector classifier. The final classification accuracy is the
mean result of the ten-fold cross-validation procedure. The radial basis function (RBF
kernel) was used as a kernel function. The performance of the LS-SVM classifier was
evaluated using sensitivity (SEN), specificity (SPF), and accuracy (ACC). The mathematical
expressions of the classification parameters are presented as follows [32,37,38]:

SEN = (TP/(TP + FN))× 100% (7)

SPF = (TN/(TN + FP))× 100% (8)

ACC = ((TP + TN)/(TP + TN + FP + FN))× 100% (9)

3. Results
3.1. Parameter Selection

The unity delay (τ = 1) is used to calculate the PLZC of the coarse-grained time
series for all scales. There are several methods for determining the optimal time delay for a
single channel. Future developments should test time delay selection for different scales,
but these are not yet available.

The order m is the number of data points contained in the motif. In the permutation
process, m can be given a value of 3, 4, 5, 6, or 7 [5,9]. When m < 3, there would be too
few possible patterns, and for m > 7, the PLZC algorithm generates m! possible motifs,
causing a large computational cost. The condition m! ≤ N − (m− 1) must hold so that
every possible order occurs in the signal. Based on our experience, we recommend m = 4
for N ≥ 1000 or m = 5 for N ≥ 2000, as the value is usually less than m!. Additionally,
the condition of multi-scale analysis (m + 1)! ≤

⌊
N
s

⌋
should be kept.

3.2. Synthetic Signals

Firstly, MPLZC analysis was applied to simulated signals: white Gaussian noise, 1/f
noise signal (Figure 3), chirp signal with constant amplitude, signal with logarithmic chirp
and AM modulation, amplitude-modulated quasi-periodic signal with additive WGN of
diverse power, and coloured Gaussian noise that is appended one after the other, with
different bandwidth, autoregressive of order 1; MIX signal (1− z)x + zy includes a periodic
and a stochastic process [34] (Figure 4). WGN and 1/f noise, as two commonly used signals
in multiscale analysis, were used. As it can be seen in Figure 3 for WGN, MPLZC values
increased monotonically with scale factor s. That tendency was maintained at different
lengths of the analyzed signal except for the signal with a length of 256 samples (=2.5 s).
It could result from an incorrectly selected parameter m. In our study, we choose a low
dimension m = 4 and N = 1000 when calculating MPLZC. MPLZC values for WGN signal
and 1 / f noise decrease with increasing signal length on all scales, and the standard
deviation of the average of 50 signals results decreases. MPLZC values for 1/f noise
increase and become constant for higher scales.

In Figure 4, the results of MPLZC measure on synthetic signals are shown. A sliding
window moving for 10 s with 80% overlap with the objective of testing was used to
understand the relationship between MPLZC and frequency, amplitude, noise power, or
signal bandwidth.

The result of MPLZC show that values increase for chirp signals with constant am-
plitude as the frequency of signal increases, and amplitude modulation of this signal has
no significant effect on the results compared to constant amplitude signal, as it can be
observed in Figure 4a,b, respectively.

Figure 4c shows the relationship between MPLZC and changes in additive noise
power in quasi-periodic signals. MPLZC values increase as the power of the noise increases.
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MPLZC is sensitive to changes in noise power. MPLZC values are lower for higher scales;
a multiscale process causes signal filtering.

Figure 4d shows MPLZC results in reference to increasing the noise bandwidth. The
signal consists of four segments of coloured noise with increasing spectral bandwidth.
MPLZC is sensitive to signal bandwidth changes, especially when scale factor s < 5.
MPLZC values increase along the signal. When scale factor s ≥ 5, MPLZC takes similar
high values.

Figure 4e shows the relationship between MPLZC and an autoregressive process.
MPLZC for small scale increases along the signal and, for higher scale, takes higher values.

