
sensors

Article

Breaking Down the Compatibility Problem in Smart
Homes: A Dynamically Updatable Gateway Platform

Linh-An Phan and Taehong Kim *

School of Information and Communication Engineering, Chungbuk National University, Cheongju 28644, Korea;
linhan@cbnu.ac.kr
* Correspondence: taehongkim@cbnu.ac.kr; Tel.: +82-43-261-2481

Received: 27 March 2020; Accepted: 12 May 2020; Published: 14 May 2020
����������
�������

Abstract: Smart home is one of the most promising applications of the Internet of Things.
Although there have been studies about this technology in recent years, the adoption rate of smart
homes is still low. One of the largest barriers is technological fragmentation within the smart home
ecosystem. Currently, there are many protocols used in a connected home, increasing the confusion of
consumers when choosing a product for their house. One possible solution for this fragmentation is to
make a gateway to handle the diverse protocols as a central hub in the home. However, this solution
brings about another issue for manufacturers: compatibility. Because of the various smart devices on
the market, supporting all possible devices in one gateway is also an enormous challenge. In this
paper, we propose a software architecture for a gateway in a smart home system to solve the
compatibility problem. By creating a mechanism to dynamically download and update a device
profile from a server, the gateway can easily handle new devices. Moreover, the proposed gateway
also supports unified control over heterogeneous networks. We implemented a prototype to prove the
feasibility of the proposed gateway architecture and evaluated its performance from the viewpoint
of message execution time over heterogeneous networks, as well as the latency for device profile
downloads and updates, and the overhead needed for handling unknown commands.

Keywords: Internet of Things; smart home; gateway; device profile; compatibility; heterogeneous
networks

1. Introduction

Smart homes is one of the most promising applications of the Internet of Things (IoT). However,
the adoption rate of smart homes is still low despite substantial research about this technology in
recent years. As a recent study [1] explains, there are several barriers to the mass adoption of smart
home technology, and one of them is technological fragmentation within the smart home ecosystem.
Many connectivity technologies (protocols) can be currently used in a connected home [2], which is
confusing for smart home consumers. To solve this fragmentation problem, researchers and companies
tend to advocate one of two approaches: (1) creating a universal protocol [3] that can be used for all
devices and all use cases in smart homes and (2) developing a gateway supporting many protocols
that acts as a central controller for all smart devices in the home.

Regarding the first solution, there has been a competition among wireless protocols in smart
home networks: many new protocols have been suggested, tested, and even deployed commercially.
However, ultimately, it is unlikely that there will be a clear winner in this battle; as different protocols
are currently used in smart home networks [4]. Because each protocol has its own advantages and
disadvantages, different protocols are best for different purposes and usages. Thus, it is difficult
to design an all-in-one protocol for smart homes. Hence, the most suitable solution is to design a
gateway to handle diverse protocols as a central hub in a home [5]. This solution seems preferable

Sensors 2020, 20, 2783; doi:10.3390/s20102783 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9155-9819
https://orcid.org/0000-0001-6246-6218
http://www.mdpi.com/1424-8220/20/10/2783?type=check_update&version=1
http://dx.doi.org/10.3390/s20102783
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 2783 2 of 19

as more products appear on the market nowadays. However, this solution leads to another issue
for manufacturers, which is the compatibility problem. Because of the various smart devices on the
market, to support every possible device is a big challenge. This is why each gateway manufacturer
always maintains a compatible device list for their gateway.

In Table 1, we survey some popular commercial smart home gateways on the market and the
number of devices that they support. These numbers are impressive, but they still cannot cover all
available smart devices on the market. In other words, there are many devices that still cannot work
with these gateways. If a customer wants to use these devices in his/her house, he/she must use
more than one gateway (hub). This makes control less convenient and limits consumers’ choices
when buying smart devices. In the future, the compatibility problem will become more critical since
increasing numbers of smart devices will appear daily. Until this problem is solved, consumers will
have to face the difficulty of choosing a smart home system and smart devices, and as a result,
the prevalence of smart homes will remain hard to achieve in the near future.

Table 1. Commercial Gateway Products.

Vendor Supported Protocols Supported Devices

Samsung SmartThings [6] ZigBee, Z-Wave, Wi-Fi 300+
Apple Homekit [7] Bluetooth LE (BLE), Wi-Fi 130+

Wink Hub [8] ZigBee, Z-Wave, BLE, Wi-Fi, Kidde, Lutron Clear 120+
VeraSecure [9] ZigBee, Z-Wave, BLE, Wi-Fi, VeraLink 210+

Homey [10] ZigBee, Z-Wave, 433 MHz, Wi-Fi, Bluetooth 70
HomeSeer [11] Z-Wave, Wi-Fi, Serial, Ethernet 160+

In this paper, we propose a software architecture for smart home gateways to tackle the
aforementioned compatibility problem. Our gateway supports multiple protocols, unified control
over heterogeneous networks, and allows developers to create applications to control diverse types of
devices without any in-depth knowledge of the underlying protocols. In detail, we create a virtual
device for each physical device in the home and provide standard RESTful APIs for interacting with
this virtual device. In summary, this paper aims to propose a mechanism to easily support new devices
that will appear in the future.

To satisfy this requirement, the gateway basically needs to know all the information and functions
about a new device. This information comprises what is called a device profile in this paper. A device
profile is a file that contains information about the device (e.g., manufacturer or model name),
its functions, and how it can be controlled. If the gateway lacks a device profile, it cannot completely
control a new device. We introduce a Device Profile Handler module to dynamically download and
update the device profile every time a new device is connected to the gateway. This mechanism enables
the gateway to be able to work with new devices; therefore, it can solve the compatibility problem.
In addition, this approach does not require any modifications in either the protocol or the device;
hence, it can be applied to current devices on the market.

The rest of this paper is organized as follows: in Section 2, we review related studies on smart
home gateways. Section 3 explains what the compatibility problem is and why it happens in smart
homes in detail. In Section 4, we describe how we designed the software architecture to achieve a
dynamically updatable gateway supporting unified control over heterogeneous networks. We also
present a prototype to prove our concept in Section 5 and evaluate its performance in Section 6.
Finally, we discuss the feasibility of the proposed solution in Section 7 and conclude this paper in
Section 8.

Sensors 2020, 20, 2783 3 of 19

2. Related Work

2.1. Smart Home Gateway

Since smart home technology has emerged, numerous studies have been conducted on
different aspects such as its architecture, communication protocols, application services, and security.
Regarding the architecture studies, most early studies [12–14] as well as recent works [15,16] use
OSGi-based architecture to develop smart home gateways that support heterogeneous networks.
These studies have achieved the initial goal of a gateway—to make different protocols work together
in the home network. For example, Kim et al. [12] proposed a comprehensive software architecture
for supporting the seamless integration of devices and services and providing access control in smart
homes. This study also presented a process to discover and install new devices using bar-codes and
smartphones. In spite of that, it does not clearly address how to fully support a new device type.
Overall, prior studies have been successful in making a platform for smart home gateways and created
a fundamental research basis for further studies. However, they do not present any solution for
handling the variety of devices on the market.

Another approach to making a smart home gateway is leveraging existing devices in a home such
as a TV set-top box [17,18] or smartphone [19,20]. For instance, there have been studies [17,18] that
proposed the integration of a smart home gateway and a TV set-top box to provide a unified experience
from the smart home and TV services, and hardware implementations have been developed to prove
the feasibility of this idea. These studies have opened a new approach to design a smart home gateway.
Meanwhile, smartphone-based solutions [19,20] utilize the smartphone hardware with multiple radio
interfaces (e.g., Wi-Fi and BLE) to communicate with different devices. Although smartphones are
very popular today, they are not always located at a fixed place in the house and cannot be the main
gateway of the smart home system.

