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Background: Metabolic flexibility is the ability of an organism to switch between substrates for energy metabolism,
in response to the changing nutritional state and needs of the organism. On the cellular level, metabolic flexibility
revolves around the tricarboxylic acid cycle by switching acetyl coenzyme A production from glucose to fatty acids
and vice versa. In this study, we modelled cellular metabolic flexibility by constructing a logical model connecting
glycolysis, fatty acid oxidation, fatty acid synthesis and the tricarboxylic acid cycle, and then using network analysis to

Results: We observed that the substrate switching usually occurs through the inhibition of pyruvate dehydrogenase
complex (PDC) by pyruvate dehydrogenase kinases (PDK), which moves the metabolism from glycolysis to fatty acid
oxidation. Furthermore, we were able to verify four different regulatory models of PDK to contain known biological
observations, leading to the biological plausibility of all four models across different cells and conditions.

Conclusion: These results suggest that the cellular metabolic flexibility depends upon the PDC-PDK regulatory
interaction as a key regulatory switch for changing metabolic substrates.
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Introduction

Metabolic flexibility is the ability of an organism to switch
between substrates for energy metabolism, adapting to the
changing nutritional state and needs of the organism [1].
In complex organisms, such as humans, the various cells
and tissues utilising either glucose or fatty acids and its
derivatives to fuel metabolism maintain metabolic flex-
ibility. This flexibility revolves around the tricarboxylic
acid (TCA) cycle in oxidative metabolism, where several
biochemical processes interact with each other to use
either glycolysis or fatty acid oxidation to fuel metabolism.
Due to various tissues and organs having different energy
requirements, metabolic flexibility in complex organisms
also includes the delicate balance between these tissues
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and organs in utilising the correct substrate at correct
times, so as not to starve off limited supply of nutrients
critical to the functioning of other organs and tissues [1].
This cellular and tissue/organ level metabolic flexibility
works collectively to manage the nutrient state and needs
of the organism, and by design enforces the utilisation of
a single substrate on the cellular level. Recent studies have
found impaired metabolic flexibility to be associated with
obesity and related co-morbidities, chiefly type 2 diabetes
mellitus and cardiovascular diseases [2—4].

In a recent review [5], we explored the various cellu-
lar processes involved in maintaining cellular metabolic
flexibility in the adipose tissue. The two major energy pro-
duction mechanisms, glycolysis and fatty acid oxidation,
are tied to the TCA cycle — glycolysis through the pro-
duction of pyruvate and its conversion to acetyl coenzyme
A (acetyl-CoA), and fatty acids through their breakdown
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to acyl coenzyme A and transportation into the mito-
chondria through the carnitine transport mechanism for
eventual conversion to acetyl-CoA. This acetyl-CoA is
converted to citrate, which starts the TCA cycle con-
verting adenosine monophosphate (AMP) to adenosine
triphosphate (ATP) and oxidised nicotinamide adenine
dinucleotide (NAD+) to its reduced form NADH, improv-
ing the energy state of the cell. Excess energy, in the
form of citrate escapes to the cytoplasm from the mito-
chondria, where it shuts down glycolysis and/or fatty acid
oxidation and contributes to the re-synthesis of cellu-
lar fatty acids. Some additional cellular processes also
assist in the regulation of cellular metabolic flexibility,
namely the adenosine monophosphate-activated protein
kinase (AMPK) signalling cascade and the peroxisome
proliferator-activated receptor gamma (PPARy) nuclear
receptor mediated transcriptional regulation [5].

In another study of ours [6], we used published data
to generate clusters of correlated genes preserved in the
majority of individuals that participated in a weight loss
study [7]. We observed that one of the generated clus-
ters was primarily involved with the upstream regulation
of the TCA cycle. This observation suggests additional
links between the regulation of cellular metabolic flexi-
bility and obesity related co-morbidities, considering that
weight loss is the predominant method of countering
obesity and its ill effects. In our review [5], we also high-
lighted an inhibitory regulatory interaction directed from
pyruvate dehydrogenase kinase (PDK) to pyruvate dehy-
drogenase complex (PDC) as a key nutrient switching
mechanism between glucose and fatty acids, especially
since we observed it to be affected in obesity.