Figure 4f shows the results of MPLZC for MIX process, which evolves from random-
ness to periodic oscillations. MPLZC values decrease along the signals for all scales s,
especially when scale factor s = 1, s = 2, and s = 3.
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Figure 4. The results of the MPLZC measure on synthetic signals. The relationships between: (a) MPLZC and chirp
signal with constant amplitude, (b) MPLZC and amplitude-modulated chirp signal, (c) MPLZC and quasi-periodic signal
with increasing additive noise power, (d) MPLZC and a signal including five segments of coloured noise with increasing
bandwidth, (e) MPLZC and AR(1) process with variable parameter, and (f) MPLZC and a MIX process which evolves from
randomness to periodic oscillations.

3.3. Neurological Focal—Non-Focal Dataset

In this study, the MPLZC method was applied to analyze the EEG signals. Figure 5
shows an example of the bivariate signals from the focal and non-focal group.
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Figure 5. The example of bivariate signals: (a) focal signal from channel ch1, (b) focal signal from channel ch2, (c) non-focal
signal from channel ch1, and (d) non-focal signal from channel ch2.

Permutation Lempel–Ziv complexity was evaluated for 20 scale factors with the
dimension m = 4. Mann–Whitney rank test (the non-parametric equivalent of t-student
statistics for the independent samples) was used to find significant differences between
the groups, and results were considered statistically significant for p-values < 0.05. The
result of the MPLZC analysis on the averaged EEG signals is shown in Figure 6. For
scale 1, which is regarded as a single-scaled base method, and for other scales, the mean
PLZC values of groups are presented in Table 1. The permutation Lempel–Ziv complexity
values in the focal group are significantly lower than those in non-focal group for scales
above 1 (p < 0.05), which indicates that non-focal signals are more complex/irregular. The
permutation Lempel–Ziv measures increase for all scales. Standard deviation values for
both groups are large, but the non-focal group shows higher values of them, as can be seen
in the Figure 6. The strongest separation between the focal group and non-focal group
occurs for higher scales, which can improve proper identification of the focal area.
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Figure 6. MPLZC analysis of EEG signals. The mean values of permutation Lempel–Ziv complexity
measures for each group over 20 scales; m = 5.

Table 1. The MPLZC results (mean ± standard deviation) of the non-parametric Mann–Whitney U
test for 20 scales in studied EEG groups (* p < 0.05).

Measure m
Focal Group
(Mean ± std)

N = 100

Non-Focal Group
(Mean ± std)

N = 100
p

PLZC_01
3 0.390 ± 0.039 0.387 ± 0.042 2.23 × 10−1

4 0.299 ± 0.028 0.296 ± 0.031 3.22 × 10−1

5 0.251 ± 0.026 0.248 ± 0.028 2.65 × 10−1

PLZC_02
3 0.501 ± 0.046 0.503 ± 0.061 3.09 × 10−2 *
4 0.385 ± 0.0364 0.388 ± 0.046 1.92 × 10−2 *
5 0.340 ± 0.036 0.344 ± 0.044 1.54 × 10−2 *

PLZC_03
3 0.526 ± 0.046 0.533 ± 0.064 6.96 × 10−3 *
4 0.404 ± 0.035 0.415 ± 0.049 3.62 × 10−4 *
5 0.364 ± 0.036 0.375 ± 0.048 3.11 × 10−4 *

PLZC_04
3 0.533 ± 0.046 0.551 ± 0.063 4.80 × 10−5 *
4 0.413 ± 0.033 0.429 ± 0.048 2.42 × 10−6 *
5 0.373 ± 0.034 0.393 ± 0.049 1.22 × 10−6 *

PLZC_05
3 0.537 ± 0.044 0.559 ± 0.059 1.69 × 10−6 *
4 0.418 ± 0.033 0.441 ± 0.045 5.91 × 10−9 *
5 0.379 ± 0.034 0.406 ± 0.048 9.22 × 10−10 *

PLZC_06
3 0.541 ± 0.041 0.569 ± 0.057 1.90 × 10−8 *
4 0.424 ± 0.032 0.451 ± 0.044 1.24 × 10−10 *
5 0.386 ± 0.033 0.418 ± 0.046 1.45 × 10−11 *

PLZC_07
3 0.547 ± 0.039 0.577 ± 0.055 4.26 × 10−10 *
4 0.429 ± 0.031 0.461 ± 0.044 2.43 × 10−12 *
5 0.393 ± 0.033 0.431 ± 0.047 2.52 × 10−13 *
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Table 1. Cont.