In addition to the studies on architecture, there has been an increasing number of studies that
implemented a smart home system based on specified protocols. The majority of these studies
have targeted Wi-Fi [21–23], ZigBee [24–26], or combined ZigBee and other protocols such as
Bluetooth [27] or Power-line communication [28]. In our previous work [29], we implemented a
gateway using Z-Wave, which is one of the most popular protocols for smart home systems nowadays.
Although Z-Wave provides diverse types of smart home devices, that study has a fundamental
limitation because it supports only one protocol. Therefore, a multi-interface gateway is a mandatory
requirement to support the heterogeneous networks in a modern smart home system.

Table 2. Comparison of previous studies about smart home gateway.

Gateway Hardware
Design

Hetero-Geneous
Network

Unified Control
with API Targeted Problem

Kim et al. [12] Independent
gateway Yes Yes Integration of heterogeneous, semantic interoperability

Sleman et al. [15] Independent
gateway Yes No Hardware design of multi-interface gateway

Aloi et al. [19] Smartphone
based Yes (Limited) No Mobile gateway solution

Moazzami et al. [20] Smartphone
based No No Smartphone based home automation systems (focus on

RESTful and SOAP-based smart devices)

Phan et al. [29] Independent
gateway No Yes Z-Wave smart home gateway

Nugur et al. [21] Independent
gateway Yes Yes IoT gateway for a cloud-based energy management

system

Gavrila et al. [17] TV Setup
box based Yes No An integration of smart home system to a TV set-top box

Proposed Independent
gateway Yes Yes

To tackle the compatibility problem between smart home
devices and the gateway and support unified control
over heterogeneous network

Sensors 2020, 20, 2783 4 of 19

In brief, Table 2 compares the previous and proposed gateways in terms of type of hardware
design, heterogeneous network supported, unified control with API, and target problem, proving that
in spite of intensive studies on the gateway, how to handle the increasing number of IoT devices and
types had to be still considered. This paper aims to fill the literature gap by tackling the compatibility
problem between smart devices and gateways.

To make it clear, we do not aim to redefine the entire software architecture of a gateway or propose
a new approach to implement a gateway in this work. Instead of that, we introduce a design of gateway
architecture to cope with the exponential growth of smart devices. In fact, some components of our
proposed architecture are based on previous studies because they are the core components of any
gateway platform (e.g., the driver and database). In addition, we add a new module called the Device
Profile Handler to implement our ideas. Unlike the OSGi-based architecture, which is written only in
Java, the proposed architecture is not restricted to any programming language.

2.2. Device Profile

Device discovery is also a challenge in the age of IoT. A number of studies have proposed
approaches to address this issue in smart home applications. For example, Kim et al. [30] proposed a
device management and auto-configuration platform using the Message Queuing Telemetry Transport
(MQTT) protocol. Another study [31] proposed a configuration framework leveraging upon the
Constrained Application Protocol (CoAP) for IoT devices. Recently, a study [32] used the Device
Description Language (DDL) to describe the metadata of a device and how to access its services.
The descriptive metadata is embedded in each device and exchanged through the MQTT or CoAP
protocols. Unfortunately, the MQTT and CoAP protocols only work on top of the TCP/IP protocol,
which is not suitable for many non-IP devices. Protocols such as ZigBee, Z-wave, and Bluetooth are
not IP-compatible, and it is impossible to control these devices through MQTT or CoAP protocols.
In addition, several protocols designed to support seamless discovery of devices and services in the
network are the Devices Profile for Web Services (DPWS) or Universal Plug and Play (UPnP). However,
similar to MQTT, DPWS and UPnP also only work with IP devices. Additionally, UPnP has a security
risk and is not recommended for IoT devices which are more vulnerable to cyber-attacks [33].

A recent study [34] recognized the compatibility problem in current smart home gateway systems.
However, the approach proposed in this research requires an intermediate server to run on top of the
other gateway software, which means that a user still needs more than one gateway in the home. Of all
the open-source gateway software, openHAB [35] is the most famous software for home automation.
In this software, we found that to add a new device type on the market, users must write configuration
files manually. This task requires programming skills as well as deep technical knowledge, which is
difficult for most normal customers. In brief, we still do not see any convenient way to support a new
type of device in current smart home systems. In the meanwhile, our proposed solution can work with
non-IP protocols such as ZigBee, Z-Wave. It also does not require device manufacturers to make any
change in their products, all changes are made at the gateway. This means the proposed idea can be
applied to existing devices on the market.

In summary, previous academic works focus on making a platform that combines multiple
protocols together to support heterogeneous networks. Meanwhile, companies try to create closed
ecosystems and only support a limited number of device types. However, over time, increasing
numbers of new smart home devices will be invented, which will lead to more complicated use-cases
(applications) that can be defined to support new types of devices. That defines a new problem about
compatibility which is usually ignored in previous studies. Clearly, the very first requirement of any
gateway is to be able to connect to various devices. Hence, we need a solution to make it easy for a
gateway to support new types of smart devices in the future, which would automatically increase the
compatible device list for smart home systems. In this paper, we focus on presenting a solution to
solve the compatibility issue completely. Therefore, the main contribution of this paper is to build a
smart home gateway platform that can interact with any type of smart device, today or in the future.

Sensors 2020, 20, 2783 5 of 19

3. Compatibility Problem

Most of the home gateway solutions on the market nowadays are a closed ecosystem, and the
main problem of these solutions is device compatibility. In other words, when a customer decides
to buy a new smart home device, they need to ask whether it will work with their gateway (because
the new device may not). It is important to note that a modern smart home system may contain a
number of different device types (e.g., lighting, switches, sensors, security devices, and other home
appliances). Apparently, each device type has different features and purposes. Even devices in
the same type can also have different functions. For example, one smart bulb could provide on-off
and dimming functions, while another bulb might provide extra functions like changing color and
blinking. Another example is sensor devices. There is a wide variety of sensors such as door, motion,
temperature, and gas sensors. As a result, it will be increasingly difficult to support every new device
in heterogeneous networks [36] owning to the proliferation of connected home devices.

To explain why the compatibility problem exists and why it is a huge problem of smart homes,
we need to look at some characteristics of smart home devices. A smart home device is usually a
resource-constrained device that has limited CPU, memory, and power resources. Because of these
characteristics, smart home devices need to use low-power communication protocols such as ZigBee,
Z-Wave, Bluetooth Low Energy (BLE), or Thread. Except for Thread, these protocols use a specific
application layer in their design. In this case, all functionalities of a device (e.g., turn on, turn off,
and send notifications) are specifically defined in the protocol and the developers have to follow the
protocol specification to create an application.

The protocol’s inventors typically organize a set of related functions as an application profile.
There are many application profiles defined for different types of devices. An application profile
contains specific details about what information a device can communicate. Of course, besides the
standard profiles, all these protocols also support option fields for manufacturers to define their own
custom profiles for a special purpose or particular application. This protocol design strategy benefits
the device maker because it makes it easier to develop applications. On the contrary, it imposes
a processing burden on the gateway. In detail, a gateway needs to know all the application profiles
that were implemented on every smart device (product), so that it can communicate with a variety
of devices. Moreover, to provide a seamless experience for users through the control application,
the gateway needs to know extra information related to device such as the product’s name, description,
and image of product so that this information can be accurately displayed in the user interface of the
control application.

This large amount of information is very important, but it cannot be completely embedded inside
a device as well as exchanged through the communication protocols because of bandwidth limitations.
For this reason, gateway manufacturers need to pre-implement the application profiles and information
of all devices that they want to support on the market. In other words, the gateway must already know
all the information about a device it will work with in order for it to be compatible with the device.
As a result, there are two cases in this situation: (1) the gateway has already implemented all the
application profiles of a new connected device and also knows what device it is controlling or (2) the
gateway does not have enough information about a new connected device, so it cannot fully control
this device. The second case is referred to as the compatibility problem that we want to address. If the
gateway manufacturer wants to support new devices in the future, they need to update the software
for the gateway. However, this process usually takes a long time and it depends on the development
plan of each manufacturer.