Based on these observations, we hypothesise that this
regulatory interaction, termed by us as the PDC-PDK reg-
ulatory switch, is a key regulator of cellular metabolic
flexibility. As such, we focused on the changing of the
metabolic substrate in response to the PDC-PDK regula-
tory interaction in this study. We have used logical mod-
elling (i.e., a predicate logic based modelling framework)
to construct a regulatory model to test this hypothesis,
and show how the various perturbations designed to derail
cellular metabolic flexibility are propagated through the
malfunctioning of the PDC-PDK regulatory switch. We
opted to use logical modelling, as opposed to more com-
plex and complicated quantitative modelling primarily
because of the high resolution of data required to accu-
rately model cellular processes quantitatively [8]. Molec-
ular interactions in the cell, such as protein associations,
occur rapidly at rates from less than 10> M~ s~ to greater
than 10° M~1s~! [9] and require specialised experiments
and lengthy simulations to determine accurately [10].
Many of the cellular interactions that we modelled in this
study currently have little-to-no accurate in vivo measure-
ments available on smaller time scales at which they occur
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to properly construct and train a quantitative regulatory
model. These interactions include, but are not limited
to, protein-protein interactions, site-specific phosphory-
lation, allosteric interactions, chemical associations and
dissociations. As logical modelling does not rely on mate-
rial and spatiotemporal quantification of entities, it has
been successfully applied previously in scenarios with
sparse data availability [8, 11-13].

Materials and methods

We applied a well-established pipeline of logical mod-
elling and analysis of biological pathways and net-
works using discrete/qualitative models [11, 14—16]. The
pipeline started with the construction of the biologi-
cal regulatory network, after which its parameters were
defined via logic circuits (which can also be repre-
sented in a tabulated manner). Collectively, the net-
work and the parameters constitute a single model,
with multiple parameter sets representing distinct mod-
els of the same regulatory network. Using the parame-
ters, a new network called a state transition graph (STG)
was constructed, representing all possible behaviours
of the regulatory network in the discrete state space.
This network was then further analysed for relevant
biological behaviours, both for system verification and
for predictions. Figure 1 represents the overview of
this methodology, and we have used a toy example to
illustrate the procedure step-by-step in the subsequent
sections.

Logical modelling

In logical modelling, the model represents a system by
using discrete values of 0 and 1 for OFF and ON states
of the entities comprising the system. The dynamics of
the system are then defined by step functions that change
these values. In our study, we have employed the René
Thomas Kinetic Logic formalism [17] and refer to the
work of Paracha et al. [14] for the mathematical defini-
tions and constraints of the formalism. Of note is the
distinction that we defined 1 as availability and 0 as
unavailability of an entity in this study. This availability
and unavailability, however, does not imply any concen-
tration of the said entity, only whether the entity is able
to perform its functions or not. We used this interpreta-
tion primarily to model allosteric inhibitory interactions
which are otherwise difficult to model in a concentration-
based interpretation (since the concentration-based inter-
pretation would imply that the allosteric inhibition and
allosteric activation always decreases and increases the
production of the target entity respectively, which may
not always be the case in reality). In the following
sections, we show the modelling and analysis of a toy
example to ease the reader into the application of the
formalism.
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Fig. 1 Workflow of the methodology. Biological processes and their known observations were extracted from literature. These processes were then
used to construct the regulatory network with the logical parameters selected based on the biochemical reactions and known interactions. The
regulatory network then underwent system verification where it was tested to check if it could exhibit known biological observations and
behaviours, or not. If the verification failed, then troubleshooting was performed by checking the model for errors, changing the system definitions
extracted from the literature, and/or checking if the known observations were in conflict with the system. If the system verification passed, then the
dynamics generated by the model were analysed for biologically meaningful behaviours

Regulatory network

In the toy example, we have a regulatory network con-
sisting of three entities, P1, P2 and P3. P1 and P3 have
a reciprocal relationship where P3 is an activator of P1,
and P1 the inhibitor of P3. An activator implies that the
source entity has a positive effect on the concentration
and/or activity of the target entity, whereas an inhibitor
has a negative effect. We also see P2 as an activator of P3,
and by extension, having an indirect effect on the activity
of P1 mediated via P3. The regulatory network for the toy
example is shown in Fig. 2a. One constraint in the René
Thomas formalism is that the maximum discrete level
attainable by an entity is constrained by the total number
of its target entities [17]. In the toy example, all three enti-
ties have a single target entity, and are thus constrained to
a maximum discrete level of 1 each.