Measure m
Focal Group
(Mean ± std)

N = 100

Non-Focal Group
(Mean ± std)

N = 100
p

PLZC_08
3 0.552 ± 0.041 0.588 ± 0.052 5.36 × 10−11 *
4 0.434 ± 0.031 0.470 ± 0.041 2.07 × 10−13 *
5 0.400 ± 0.033 0.441 ± 0.046 8.31 × 10−14 *

PLZC_09
3 0.555 ± 0.039 0.596 ± 0.052 9.69 × 10−12 *
4 0.441 ± 0.031 0.478 ± 0.040 7.13 × 10−14 *
5 0.406 ± 0.033 0.453 ± 0.045 1.79 × 10−15 *

PLZC_10
3 0.559 ± 0.042 0.601 ± 0.050 5.07 × 10−12 *
4 0.447 ± 0.032 0.486 ± 0.039 1.62 × 10−14 *
5 0.413 ± 0.035 0.463 ± 0.045 5.78 × 10−16 *

PLZC_11
3 0.567 ± 0.042 0.609 ± 0.049 3.83 × 10−12 *
4 0.452 ± 0.033 0.493 ± 0.039 2.50 × 10−15 *
5 0.420 ± 0.039 0.472 ± 0.042 1.73 × 10−16 *

PLZC_12
3 0.569 ± 0.040 0.616 ± 0.048 1.05 × 10−14 *
4 0.456 ± 0.033 0.500 ± 0.036 1.06 × 10−16 *
5 0.424 ± 0.038 0.482 ± 0.040 8.91 × 10−19 *

PLZC_13
3 0.576 ± 0.042 0.621 ± 0.049 1.90 × 10−12 *
4 0.464 ± 0.035 0.507 ± 0.037 5.55 × 10−15 *
5 0.432 ± 0.040 0.488 ± 0.043 1.04 × 10−17 *

PLZC_14
3 0.579 ± 0.041 0.629 ± 0.050 3.84 × 10−15 *
4 0.470 ± 0.034 0.514 ± 0.036 2.92 × 10−16 *
5 0.438 ± 0.040 0.498 ± 0.041 2.23 × 10−18 *

PLZC_15
3 0.585 ± 0.042 0.631 ± 0.047 6.95 × 10−14 *
4 0.473 ± 0.035 0.518 ± 0.035 9.75 × 10−16 *
5 0.445 ± 0.042 0.506 ± 0.041 1.05 × 10−18 *

PLZC_16
3 0.591 ± 0.042 0.634 ± 0.047 3.78 × 10−13 *
4 0.479 ± 0.036 0.523 ± 0.036 1.12 × 10−15 *
5 0.451 ± 0.041 0.512 ± 0.039 4.04 × 10−19 *

PLZC_17
3 0.596 ± 0.040 0.641 ± 0.045 1.31 × 10−13 *
4 0.485 ± 0.037 0.528 ± 0.034 3.60 × 10−14 *
5 0.457 ± 0.041 0.515 ± 0.040 6.80 × 10−18 *

PLZC_18
3 0.600 ± 0.043 0.645 ± 0.046 4.02 × 10−12 *
4 0.490 ± 0.035 0.533 ± 0.035 7.88 × 10−15 *
5 0.463 ± 0.042 0.522 ± 0.040 1.36 × 10−17 *

PLZC_19
3 0.607 ± 0.041 0.651 ± 0.043 1.47 × 10−13 *
4 0.493 ± 0.034 0.537 ± 0.032 3.95 × 10−17 *
5 0.467 ± 0.041 0.526 ± 0.038 8.48 × 10−19 *

PLZC_20
3 0.610 ± 0.043 0.651 ± 0.043 8.29 × 10−12 *
4 0.497 ± 0.035 0.540 ± 0.034 2.67 × 10−16 *
5 0.472 ± 0.041 0.528 ± 0.038 3.74 × 10−18 *