Overall, the compatibility problem is real and is becoming more critical nowadays. Therefore,
it needs to be resolved in the development of every gateway product. We believe that making a
universal protocol will be hard to achieve in near future while the current closed ecosystems still have
many limitations. Solving the compatibility problem would help accelerate the adoption rate of smart
homes [37], and this is the main goal of this paper.

Sensors 2020, 20, 2783 6 of 19

4. System Architecture Design

A smart home system consists of various smart devices, a central home gateway, and a client
application that enables the user to control all smart devices as shown in Figure 1. A home gateway is
a hardware device with multiple integrated wireless interfaces; thus, it is able to communicate with
a variety of devices using different protocols. In this section, we describe the software architecture
that enables a unified control over heterogeneous networks and supports dynamic updates of device
profiles for new devices.

2) Download device profile

1) Device connect
& discovery

4) Create REST APIs
for new device

Home Gateway

Smart devices

Device Profile Server

Overview of idea

3) Parse information from device
profile and store into Database

Device Manufacturer

Upload device profile

5) User control devices
based on REST APIs

User Application

Figure 1. Components and operation of a smart home system.

4.1. High-Level Architecture

We illustrate the components and operation of our gateway system in Figure 1. First, every smart
device in a home needs to be discovered and connected to a network that is formed by the gateway
device (this step is also called pairing, joining, or bootstrapping). The procedure of discovery and
connection is different according to each protocol, and it may require some actions from the user
(e.g., to push buttons or input code). Through this process, the gateway and device exchange some
basic information such as manufacturer, device type (product) identification, and a list of the names of
application profiles that are used in the device. The gateway can download the device profile according
to the device type identification information. Note that the device type identification information can
be different according to the underlying network protocols. For example, both ZigBee and Z-Wave
use a unique 16-bit hexadecimal number to represent a manufacturer as well as device type, but this
number is different in each respective protocol. Similarly, each protocol also provides a different
mechanism to obtain the device type identification information.

In fact, device type identification information is mandatory to distinguish a specific device type
(product) from others. If a new type of device is discovered, the gateway connects to the device profile
server and downloads the device profile according to each device type (product). By parsing this
information from the downloaded file and storing it in a database, the gateway is able to know all the
details of application profiles and has a description of the new device. Thus, without any software
update, the gateway still can provide correct RESTful APIs for client application to communicate
with the new device. In addition, if the device makers want to add new features to their device,
they can also update the corresponding device profile on the server. In this case, the gateway will
download a new profile as it did the first time and dynamically update the RESTful APIs for the new
features. The software architecture of the gateway is composed of multiple layers (modules) as shown
in Figure 2. The detailed roles of each module are described in the next subsections.

Sensors 2020, 20, 2783 7 of 19

Device
Profile
Server

User Application

ZigBee Z-Wave

Connectivity Driver

Application
Gateway Controller

(Command
Translator) Device Profile

Handler

Wi-Fi …

Smart Devices

Home Gateway Hardware

REST API

No-SQL Database

{
"manufacturerId": "018C",
"productId": "0001",
"productTypeId": "0052",
"type": "BinaryPowerSwitch",
"ZWaveVersion": "6.61.00",
"rf_type": "Z-Wave",
"image": "smartplug.png",
"state": {

"value": null,
"desc": "Switch ON/OFF

state"
},
"meter_values": {
"KilowattHours": {
"type": "Electric",
"currentValue": null,
"previousValue": null,
"delta": 360
}

},
"commands": [
{

"name": "on",
"desc": "Turn on switch",
"url": "/switch/{id}/on",
"data": {
"state": "on"

}
]

Figure 2. Software architecture of the smart home gateway.

4.2. Connectivity Driver

The Connectivity Driver is the lowest layer of the system. It provides a software interface to ensure
that the gateway software can interact with the hardware. Gateway hardware usually consists of
a single-board computer, which includes a micro-processor, storage, and communication modules
(e.g., Wi-Fi, ZigBee, Z-Wave, or BLE). Each type of communication module needs a particular driver to
connect the hardware and the upper software layer. The driver is responsible for communicating with
physical devices.

4.3. Device Profile Handler

The Device Profile Handler is the key module of the proposed architecture that helps to solve the
compatibility problem. It is in charge of downloading and updating the device profile from the server.
When a new device type is connected to the gateway, the Device Profile Handler immediately connects to
the Device Profile Server and downloads the corresponding device profile of the new device. Note that
we assume that the profile servers are owned and maintained by the manufacturers in a distributed
manner and the location of the profile server is known by the gateway. The device profile server
architecture and the resolution system required to determine the location of the profile server are out
of scope of this paper. However, it is possible to apply various existing systems. For example, GS1 [38]
provides a distributed profile server architecture and ONS-based resolution system.

After downloading a device profile, the Device Profile Handler will read the information from the
downloaded file and store it into a database. This process is only performed once for each type of
device, and the profile file is permanently stored in the gateway’s storage. Thus, if the gateway connects
with the same device type in future, the Device Profile Handler only needs to read its information from
a local file. This procedure can increase the performance of the system. If a manufacturer updates
a device profile on the server, the Device Profile Handler will download a new version of the device
profile and automatically add the changes into the system.

The second role of the Device Profile Handler is to act as a bridge between the Driver and Controller
module to deal with a new type of device on the market. The compatibility problem comes from the
fact that the gateway cannot know how to handle unknown application profiles or custom profiles.
In detail, the gateway needs to know what this device is and how to use all the functions implemented
in the new device. More technically, each application profile contains a set of functions for the smart
device, and each function is represented by value (in bytes) exchanged between the gateway and device.
In fact, the gateway and device exchange a stream of bytes that forms a command. From the command,
we can obtain meaningful information (e.g., “turn on a light” or “report the current temperature”) by

Sensors 2020, 20, 2783 8 of 19

interpreting the command according to a specific format. Without the information from the application
profile, the gateway cannot know how to interpret a command.

We solve this problem by storing the specifications of all application profiles in the device profile
and then using them in the gateway’s operation. Figure 3 illustrates the process flow of a gateway
and the Device Profile Handler in three cases: (a) adding a new device to the gateway, (b) handling
an application message from the upper layer, and (c) handling a command from the lower layer.
As mentioned in Section 4.1, for case (a), the gateway downloads the corresponding device profile
if a new type of device is discovered, as shown in Figure 3a. In cases (b) and (c), we assume that
the gateway is communicating with a new device type and it does not implement commands for
this new device. In these cases, the Device Profile Handler reads the device profile from the database
and handles the unknown commands. For instance, Figure 3b shows the procedure for handling an
application message from the upper layer (a user’s request). To send the user’s request to the device,
the gateway needs to generate a correct command according to the user’s request and command format.
If this command is not implemented, the gateway can parse the command format by reading the
device profile. Here, we assume that the request from the user is authorized to perform on the device.
Advanced functionalities of a typical IoT gateway such as user authentication, access control, and data
validation can be implemented in the Controller or RESTful API layers. The implementation of these
functions is discussed in Section 4.4. It is worthwhile to note that the Device Profile Handler is the core
function of this study and the rest modules can be implemented the same as a traditional gateway
providing fruitful functions based on stateful information.

Discovery
new device

Read
device profile

Make
virtual device

(Database)

Has local
device profile

No

Yes

(a) Adding a new device
into gateway

(b) Handling an application
message from upper layer

Download
device profile

Read
device
profile

Generate
command

according to
user’s request

No

Yes

Parse
command

format

Implemented
message

Application
message from

upper layer

Send to
device

Read
device
profile

No

Yes

Parse
command

format

Implemented
command

Command is
received from

lower layer

Store in
database

Interpret to
meaningful
information

from byte data

(c) Handling a command
from lower layer

Figure 3. Process flow of the gateway for three cases: (a) adding new device to the gateway, (b) handling
a command from an upper layer, and (c) handling a command from a lower layer.