Logical parameters

As multiple entities can affect the same target entity
simultaneously, a set of logical parameters was selected
which define the rules and precedence governing the evo-
lution of the target entities in the network. These logical
parameters are based on the behaviours observed, mea-
sured or inferred using data and experiments. In the toy
example, we define the logical parameters based on the
interactions that we have in the regulatory network,

1. P2 is the activator of P3.
2. P3is the activator of P1.
3. P1 is the inhibitor of P3.

We see that the logical parameters for P1 are trivial as
it has only one activator and no inhibitor. Generally, in
the absence of their activators, the entities are assumed to
degrade over time. Thus, P1 would be reduced to level 0 in
the absence of P3, whereas P2 would reduce to 0 as its acti-
vator has not been modelled in the regulatory network. It
is also possible to assume an implied activator that would
activate P2, but generally, such assumptions are made only
if an inhibitor of the entity in question has been explicitly
modelled in the regulatory network to balance the activ-
ity of the said entity. Since we do not have any such an
inhibitor for P2 in the regulatory network, we assume oth-
erwise. Lastly, the logical parameters for P3 are non-trivial
since we have both an activator (P2) and an inhibitor (P1)
that can act simultaneously on P3. Here we model a prece-
dence for the inhibitor, and assume that P3 would always
be inhibited by P1 whenever P1 is present in the system,
otherwise P3 would rely on P2 to become activated. These
parameters are tabulated as Table 1.

State transition graphs (STGs)

The logical parameters govern the behaviour of the reg-
ulatory network, from which it is possible to generate a
graph of all possible behaviours. This graph is called a
State Transition Graph (STG), consisting of states (nodes)
and transitions (edges). Each state represents a particular
configuration of the complete regulatory network, where
a configuration is defined as a unique combination of the
discrete levels of the entities of the regulatory network.
Thus, any two states would have a different discrete level
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Fig. 2 Step-by-step analysis of the toy example. a) The regulatory network of the toy example. P1 and P2 activate P3, whereas P1 inhibits P3. b) The
state transition graph (STG) of the toy example. €) The hierarchical transition graph (HTG) of the toy example. d) The STG of the toy example with P1

showing ectopic activity. @) The HTG of P1 ectopic activity. f) The STG of P1 ectopic activity when the system is initialised with all entities as active
(i.e. at level 1). The STGs and HTGs were generated using GINsim [19]

for at least one entity. The maximum number of states is
defined by the formula [vi”, where [v/ represents the max-
imum discrete level plus 1 (essentially the total number

Table 1 Logical it fthe t |
able T “ogica’ parameters of the foy example of levels available for a given entity), and # represents the

Entity Parameter Set TargetValue  humber of entities having that level. In the toy example,

o1 {} 0 this formula would be 23, totalling eight states, as we can
{P3} 1 see in Fig. 2b.

The transitions represent the changes in the discrete

P2 {} 0 levels of the entities, and thus the transitioning of the

regulatory network from one configuration to another.

& 0 The transitions are constrained by the logical parame-

P3 P13 0 ters, and can only exist between two states if the source

{P2} 1 state satisfies the discrete levels of the target state through

P1,P2) 0 the logical parameters. This imparts directionality to the

The format used here represents the presence of respective entities in the system behaYlours rep‘resented in the STG, ger:leratlng CYCIIC and
when they are listed in the parameter set acyclic paths in the graph. A behaviour can then be
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defined as a path in the STG, essentially a series of states
connected by transitions between them. Finally, we utilise
asynchronous transitions, which only allow one entity to
change its discrete level between two successive states.
The logical parameters given in Table 1 were used to
derive the STG of the toy example shown in Fig. 2b. Each
state is labelled with three numbers, representing the dis-
crete levels of P1, P2, and P3 in that order (for example,
state 101 refers to P1 and P3 having level 1, and P2 having
level 0).

System verification

Using the STGs generated by a regulatory network, it is
possible to reverse engineer sets of logical parameters that
allow certain known behaviours of the system to exist in
the regulatory network. By extension, this allowed our
modelled system to be verified against known biologi-
cal observations or to find logical parameters that satisfy
those conditions. We utilised a model checking technique
called computational tree logic (CTL) to identify known
behaviours [18]. CTL allowed us to use predicate logic
along with quantifiers to formulate behaviours, and test
which sets of logical parameters allow such behaviours to
exists within their STGs. Specifically, for a given predicate
formula ¢, these quantifiers are;

e AG¢: From a given state, all states (G) along all paths
(A) must satisfy ¢

e AF¢: From a given state, at least one future state (F)
along all paths (A) must satisfy ¢

e EG¢: From a given state, all states (G) along at least
one path (E) must satisfy ¢

e EF¢: From a given state, at least one future state (F)
along at least one path (E) must satisfy ¢

e AX¢: From a given state, all (A) immediate successor
states (X) must satisfy ¢

e EX¢: From a given state, at least one (E) successor
state (X) must satisfy ¢

For the toy example, we formulate the CTL formula as,
(P2 =1 — EXEGP2 =1) A (P2 =1 —
EX(EG(P2 = 0)))