Comparing the signals shown in Figure 7, it can be seen that the signal dynamics of
focal and non-focal areas are different. Focal signals include a certain repetition of patterns,
while the non-focal signals are more irregular. In this work, differences in the complexity of
both signals are shown by the MPLZC method. The lower values of MPLZC obtained for
focal group indicate that the dynamics of focal signals are more regular than for non-focal
signals. This seems typical because focal signals are more periodic and less random.
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nite symbolic sequence from chaos theory. Higher LZ values indicate the presence of new 
sequence patterns and thus a more complex dynamic behavior. The Lempel–Ziv measure 
shows the rate at which new patterns appear with respect to the underlying system 
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Figure 7. Results of the MPLZC measure on EEG signals. Relationships between: (a) MPLZC and focal signal from channel
ch1, (b) MPLZC and focal signal from channel ch2, (c) MPLZC and non-focal signal from channel ch1, and (d) MPLZC and
non-focal signal from channel ch2.

The result of the SVM classification is presented in Table 2. The MPLZC features
achieve accuracy of classification up to 86% (confidence intervals ±5%).

Table 2. Performance of the LS-SVM classifier.

m ACC (±Confidence Intervals) SEN SPF

MPLZC
3 0.82 (8%) 0.81 0.84
4 0.85 (4%) 0.85 0.84
5 0.86 (5%) 0.88 0.83

4. Discussion

The evolution of computational techniques has enabled the development of non-linear
methods of analysis. These methods are derived from chaos theory and are often used in
the study of complex biological systems. Chaos means some kind of disorder/irregularity
in which there are both deterministic and stochastic elements. Lempel–Ziv complexity mea-
sure borrowed its useful approach for estimating randomness of finite symbolic sequence
from chaos theory. Higher LZ values indicate the presence of new sequence patterns and
thus a more complex dynamic behavior. The Lempel–Ziv measure shows the rate at which
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new patterns appear with respect to the underlying system regardless of whether the
system is deterministic or stochastic.

The study of dynamic systems in medicine characterized by high sensitivity to initial
conditions suggests that the human body shows the highest degree of complexity. Living
organisms are affected by changing internal and external factors. In order to maintain an
actively changing body balance, it needs regulatory mechanisms (homeodynamics) based,
inter alia, on the feedback loop. These dynamic systems, in a healthy person, contain
oscillations of physiological parameters in acceptable ranges. The normal EEG signal
consists of disorganized fluctuations, but during epileptic seizure, the EEG signals are
more rhythmic. The change of such states is reflected by complexity. The LZ algorithm
describes the EEG signal in the time domain, but there are studies showing the sensitivity
of the method to changing the power spectrum and amplitude distribution in the time
domain. Therefore, it seems justified to use LZ in the analysis of EEG signals. The Lempel–
Ziv measure is based on the procedure of converting a signal into a binary signal using
differently determined threshold values (e.g., mean, median). Unfortunately, during such
conversion, information from the original signal is lost. The study [32] showed that classic
LZC has low sensitivity in the assessment of changes of small amplitude. Bai et al. [5]
proposed a new PLZC algorithm that combines the permutation with the Lempel–Ziv
complexity. They showed the ability to differentiate clinical conditions in EEG recordings.
The PLZC reflects the relationship of signal points (described as motifs) to one another, and
the variability of these motifs indicates a change in the signal itself. The changes will be
visible in both high and low frequency. However, PLZC is limited to assessing the values
for only one temporal scale. This technique fails to account for multiple time scales inherent
in biomedical signals. To deal with this limitation, a multiscale approach [10] was used to
construct the new procedure of multiscale permutation Lempel–Ziv complexity measure.

MPLZC values for noisy signals are higher than for periodic signals. As the length
of the analyzed signal increases, the variability of the results (the standard deviation)
decreases. The results were more stable. For both constant and amplitude-modulated
chirp signal, the MPLZC values were increased along the windowing signal until the
highest values were reached. The transitions between the windows were quite smooth.
The analysis showed that there were no significant differences in slow change in amplitude.
In the case of a quasi-periodic synthetic signal, the MPLZC values generally increased
in successive time windows. For a scale factor of 1, the amount of noise power was not
recognizable from the PLZC values because they were saturated. However, given the
higher scale factors, the importance of the multiscale concept can be seen. Different noise
power levels saturated a different number of temporal scales. For coloured noise, MPLZC
was sensitive to signal bandwidth changes with increasing bandwidth. The analysis in
AR(1) process showed that a part of the signal with wider spectra has higher values. Mix
process showed that values of MPLZC decrease from randomness to periodic oscillations.