In contrast, in Figure 3c, if a command is received from a lower layer (the device), the gateway
needs to interpret meaningful information from the byte data. To do that, the command format is
necessary, and it can be parsed from the device profile, similar to the process shown in Figure 3b.
To clarify, a device profile is like a guidebook that helps the gateway to communicate with a new
smart device. With this mechanism, although the gateway does not fully implement all the application
profiles (commands) of the new device, it still able to control new kinds of devices without a
software update.

In our architecture, we use JSON as the data format for the device profile. The JSON format is
sufficient for describing device information and has been used in other studies [14,34]. Because other
modules of the gateway software (i.e., NoSQL database and RESTful API) also use JSON format,
this design reduces the cost for converting data between components. Another advantage of JSON
is that it is a lightweight and very readable format. An example of a device profile of a Z-Wave

Sensors 2020, 20, 2783 9 of 19

switch is shown in Figure 4. Basically, the device profile is composed of two parts: general and specific
information. The general information includes the identification and description of the device (lines 2–8
in Figure 4). Based on that information (i.e., device type, protocol type), the gateway can determine
how to properly handle the specific information in the device profile. For example, the specific
information in the device profile of a Z-Wave device can be interpreted differently compared to that in
a ZigBee device.

 About

 NewNew document 1

code tree

Ln: 76 Col: 1

powered by ace

{
 "manufacturerId": "018C",
 "productId": "0001",
 "productTypeId": "0052",
 "type": "BinaryPowerSwitch",
 "ZWaveVersion": "6.61.00",
 "rf_type": "Z-Wave",
 "image": "smartplug.png",
 "state": {
 "value": null,
 "desc": "Switch ON/OFF state"
 },
 "meter_values": {
 "KilowattHours": {
 "type": "Electric",
 "currentValue": null,
 "previousValue": null,
 "delta": 360
 }
 },
 "commands": [
 {
 "name": "on",
 "desc": "Turn on switch",
 "url": "/switch/{id}/on",
 "data": {
 "state": "on"
 }
 },
 {...}
],
 "commands_spec": [
 {
 "name": "on",
 "identifier": "SWITCH_BINARY_SET",
 "version": 3,
 "classId": 37,
 "cmdId": 1,
 "param": 255
 },
 {...},
 {
 "name": "meter",
 "identifier": "METER",
 "version": 5,
 "classId": 50,
 "cmdId": 2,
 "type": "Electric",
 "typeId": 1,
 "values": {
 "type": "float",
 "key": "KilowattHours.currentValue"
 }
 }
]
}

 NewNew document 2 O

code tree

object ►

object {15}

manufacturerId 018C

productId 0001

productTypeId 0052

type BinaryPowerSwitch

ZWaveVersion 6.61.00

rf_type Z-Wave

address 0x04

name Power Switch 01

location Living Room

image smartplug.png

state {2}

value on

desc Switch ON/OFF state

meter_values {1}

KilowattHours {4}

type Electric

currentValue 6.426

previousValue 6.421

delta 360

access_control [2]

0 {2}

user admin

allow true

1 {2}

commands [2]

0 {4}

name on

desc Turn on switch

url /switch/{id}/on

data {1}

1 {3}

commands_spec [3]

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
35
36
37
38
39
40
41
42
43
44
45
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Device Profile NoSQL Database

Figure 4. All information of a device is stored in the NoSQL database as a virtual device.

Meanwhile, the specific information includes status and commands (functions) that are used to
communicate with the device (lines 9–74 in Figure 4). The specific information can be categorized
into three parts such as state information (lines 9–20 in Figure 4), commands (lines 21–35 in Figure 4),
and the specification of status and commands (lines 36–74 in Figure 4). The first part describes the
template to store state and all sensing information that are frequently collected from the device.
This signifies that all information about the device can be obtained by control applications through
RESTful APIs. The second part describes all available commands of the devices and the corresponding
RESTful APIs to use these commands. This helps the users to fully control their devices in the smart
home system. Note that the semantics of each status information and commands (i.e., Switch ON/OFF
state, Turn on switch) can be provided through the description field. Moreover, additional information

Sensors 2020, 20, 2783 10 of 19

can be defined after the device is connected to the gateway, such as device name (i.e., power switch 01)
and device location (i.e., living room), as shown in Figure 4. Therefore, semantic models can be built
based on the information in the device profile and NoSQL database. Finally, the third part describes in
detail how to construct each command of each device. More precisely, this part provides the guidance
to build a command, to interpret the data that receives from a device, and to store the result in the
template that is defined in the first part.

As explained previously, a command is formed by a set of data as defined in the protocol.
Therefore, the gateway only needs to combine data in the device profile to construct a defined command.
In an opposite way, the data that receives from a device must be interpreted to a human-readable data
(i.e., string, number) and stored in the database. The device profile contains information such as the
data type, mapping values, and the result destination so that the gateway can precisely interpreted
the information from the device. For example, Figure 4 shows that the gateway must convert the
data periodically reported from a smart switch to a float number to present the consumed energy of
that switch. Note that the number of attributes and the values of them in the device profile may vary
depending on the type of the device or the connectivity protocol. However, it is reasonable to assume
that the structure of the device profile is known by all manufacturers in advance. Moreover, the JSON
format has sufficient flexibility to support various types of device products and the connectivity
protocols. Thus, the JSON-based device profile is expected to be widely used in future applications
and scenarios.

4.4. NoSQL Database

A NoSQL database is a new kind of database system that can replace traditional relational
databases. Information such as the description, status, and features of each device are very different,
so it is complicated to store in a traditional database. However, a NoSQL database can store different
varieties of data, particularly unstructured data. Because of these characteristics, a NoSQL database
was used in the gateway’s system. Moreover, to provide unified control over heterogeneous networks,
we need to abstract each physical device as a logical device (called a virtual device in our platform).
Virtual devices are stored in the NoSQL database, as shown in Figure 4, and the user application can
only interact with these virtual devices via standard RESTful APIs.

Using the virtual device allows developers to manipulate any device type without having a
deep understanding of the underlying protocol or hardware design of the device. Also, it is easy
to create additional services or applications based on the virtual device approach. For example,
a security feature such as access control [39] can be built by adding user permissions information
into virtual devices. Meanwhile, an intrusion detection service can be developed by combining
time-series data of virtual devices and machine learning techniques [40]. Note that preventing security
threats that occur at lower layers in the smart home system (e.g., hardware, network) typically
depend on the design of underlying protocols and not that of the gateway [41]. Most smart home
protocols provide built-in security features, such as node authentication, message encryption, and key
management, independently from the gateway. In brief, connectivity protocols provide security
features for communication between devices and the gateway, while secure communication between
the gateway and users will be provided by high-level security services that are installed in the gateway.
These security aspects are out of scope of this paper and can be handled by other studies.

Another important application that can be leveraged on the virtual device approach is
device-to-device communication. Since the information of physical devices can be proactively or
reactively updated to the gateway, virtual devices exactly reflect the current status of physical
devices. Therefore, interaction among heterogeneous devices in the system can be performed
partially at the gateway level through virtual devices. This allows to reduce the communication
overhead between smart home devices as well as increase the scalability of the gateway. For example,
an actuator can access sensing data of a sensor by simply querying the database without directly
communicating with that sensor. Apparently, several complicated modules, such as protocol translator

Sensors 2020, 20, 2783 11 of 19

and message broker, are needed to achieve a seamless interoperability in the IoT system [42].
In addition, stateful applications, such as asynchronous event notification, publish/subscribe
messaging, and cloud-based data analysis/storage services, can be developed by utilizing the
information of virtual devices in the NoSQL database. For example, by integrating an open-source
publish/subscribe framework [43], the gateway can act as a broker between message producers and
message consumers. In other words, diverse sensor data from the devices can be stored and analyzed at
a cloud server, while the external users or devices can remotely query the data through cloud services.
This indicates that the gateway needs to be equipped with an additional publish/subscribe framework
in addition to the proposed gateway architecture. However, the detailed design and implementation
of these applications depend on the gateway vendors, and these processes are independent of the core
gateway architecture described herein.