The formula states that when P2 is at discrete level 1, there
exists at least one path from at least one successor state,
which maintains P2 at level 1, AND there exists at least
one path from at least one successor state which reduces
the level of P2 to 0 indefinitely. When applied, this formula
is tested against all STGs produced by all possible logical
parameter sets for the toy example regulatory network.
Only 2 logical parameter sets out of the total 36 are able to sat-
isfy this property, one of which is already given as Table 1.
Additional file 1 provides the source file for the toy exam-
ple system verification, and includes the definition of the
network, the logical parameters, and the CTL formula.
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Network analysis

Once the system was verified, we proceeded with the anal-
ysis of the behaviours provided in the STG. The results
of such an analysis for the toy example is visualized in
Fig. 2. The blue shaded states represent a cyclic behaviour
where the system can keep transitioning from one state
after the other, successively and indefinitely. We can also
see that the entity P2 maintains its level 1 as long as
the system remains within this cyclic behaviour. As soon
as P2 changes its level to 0, the system transitions away
from the cyclic behaviour into several separate acyclic
behaviours, all of which led the system to a deadlock
state 000. A deadlock state, also referred to as a sta-
ble steady state or fixed point, is defined as a state in
an STG, which has no exit transitions, and implies that
the system gets stuck in this state. The acyclic states are
coloured white, whereas the deadlock state is coloured
red in Fig. 2b. Cyclic behaviours/trajectories represent
periodic or recurring biological processes, such as circa-
dian rhythms, while acyclic behaviour/trajectories repre-
sent one-way propagations, such as signalling cascades. In
Fig. 2b, we can see that the maintenance of P2 at level 1 is
required to keep the system in a periodic behaviour.

Hierarchical transition graphs (HTGs)

One of the drawbacks of logical modelling is state-space
explosion — the size of the STG increases exponentially
with linear increase in the size of the regulatory network.
For example, increasing our regulatory network to four
entities would yield an STG of sixteen states, while six enti-
ties would create an STG of sixty-four states. Subsequently,
the STG of larger regulatory networks becomes very com-
plex, and extremely tedious and error-prone for manual
analysis. However, it is possible to analyse large STGs
by finding sub-networks and patterns (such as strongly
connected components (SCCs), essentially linked cyclic
paths) contained within the STG itself. Towards this end,
GINsim allows us to collapse these sub-networks and pat-
terns in the network to generate Hierarchical Transition
Graphs (HTGs) [19-21]. The collapsed substructures as
then represented as,

¢ Transient SCC: a node containing a strongly
connected component, which also has outgoing
transitions to other components or parts in the HTG.
These nodes are labelled as ‘ct#’ followed by the number
of states contained within, e.g., ‘ct#4’ in Fig. 2c.

e Terminal SCC: a node containing a strongly
connected component, which does not have any outg
oing transitions to other components. These nodes
are labelled as ‘ca# followed by the number of states.

e Irreversible Component: a node containing states and
transitions that do not have any cycles in them. Such
components represent unidirectional flow in the
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behaviours being represented by the HTG. These nodes
are labelled as ‘i# followed by the number of states.

® Rooted Irreversible Component: an irreversible component
that includes at least one state with noincoming transitions.
These nodes are labelled the same as irreversible
components, i.e., ‘i# followed by the number of states.

e Stable State: a node containing a single deadlock state
which the system is unable to exit upon enteringi.e.,
it has no outgoing transitions. These nodes are
labelled as ‘ss-’ followed by the label of the
state/configuration itself. For example, the nodes
‘ss-000” and ‘ss-100’ in Fig. 2c and 2d respectively.

We then proceeded to collapse the acyclic paths into sin-
gle nodes, and finally merged all edges between these
collapsed nodes based on the edges present between the
respective states in the STG. Figure 2c shows the HTG for
the toy example, where the cyclic path has been collapsed
to the light blue node ‘ct#4; and the acyclic path has been
collapsed to the grey node ‘i#3; with the deadlock state
represented as its own node ‘ss-000. Thus, the HTG pro-
vides a structural representation of the system by illustrat-
ing the connections between various sets of behaviours
found in the underlying STG. In addition, HTGs are by
definition acyclic due to the collapsing procedure.