By using the MPLZC measure, the EEG signal analysis is focused on the possibility of
differentiation of focal from non-focal signals. Lower PLZC values of focal signals suggest
that the arrangement of brain EEG signals increases during focal epilepsy. This is consistent
with the general hypothesis that reduction in the permutation Lempel–Ziv complexity of
biological signals is associated with disease [10]. Moreover, the t-student test has shown
that the MPLZC values of focal signals are statistically higher than that of non-focal signals
for scales above 1 (s > 1). In this study, nonlinear MPLZC features were extracted from
EEG signals. Using 20 MPLZC features, a maximum accuracy of up to 86% was obtained.
The published algorithms based on the entropy features for detection of focal signals are
summarized in Table 2. Most studies employed various decomposition techniques prior
to the extraction of entropy features. Some of them used entropy combination and other
nonlinear features to characterize focal and non-focal signals. During the analysis, the
measure of LZC was calculated, but it did not show any significant differences in mean
values between the groups in any study. The use of a multiscale approach allowed for
achieving a satisfactory result.
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Related studies have indicated that complexity indexes are powerful in analyzing focal
versus non-focal signals within the Bern-Barcelona EEG database (Table 3). The presented
results seem to suggest that the main classification method is the support vector machine
(SVM). Sharma et al. [19] used various entropy measures, such as Shannon entropy, Renyi’s
entropy, approximate entropy, sample entropy, and phase entropy, from the decomposed
EEG signals using empirical mode decomposition [19], discrete wavelet transform [18], and
the tunable-Q wavelet transform [20]. Their group achieved accuracy of classification at the
level of 84%, 87%, and 95%, respectively. Das et al. [39] proposed combined EMD and DWT
methods to decompose EEG signals and used entropy measures from the decomposed
coefficients, achieving the classification accuracy of 89%. Bhattacharyya et al. [40] adopted
multivariate fuzzy entropy of the sub-band signals obtained using TQWT. The proposed
method achieves the highest classification accuracy of 84.67%. Acharya et al. [24] presented
a literature review on the classification of focal signals and achieved a classification of
87.93% using 23 nonlinear features. Gupta et al. [41] used EMD along with Sharma–Mittal
entropy feature computed on Euclidean distance values from K-nearest neighbors (KNN).
This new methodology allows for achieving the classification accuracy of 83.18%. The
results obtained show a similar accuracy of the classification.

Table 3. The comparison of studies performed on the Bern-Barcelona database for focal and non-focal classification.

Authors (Years) Number of Signals Techniques Proposed K-Fold Accuracy

Sharma et al. (2015) [19] 50 EMD, entropy, LS-SVM Yes 87
Sharma et al. (2015) [18] 50 DWT, entropy, Student t-test, LS-SVM Yes 84
Sharma et al. (2017) [20] 3750 WFB, entropy, Student t-test, LS-SVM Yes 94.25

Bhattacharyya et al. (2017) [40] 3750 TQWT, entropy, LS-SVM Yes 84.67
Acharya et al. (2019) [24] 3750 23 features, p-value, LS-SVM Yes 87.93
Gupta et al. (2019) [41] 3750 EMD, KNN entropy features, LS-SVM Yes 83.18

The main highlights of this study are as follows:

1. This is the first study to introduce a new methodology of complex systems analysis;
2. The features obtained from MPLZC analysis allow for distinguishing two classes of

EEG signals;
3. We used only one measure, so it can be useful in building a real system supporting

identification of a epileptogenic activity in an area of the brain.

In the feature, the proposed solution should be applied with reconstructed source-
space data from surface EEG, EMG (electromyography), or EHG (electrohysterography).
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