4.5. Controller

The role of the Controller is to translate commands from a user application into the respective
command in the driver for each protocol. From an application viewpoint, developers do not need to
know the details of underlying protocols because they only interact with virtual devices via RESTful
APIs. All requests from the RESTful API are passed to the Controller, which detects which device
the user wants to control, which protocol this device uses, and how to translate the user’s command
to the corresponding protocol’s command. For example, if a user wants to turn off a kitchen light,
they press the off button in an application. The application then sends an HTTP request to the gateway
and information from the RESTful API passes to the Controller. The Controller detects the network
address of this kitchen light from the database and knows that this light uses the ZigBee protocol.
Finally, the Controller requests to send the light-off command from the ZigBee Driver to the physical
kitchen light. After that, the driver takes care of the communication between the gateway and device.

4.6. RESTful Web Service

The RESTful web service is a set of standard APIs that are used for communication between
control applications (client) and a gateway (server). A client application can be a traditional desktop,
mobile, or web application. Since client applications are run on powerful devices, it is suitable to
implement RESTful APIs over HTTP protocol. With the standard APIs, developers can customize
the control application for a particular customer. To provide unified control over heterogeneous
networks without any in-depth knowledge about real devices, we define all APIs based on the types
and functions of devices. Table 3 shows examples of RESTful formats that are used in the gateway.
With each type of device, we predefine common APIs, for example, a light device definitely has an
on-off command in its APIs. Moreover, based on a device profile, the gateway can provide custom
APIs for each device. For example, a special bulb (light) might have an API to provide the current
temperature in the home.

Table 3. Example Format of RESTful APIs in The Gateway.

API Path Example Method Description

/api/device /api/device GET Get all devices in system
/api/device/{:id} /api/device/1 GET Get information of device with id = 1
/api/device/light/:id/{:command} /api/device/light/1/on POST Turn on device (light) with id = 1
/api/device/light/:id/{:command} /api/device/light/1/color POST Set color for device (light) with id = 1
/api/device/security/:id/{:command} /api/device/lock/3/unlock POST Unlock device (lock) with id = 3

The RESTful web service has become more popular because of its advantages, such as simplicity,
better performance, and variety of data formats compared to the SOAP-based web service [44].
Since the RESTful web service also supports JSON format, it is convenient to exchange data among
modules in the gateway. Furthermore, separating the control application and the gateway allows each
component to be developed independently, which can reduce the development time of the gateway

Sensors 2020, 20, 2783 12 of 19

product. In case the manufacturers open the REST APIs publicly, it is easy for a third-party to develop
a control application based on RESTful APIs thank to its simplicity. In summary, using the RESTful
web service is beneficial to the development of a smart home gateway.

5. Prototype Implementation

A prototype was implemented to prove the feasibility of our smart home architecture. Our testbed
consists of a home gateway, six real smart devices, a device profile server, and a desktop application
that acts as a user application, as shown in Figure 5. In this testbed, we evaluated all the gateway
related functions from device discovery and profile downloading from the server to updating the
device profile to the database (virtual device) in order to create RESTful APIs for a client application.

ZigBee Hue Bulb

Z-Wave Switch

Z-Wave
Door Sensor

Z-Wave Switch

Home GW

Figure 5. Smart home testbed with Gateway, ZigBee, and Z-Wave smart devices.

To build the gateway hardware, we used a single-board computer that has the Linux OS already
installed. To support the ZigBee, Z-Wave network, we used two USB dongles acting as the ZigBee
coordinator and Z-Wave controller, respectively. The single board also supports Wi-Fi and BLE, so our
gateway hardware can support four protocols. Note that the goal of the proposed architecture is
to enable the gateway to dynamically update the device profile for a new type of device. However,
it does not mean that the gateway can be updated for a new type of network protocol since adding
an underlying protocol into the gateway requires a hardware interface as well as relevant software
modules, such as connectivity driver and controller. Therefore, we assume that the gateway is already
equipped with the latest version of networking protocols that a new device works on.

Regarding the software implementation, the gateway software was written in Java. To implement
the driver for Z-Wave and ZigBee (Connectivity Driver), we used two Java open-source software
libraries, WZWave [45] and ZigBee for Java [46], respectively. A MongoDB database system [47]
was chosen to implement the NoSQL database. To create a RESTful web service in Java, we used
the Jersey framework [48]. In addition, we used PHP to implement a simple device profile server.
Finally, to control the smart devices through RESTful APIs, we created a desktop application, as shown
in Figure 6. There are no restrictions on making user applications, so developers can create any kind of
web, mobile, or desktop application, and all of them can easily work with the RESTful APIs.

Sensors 2020, 20, 2783 13 of 19

Figure 6. Smart home client (user) application on a PC.

6. Evaluation

We evaluated the performance of the prototype with respect to message execution time over
heterogeneous networks, the latency for downloading and updating, and the handling of an unknown
command from the gateway to a device and vice versa.

6.1. Application Message Execution Time

Application message execution time is the most important criterion for evaluating the operating
performance of a gateway system. The execution time for a user’s operation is calculated from the
point at which a user executes a command on an application until they see the result for this command
through the application display. For instance, a user wants to turn off a light, he/she pushes the OFF
button of the application user interface. After that, the light is switched off and then the application
displays the status of the light (OFF) according to the actual status of the device. The runtime of this
procedure is divided into three phases, as shown in Figure 7: (1) Tapp1 is the time required to transfer
the request from the application to the gateway via a RESTful API, (2) Tgw is the time needed for the
gateway to handle the command from the user, and (3) Tapp2 is the time needed for the application to
receive the change from the gateway via a RESTful API and update its user interface. The times of
Tapp1 and Tapp2 depend on the network condition and the design of the application. Thus, we measure
them by focusing only on time Tgw, which is from when the gateway receives the HTTP request until
new values from the device are updated to the database.

As shown in Figure 7, we can divide the application message execution time further into
(1) Tproc_req, which is the time for handling the HTTP request, (2) Ttrans, which is the time for
transmitting a packet over the air, and (3) Tproc_rsp, which is the time for handling the response
command and updating the new values in the database. The results of some different commands
are listed in Table 4. There are some differences in the result of Tproc_req because we used different
open-source software for implementing the Z-Wave and ZigBee drivers. However, in general, the total
time the gateway needed to process everything is only about 250–300 ms. This amount time is fast
enough that a user does not perceive any delay in the system.

Sensors 2020, 20, 2783 14 of 19

tapp1

tgw

tapp2

tproc_req

ttrans

tproc_rsp

User App GW(APIs) GW(Driver) Device

Performent of Gateway

Tgw = Tproc1 + Ttrans + Tproc2

CMD Tproc1 Ttrans Tproc2 Total(Tgw)

Z-Wave ON 80 151 10 251

Z-Wave OFF 80 150 10 250

ZigBee ON 12 209 11 232

ZigBee COLOR 14 233 12 259

• Ttrans : From first packet sent to last packet receive
• Z-Wave Driver has poor performance than ZigBee Driver (Opensource)
• Normally, there are two command was sended each one control action (control and read new value).

There is 100ms de between 2 ZigBee command

Figure 7. The runtime for executing one command from the user application.

Table 4. Time (Millisecond) for Executing a Command in Gateway.

Command Tproc_req Ttrans Tproc_rsp Total (Tgw)

Z-Wave ON 80 151 10 251
Z-Wave OFF 80 151 10 250
ZigBee ON 12 209 11 232

ZigBee SET COLOR 14 233 12 259

6.2. Downloading and Updating Device Profiles

The gateway needs to download the device profile whenever it connects with a new type of device
(new product). When a smart home is composed of many devices that have the same product type,
the gateway only needs to download the corresponding profile once. In our testbed, we used a PC
to act as the device profile server and measured the time for downloading and updating the device
profile in the gateway for different sizes of profile files. Both the PC and gateway were connected to the
local network. The test case was repeated 15 times and the result is shown in Figure 8, which shows
the average, maximum, and minimum values of each profile’s size respectively. Generally speaking,
the gateway only needs under 100 ms to download and update a real profile file (which is usually
smaller than 10 Kb). In practice, the connection between a gateway and server is an Internet connection,
and it does not take a long time to download a small file over the Internet.