Perturbation analysis

In addition to the HTG, we also performed the pertur-
bation analysis, where we restricted the parameters of
one or more entities to represent knockouts or ectopic
activities. The STG constructed with these restrictions
establishes the propagation of their effects through the
rest of the system. Figure 2d shows the STG when entity
P1 is restricted to ectopic activity. We can immediately see
that the cyclic behaviour found in the STG in Fig. 2b is
no longer available, and that the deadlock state has moved
from 000 to 100. In addition, its HTG (Fig. 2e) shows only
two nodes, a rooted 'i#7’ irreversible node, and the ‘ss-
100’ deadlock node. The lack of incoming transitions to
the rooted state shows unique conditions from which a
modelled system is able to recover, but requires external,
un-modelled influences/regulation to achieve.

It is possible to couple a perturbation with a defined initial
state to fine-tune the behaviours of the system in response
to known restrictions, or predict outcomes of new restrictions.
In Fig. 2f, we see an STG generated when the initial state was
defined as 111 with the P1 ectopic activity perturbation. The
STG shows the routes available to the system using the
logical parameters from Table 1 under the ectopic expres-
sion of P1, both of which lead to the deadlock state 100.

Software
Logical modelling, network and perturbation analyses were
performed using GINsim v3.0 [20]. The system verification
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was done using SMBioNet v3.1 [22]. Cytoscape [23] was
used to visualise the networks.

Results

The regulatory network of cellular metabolic flexibility

In a review done previously [5], we had explored the path-
ways involved with cellular metabolic flexibility and had
constructed a network of these pathways representing cel-
lular metabolic flexibility. This network links both glucose
and fatty acid oxidation with the TCA cycle as energy pro-
duction methods, along with fatty acid (re)synthesis as an
energy production and/or storage method. As mentioned
previously in the Introduction section, metabolic flexibil-
ity at the cellular level enforces that only glucose or fatty
acids are utilised for energy production at any given time.
Exceptions to this enforcement have only been observed
in situations involving high cellular stress and depleted
nutrient conditions, such as in ischemic hearts [1].

Figure 3 illustrates the complete biological regulatory
network model. We have abstracted the larger cellular net-
work of metabolic flexibility from the review to reduce the
number of entities and thus reduce the complexity intro-
duced by state-space explosion. Our regulatory network
consists of ten entities, namely Glucose, Pyruvate, Pyru-
vate Dehydrogenase Kinase (PDK), Pyruvate Dehydroge-
nase Complex (PDC), Acetyl Coenzyme A (Acetyl-CoA),
Citrate, Malonyl Coenzyme A (Malonyl-CoA), circulating
fatty acids, cellular fatty acids (Fatty Acids), and adeno-
sine monophosphate-activated protein kinase (AMPK).
The interactions and processes represented by the edges
of the biological network are explained in Table 2, and we
direct the readers to the original review article [5] for the
detailed explanation of the biological pathways and inter-
actions involved in metabolic flexibility. Additional file 2
also shows a generic procedure for abstraction/reduction
of regulatory networks. For a more detailed explanation of
the reduction algorithm including the formal definitions
and proofs, we refer the reader to Saadatpour et al. [24].

System verification of the logical parameters governing
cellular metabolic flexibility

The selection of the logical parameters for the regulatory network
was done manually as most of the interactions present in the
system are well-studied biological processes. The exception
was the regulation of PDK as it is relatively less known and
does not rely on stringent biochemical reactions, allowing for
multiple regulatory possibilities. What is known is the inhi-
bition of PDK isoenzymes via pyruvate, and the activation of
PDK isoenzymes through either TCA cycle products or per-
oxisome proliferator-activated receptor gamma (PPARy)
triggered by fatty acidsin the cytoplasm [5]. Retaining these
interactions, we get six combinations of logical parameters.
We selected four sets of logical parameters for PDK,
generating four models of our regulatory network (the
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Fig. 3 Biological regulatory network of cellular metabolic flexibility. The regulatory network consists of ten entities representing the biological
processes involved in cellular metabolic flexibility. The entities interact with one another through various processes, abstractly represented here as
activation or inhibition interactions. The interactions are labelled with Roman numerals, and are explained in Table 2

remaining to two sets of logical parameters lead to either
no effect of inhibition, or no effects of activation). These
models are,

Model 1: The inhibitor, Pyruvate, always blocks PDK
activity when it is present in the system.