32
40 43 40

5242

59
64

60
6858

80 82 85 87

0

20

40

60

80

100

1.57 3.28 3.43 4.58 6.19

T
im

e
(m

s)

Size (Kb)

Figure 8. Total time for downloading and updating device profile.

It is worth noting that even a new type of device can successfully join a network assuming
that it has proper information and permission for authentication and association of the underlying

Sensors 2020, 20, 2783 15 of 19

networking protocol. This proves that the gateway can communicate with a new type of device freely
from a viewpoint of networking, but it cannot interpret the application messages due to a lack of device
profile. Since our goal is to enable dynamic update of device profile, we focused on the total time for
downloading and updating device profile as shown in Figure 8. In other words, we excluded the time
consumed for the networking perspective from this measurement, since the discovery and connection
to the network is a networking perspective as discussed in Section 4.1 and they vary depending on the
underlying network protocol. In summary, the time measured in Figure 8 can be considered that taken
for learning the device profile on the application level.

6.3. Handling Unknown Commands with the Device Profile

We evaluated a special case of our gateway system—handling unknown commands with the
device profile. Obviously, the gateway needs time to read a device profile and convert it to the relevant
commands. In Figure 9, we compare the time needed to handle two commands (“notification” and
“meter”) of the Z-Wave protocol for two cases: (1) a native implementation and (2) using a device
profile. The notification command is used to notify the gateway of events that are reported from
devices. The meter command is used to read the accumulated values in physical units from metering
devices (e.g., water, gas, and electric meters). Both commands are very complicated because they cover
many use cases and can be used by many device types.

17.2

8

12.6

2.75

0 5 10 15 20

CMD_METER

CMD_NOTIFICATION

Time (ms)

Native Implementation

Using Device Profile

Figure 9. Comparison of the time needed to handle Z-Wave commands in two cases: native
implementation and using a device profile.

To display the exact information about the device to the user, the gateway needs to understand
the data received from a device, for instance like the kind of event or measurement the data
represents or the value of meter. Note that the structure and meaning of the data are described in the
specification document of the protocol. In case 1, we need to implement the usage of each command
case-by-case in source code. In contrast, in case 2, we convert the usage of each command to the
device profile, then guide the gateway to parse the information from the device profile. In both cases,
the accuracy of the command is the same; however, the time needed for processing is slightly different.
Although the result is still very positive, using a device profile takes about 5 ms longer than the native
implementation. This amount time is short enough that a user is not able to recognize any difference
in the system. Therefore, we conclude that the proposed gateway architecture provides a performance
that is comparable to the native implementation while solving the compatibility problem effectively.

7. Discussion

The proposed gateway architecture breaks down the compatibility problem and allows
consumers to freely choose smart devices from any manufacturer without technical knowledge
about them. However, to realize the proposed solution, we need to resolve the assumption that
device manufacturers provide the device profiles to a profile server so that the gateway downloads,
parses, and interprets them dynamically. This section discusses the feasibility of this assumption as
well as the advantages of the proposed solution.

Sensors 2020, 20, 2783 16 of 19

Basically, the collaboration between device manufacturers and gateway manufacturers is
reasonably necessary to achieve the compatibility regardless of the design of the gateway [49].
However, the proposed architecture can facilitate that collaboration and can be beneficial to both
types of manufacturers. From the viewpoint of device manufacturers, providing device profiles allows
their devices to be supported by multiple gateways simultaneously on the market. As a result, it helps
to increase the accessibility and usability of devices produced by the manufacturer. Also, the device
profile approach can be applied to launched devices on the market without requiring a firmware
update. It is important to note that providing device profiles does not mean that all profiles are open,
or that it provides less privacy and protection. It is possible to apply a secure mechanism so that
only allowed individuals or vendors can search for and download device profiles from the profile
servers. Therefore, we expect previously mentioned benefits will increase the number of IoT device
manufacturers sharing their device profiles on profile servers.

The proposed architecture is fascinating to commercial gateway manufacturers, since it solves
the compatibility problem in the proliferation of smart home devices in a totally open manner.
Clearly, it is not a trivial task for gateway manufacturers to support the increasing IoT devices by
themselves. Instead of manually implementing protocols for new devices within the gateway software,
the proposed gateway solution can support new devices in a dynamic manner by downloading and
interpreting device profiles from profile servers. Interestingly, these processes are totally transparent
to the consumers. Therefore, we can conclude that the proposed solution significantly reduces
gateway development and update time and provides compatibility for new IoT devices through the
collaboration with device manufacturers.

In addition, there have been several standardization attempts [50,51] to solve the interoperability
problem of IoT devices. In particular, W3C defines how IoT devices are described following the Thing
Description specification [50] so that they can easily interact with each other. Similarly, a standardized
description developed by an organization can facilitate the widespread use of the device profile
across gateway platforms. Apparently, several aspects must be considered to achieve standardization.
First, the standard development organization (SDO) must define a uniform set of attribute names
(vocabulary) for the device profile, following the structure we discussed in Section 4.3. It is also
necessary to specify whether each attribute is a mandatory or optional field. For example, the device
type should be a mandatory field to identify the type of each device. Regarding protocol specific
information, the SDO can provide a mapping guideline to clarify how to declare that information
in the device profiles. For example, a “turn on” command in the ZigBee protocol may have
different parameters compared with that of the Z-Wave protocol. Therefore, additional fields
are needed to precisely describe and link each parameter from protocols into the device profile.
Second, the data format of the device profile also needs to be clearly specified. The device profile can
be represented by the JSON format like our proposed architecture. However, any other formats such
as XML and YAML are also allowed if they can describe the variable set of attributes of the device.
Finally, the standardization of the device profile description is expected to accelerate the adoption of
the proposed gateway architecture to accommodate the proliferation of IoT devices.

8. Conclusions

The ultimate vision of a truly smart home system not only includes the automation and remote
control of smart devices but also a combination of other smart applications such as healthcare [52],
security [53], artificial intelligence [54], and ambient assisted living [55]. However, all these applications
need seamless connections among all the smart devices through a central hub in the house to work
more efficiently. In this paper, we proposed a software architecture for a gateway in a smart home
system to support unified control over heterogeneous networks. In addition, based on device profiles,
we can design a flexible and extensible gateway which can solve the compatibility problem in current
smart home systems. We demonstrated the feasibility of our gateway platform and evaluated its

Sensors 2020, 20, 2783 17 of 19

performance with respect to application message execution time, device profile downloads and
updates, and handling unknown commands with a device profile.

The proposed architecture can also serve as fundamental research for further studies because
all devices are seamlessly connected to one central hub and mapped to a database as virtual devices.
We believe this work can be applied in various gateway products and will leverage the development
and adoption of smart home technology. For future works, we will consider to extend the evaluation
testbed as well as develop advanced applications and services that utilize the device profile based
smart home gateway.

Author Contributions: Conceptualization, L.-A.P.; Funding acquisition, T.K.; Software, L.-A.P.; Supervision, T.K.;
Writing—original draft, L.-A.P.; Writing—review & editing, T.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. NRF-2019R1F1A1059408).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shin, J.; Park, Y.; Lee, D. Who will be smart home users? An analysis of adoption and diffusion of
smart homes. Technol. Forecast. Soc. Chang. 2018, 134, 246–253. [CrossRef]

2. Gomez, C.; Paradells, J. Wireless home automation networks: A survey of architectures and technologies.
IEEE Commun. Mag. 2010, 48, 92–101. [CrossRef]

3. Banda, G.; Bommakanti, C.K.; Mohan, H. One IoT: An IoT protocol and framework for OEMs to make
IoT-enabled devices forward compatible. J. Reliab. Intell Env. 2016, 2, 131–144. [CrossRef]

4. Samuel, S.S.I. A review of connectivity challenges in IoT-smart home. In Proceedings of the 2016 3rd IEEE
MEC International Conference on Big Data and Smart City (ICBDSC), Muscat, Oman, 15–16 March 2016;
pp. 1–4. [CrossRef]

5. Zheng, S.; Zhang, Q.; Zheng, R.; Huang, B.Q.; Song, Y.L.; Chen, X.C. Combining a Multi-Agent System and
Communication Middleware for Smart Home Control: A Universal Control Platform Architecture. Sensors
2017, 17, 2135. [CrossRef] [PubMed]

6. SmartThings Home Gateway. Available online: https://www.smartthings.com (accessed on 16 April 2020).
7. Apple Homekit. Available online: https://www.apple.com/ios/home/accessories (accessed on 16 April 2020).
8. Wink Hub 2 Controller. Available online: https://www.wink.com/products/wink-hub-2 (accessed on

16 April 2020).
9. Vera Smart Home Controller. Available online: https://getvera.com (accessed on 16 April 2020).
10. Homey Smart Home Gateway. Available online: https://www.athom.com (accessed on 16 April 2020).
11. Smart Home System Controllers. Available online: https://homeseer.com (accessed on 16 April 2020).
12. Kim, J.E.; Boulos, G.; Yackovich, J.; Barth, T.; Beckel, C.; Mosse, D. Seamless Integration of Heterogeneous

Devices and Access Control in Smart Homes. In Proceedings of the 2012 IEEE Eighth International
Conference on Intelligent Environments, Guanajuato, Mexico, 26–29 June 2012; pp. 206–213. [CrossRef]

13. Wu, J.; Huang, L.; Wang, D.; Shen, F. R-OSGi-based architecture of distributed smart home system.
IEEE Trans. Consum. Electron. 2008, 54, 1166–1172. [CrossRef]

14. Sleman, A.; Moeller, R. SOA distributed operating system for managing embedded devices in home and
building automation. IEEE Trans. Consum. Electron. 2011, 57, 945–952. [CrossRef]

15. Bai, Z.y.; Kuo, C.H.; Wang, T.C. Design and implementation of an IoT multi-interface gateway for establishing a
digital art interactive system. Int. J. Ad Hoc Ubiquitous Comput. 2016, 21, 157. [CrossRef]

16. Lee, Y.T.; Hsiao, W.H.; Huang, C.M.; Chou, S.C.T. An integrated cloud-based smart home management system
with community hierarchy. IEEE Trans. Consum. Electron. 2016, 62, 1–9. [CrossRef]

17. Gavrila, C.; Popescu, V.; Fadda, M.; Anedda, M.; Murroni, M. On the Suitability of HbbTV for Unified Smart
Home Experience. IEEE Trans. Broadcast. 2020, 1–10. [CrossRef]

18. Jalal, L.; Anedda, M.; Popescu, V.; Murroni, M. QoE Assessment for IoT-Based Multi Sensorial Media
Broadcasting. IEEE Trans. Broadcast. 2018, 64, 552–560. [CrossRef]

http://dx.doi.org/10.1016/j.techfore.2018.06.029
http://dx.doi.org/10.1109/MCOM.2010.5473869
http://dx.doi.org/10.1007/s40860-016-0027-5
http://dx.doi.org/10.1109/ICBDSC.2016.7460395
http://dx.doi.org/10.3390/s17092135
http://www.ncbi.nlm.nih.gov/pubmed/28926957
https://www.smartthings.com
https://www.apple.com/ios/home/accessories
https://www.wink.com/products/wink-hub-2
https://getvera.com
https://www.athom.com
https://homeseer.com
http://dx.doi.org/10.1109/IE.2012.57
http://dx.doi.org/10.1109/TCE.2008.4637602
http://dx.doi.org/10.1109/TCE.2011.5955244
http://dx.doi.org/10.1504/IJAHUC.2016.075376
http://dx.doi.org/10.1109/TCE.2016.7448556
http://dx.doi.org/10.1109/TBC.2020.2977539
http://dx.doi.org/10.1109/TBC.2018.2823914

Sensors 2020, 20, 2783 18 of 19

19. Aloi, G.; Caliciuri, G.; Fortino, G.; Gravina, R.; Pace, P.; Russo, W.; Savaglio, C. A Mobile Multi-Technology
Gateway to Enable IoT Interoperability. In Proceedings of the 2016 IEEE First International Conference
on Internet-of-Things Design and Implementation (IoTDI), Berlin, Germany, 4–8 April 2016; pp. 259–264.
[CrossRef]

20. Moazzami, M.M.; Xing, G.; Mashima, D.; Chen, W.P.; Herberg, U. SPOT: A smartphone-based platform
to tackle heterogeneity in smart-home IoT systems. In Proceedings of the 2016 IEEE 3rd World Forum on
Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 514–519. [CrossRef]

21. Nugur, A.; Pipattanasomporn, M.; Kuzlu, M.; Rahman, S. Design and Development of an IoT Gateway for
Smart Building Applications. IEEE Internet Things J. 2019, 6, 9020–9029. [CrossRef]

22. Hafidh, B.; Al Osman, H.; Arteaga-Falconi, J.S.; Dong, H.; El Saddik, A. SITE: The Simple Internet of Things
Enabler for Smart Homes. IEEE Access 2017, 5, 2034–2049. [CrossRef]

23. Jabbar, W.A.; Kian, T.K.; Ramli, R.M.; Zubir, S.N.; Zamrizaman, N.S.M.; Balfaqih, M.; Shepelev, V.; Alharbi, S.
Design and Fabrication of Smart Home With Internet of Things Enabled Automation System. IEEE Access
2019, 7, 144059–144074. [CrossRef]

24. Han, D.M.; Lim, J.H. Design and implementation of smart home energy management systems based
on zigbee. IEEE Trans. Consum. Electron. 2010, 56, 1417–1425. [CrossRef]

25. Khan, M.; Silva, B.N.; Han, K. Internet of Things Based Energy Aware Smart Home Control System.
IEEE Access 2016, 4, 7556–7566. [CrossRef]

26. Froiz-Míguez, I.; Fernández-Caramés, T.; Fraga-Lamas, P.; Castedo, L. Design, Implementation and Practical
Evaluation of an IoT Home Automation System for Fog Computing Applications Based on MQTT and
ZigBee-WiFi Sensor Nodes. Sensors 2018, 18, 2660. [CrossRef]

27. Cano, E.; Garcia, I. Design and Development of a BlueBee Gateway for Bluetooth and ZigBee Wireless
Protocols. In Proceedings of the 2011 IEEE Electronics, Robotics and Automotive Mechanics Conference,
Cuernavaca, Morelos, Mexico, 15–18 November 2011; pp. 366–370. [CrossRef]

28. Han, J.; Choi, C.S.; Park, W.K.; Lee, I.; Kim, S.H. Smart home energy management system including renewable
energy based on ZigBee and PLC. IEEE Trans. Consum. Electron. 2014, 60, 198–202. [CrossRef]

29. Phan, L.A.; Kim, T. A Study of the Z-Wave Protocol: Implementing Your Own Smart Home Gateway.
In Proceedings of the 2018 3rd International Conference on Computer and Communication Systems (ICCCS),
Nagoya, Japan, 27–30 April 2018; pp. 411–415. [CrossRef]

30. Kim, S.M.; Choi, H.S.; Rhee, W.S. IoT home gateway for auto-configuration and management of
MQTT devices. In Proceedings of the 2015 IEEE Conference on Wireless Sensors (ICWiSe), Melaka, Malaysia,
24–26 August 2015; pp. 12–17. [CrossRef]

31. Dalipi, E.; Van den Abeele, F.; Ishaq, I.; Moerman, I.; Hoebeke, J. EC-IoT: An easy configuration framework
for constrained IoT devices. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things
(WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 159–164. [CrossRef]

32. Khaled, A.E.; Helal, A.; Lindquist, W.; Lee, C. IoT-DDL–Device Description Language for the “T” in IoT.
IEEE Access 2018, 6, 24048–24063. [CrossRef]

33. Esnaashari, S.; Welch, I.; Komisarczuk, P. Determining Home Users’ Vulnerability to Universal Plug and Play
(UPnP) Attacks. In Proceedings of the 2013 27th IEEE International Conference on Advanced Information
Networking and Applications Workshops, Barcelona, Spain, 25–28 March 2013; pp. 725–729. [CrossRef]

34. Gyory, N.; Chuah, M. IoTOne: Integrated platform for heterogeneous IoT devices. In Proceedings of the
2017 IEEE International Conference on Computing, Networking and Communications (ICNC), Santa Clara,
CA, USA, 26–29 January 2017; pp. 783–787. [CrossRef]

35. OpenHAB—Empowering the Smart Home. Available online: https://www.openhab.org (accessed on
16 April 2020).

36. Kaaz, K.J.; Hoffer, A.; Saeidi, M.; Sarma, A.; Bobba, R.B. Understanding user perceptions of privacy,
and configuration challenges in home automation. In Proceedings of the 2017 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), Raleigh, NC, USA, 11–14 October 2017; pp. 297–301.
[CrossRef]

37. Park, E.; Cho, Y.; Han, J.; Kwon, S.J. Comprehensive Approaches to User Acceptance of Internet of Things in
a Smart Home Environment. IEEE Internet Things J. 2017, 4, 2342–2350. [CrossRef]

38. GS1—The Global Language of Business. Available online: https://www.gs1.org (accessed on 16 April 2020).

http://dx.doi.org/10.1109/IoTDI.2015.29
http://dx.doi.org/10.1109/WF-IoT.2016.7845417
http://dx.doi.org/10.1109/JIOT.2019.2926099
http://dx.doi.org/10.1109/ACCESS.2017.2653079
http://dx.doi.org/10.1109/ACCESS.2019.2942846
http://dx.doi.org/10.1109/TCE.2010.5606278
http://dx.doi.org/10.1109/ACCESS.2016.2621752
http://dx.doi.org/10.3390/s18082660
http://dx.doi.org/10.1109/CERMA.2011.67
http://dx.doi.org/10.1109/TCE.2014.6851994
http://dx.doi.org/10.1109/CCOMS.2018.8463281
http://dx.doi.org/10.1109/ICWISE.2015.7380346
http://dx.doi.org/10.1109/WF-IoT.2016.7845483
http://dx.doi.org/10.1109/ACCESS.2018.2825295
http://dx.doi.org/10.1109/WAINA.2013.225
http://dx.doi.org/10.1109/ICCNC.2017.7876230
https://www.openhab.org
http://dx.doi.org/10.1109/VLHCC.2017.8103482
http://dx.doi.org/10.1109/JIOT.2017.2750765
https://www.gs1.org

Sensors 2020, 20, 2783 19 of 19

39. Cruz-Piris, L.; Rivera, D.; Marsa-Maestre, I.; De La Hoz, E.; Velasco, J.R. Access Control Mechanism for
IoT Environments Based on Modelling Communication Procedures as Resources. Sensors 2018, 18, 917.
[CrossRef]

40. Anthi, E.; Williams, L.; Slowinska, M.; Theodorakopoulos, G.; Burnap, P. A Supervised Intrusion Detection
System for Smart Home IoT Devices. IEEE Internet Things J. 2019, 6, 9042–9053. [CrossRef]

41. Burhan, M.; Rehman, R.; Khan, B.; Kim, B.S. IoT Elements, Layered Architectures and Security Issues:
A Comprehensive Survey. Sensors 2018, 18, 2796. [CrossRef] [PubMed]

42. Jin, W.; Kim, D. Development of Virtual Resource Based IoT Proxy for Bridging Heterogeneous Web Services
in IoT Networks. Sensors 2018, 18, 1721. [CrossRef]

43. Happ, D.; Karowski, N.; Menzel, T.; Handziski, V.; Wolisz, A. Meeting IoT platform requirements with open
pub/sub solutions. Ann. Telecommun. 2017, 72, 41–52. [CrossRef]

44. Belqasmi, F.; Glitho, R.; Fu, C. RESTful web services for service provisioning in next-generation networks:
A survey. IEEE Commun. Mag. 2011, 49, 66–73. [CrossRef]

45. Github of WZWave. Available online: https://github.com/whizzosoftware/WZWave (accessed on
16 April 2020).

46. Github of ZigBee 4 Java. Available online: https://github.com/tlaukkan/zigbee4java (accessed on
16 April 2020).

47. MongoDB. Available online: https://www.mongodb.com (accessed on 16 April 2020).
48. RESTful Web Services in Java. Available online: https://jersey.github.io (accessed on 16 April 2020).
49. Ahmed, E.; Yaqoob, I.; Gani, A.; Imran, M.; Guizani, M. Internet-of-things-based smart environments: State

of the art, taxonomy, and open research challenges. IEEE Wirel. Commun. 2016, 23, 10–16. [CrossRef]
50. Web of Things (WoT) Thing Description. Available online: https://www.w3.org/TR/wot-thing-description

(accessed on 7 May 2020)
51. OCF Specification 2.1.2. Available online: https://openconnectivity.org/developer/specifications

(accessed on 7 May 2020).
52. Pal, D.; Funilkul, S.; Charoenkitkarn, N.; Kanthamanon, P. Internet-of-Things and Smart Homes for Elderly

Healthcare: An End User Perspective. IEEE Access 2018, 6, 10483–10496. [CrossRef]
53. Alam, M.R.; Reaz, M.B.I.; Ali, M.A.M. A Review of Smart Homes—Past, Present, and Future. IEEE Trans.

Syst. Man Cybern. C 2012, 42, 1190–1203. [CrossRef]
54. Zimmermann, G.; Ableitner, T.; Strobbe, C. User Needs and Wishes in Smart Homes: What Can Artificial

Intelligence Contribute? In Proceedings of the 2017 14th International Symposium on Pervasive Systems,
Algorithms and Networks & 2017 11th International Conference on Frontier of Computer Science and
Technology & 2017 Third International Symposium of Creative Computing (ISPAN-FCST-ISCC), Exeter, UK,
21–23 June 2017; pp. 449–453. [CrossRef]

55. Ghayvat, H.; Awais, M.; Pandya, S.; Ren, H.; Akbarzadeh, S.; Chandra Mukhopadhyay, S.; Chen, C.; Gope, P.;
Chouhan, A.; Chen, W. Smart Aging System: Uncovering the Hidden Wellness Parameter for Well-Being
Monitoring and Anomaly Detection. Sensors 2019, 19, 766. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s18030917
http://dx.doi.org/10.1109/JIOT.2019.2926365
http://dx.doi.org/10.3390/s18092796
http://www.ncbi.nlm.nih.gov/pubmed/30149582
http://dx.doi.org/10.3390/s18061721
http://dx.doi.org/10.1007/s12243-016-0537-4
http://dx.doi.org/10.1109/MCOM.2011.6094008
https://github.com/whizzosoftware/WZWave
https://github.com/tlaukkan/zigbee4java
https://www.mongodb.com
https://jersey.github.io
http://dx.doi.org/10.1109/MWC.2016.7721736
https://www.w3.org/TR/wot-thing-description
https://openconnectivity.org/developer/specifications
http://dx.doi.org/10.1109/ACCESS.2018.2808472
http://dx.doi.org/10.1109/TSMCC.2012.2189204
http://dx.doi.org/10.1109/ISPAN-FCST-ISCC.2017.66
http://dx.doi.org/10.3390/s19040766
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Smart Home Gateway
	Device Profile

	Compatibility Problem
	System Architecture Design
	High-Level Architecture
	Connectivity Driver
	Device Profile Handler
	NoSQL Database
	Controller
	RESTful Web Service

	Prototype Implementation
	Evaluation
	Application Message Execution Time
	Downloading and Updating Device Profiles
	Handling Unknown Commands with the Device Profile

	Discussion
	Conclusions
	References