The inhibitor, Pyruvate, only blocks PDK
activity when at least one of its activators,
Acetyl-CoA (mediating activation via increased
BADH and ATP) or Fatty Acids (mediating
activation via PPARy ), is absent from the
system. Thus, the activators collectively
override Pyruvate mediated inhibition.
Acetyl-CoA mediated activation of PDK
bypasses Pyruvate mediated inhibition.

Fatty Acid mediated activation of PDK bypasses
Pyruvate mediated inhibition.

Model 2:

Model 3:

Model 4:

Figure 4 shows the circuit diagram representations of the
logical parameters for each entity, including the circuit
diagrams for the four PDK parameter sets. The tabulated
logical parameters are provided as Additional file 3. The
four models were then tested in SMBioNet [22] for sys-
tem verification and parameter selection. The following
biological properties were tested,

® Glucose Oxidation: Ensuring that glucose is oxidised to
pyruvate, which contributes to acetyl-CoA production

e Fatty acid Oxidation: Ensuring that fatty acid
oxidation to acetyl-CoA takes place in the absence of
malonyl-CoA

Known PDK interactions: Ensuring that PDK inhibits
glucose oxidation, allowing fatty acid oxidation to
take place

Absence of PDK: Ensuring glucose oxidation resumes
in the absence of PDK, creating malonyl-CoA

These biological properties are codified as CTL formulae
in Table 3, and their formulation is explained in Additional
file 4. All four models of PDK regulation were able to
satisfy these properties, implying that the four logical
parameter sets modelled for PDK are biologically plau-
sible. The SMBioNet source file for the system verifica-
tion of the regulatory network is provided in Additional
file 5.

Network analysis of the behaviours exhibited by the
models

Since all four parameter sets of PDK regulation passed
system verification on known biological observations, we
analysed all four models. The STG (state transition graph;
see Methods section) of each model consisted of 1,024
states, and 6,144 transitions between the edges. The only
difference between the STGs of the four models were the
transitions between the states governing the regulation of
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Table 2 Edge list and explanation of the interactions in biological regulatory network in Fig. 3

Edge Label Interaction Explanation

i Represents the process of glucose uptake and its multi-step conversion via various enzymes to Pyruvate [37, 38]

ii Represents the allosteric inhibition of the PDK enzymes by Pyruvate [25].

iii Represents the inhibition of PDC by PDKs via site-specific phosphorylation [1, 25].

iv Represents the involvement of PDC in converting Pyruvate into Acetyl-CoA via decarboxylation [37, 38].

v Represents the consumption of Pyruvate to create Acetyl-CoA via PDC mediated decarboxylation [26].

vi Represents the allosteric activation of PDKs via NADH and ATP produced during the TCA cycle fuelled by Acetyl-CoA [1].

vii Represents the conversion of Acetyl-CoA to Citrate in the mitochondria, part of which is transported into the cytoplasm [27, 39].

viii Represents the inhibition of phosphofructokinases (PFKs) by cellular Citrate, thereby inhibiting the production of Pyruvate from
Glucose [28, 29].

ix Represents the conversion of Citrate to Malonyl-CoA through the Acetyl-CoA carboxylase 1 (ACACA) mediated carboxylation [1].

X Represents the utilisation of Malonyl-CoA for fatty acid synthesis [27, 39].

Xi Represents the reconversion of Citrate to Acetyl-CoA in the cytoplasm to be used for fatty acid synthesis alongside Malonyl-CoA [27, 39].

Xii Represents the breakdown of fatty acids to Acyl-CoA, transport into the mitochondria via the carnitine transport process and conversion
to Acetyl-CoA for the TCA cycle [30, 40].

Xiii Represents the inhibition of the carnitine transport process by Malonyl-CoA, thereby affecting Acetyl-CoA production [1].

Xiv Represents the negative effect of Acetyl-CoA on AMPK activity via higher ATP and lower AMP concentrations [1, 31].

XV Represents the inhibition of Malonyl-CoA production by the AMPK mediated inhibition of ACACA [1, 31].

XVi Represents the increased activity of PDKs by cellular fatty acids via Peroxisome Proliferator-Activated Receptor gamma (PPARy)
signalling [25, 32-34].

xvii Represents the uptake of circulating fatty acids into the cell [35, 36].

xviii Highly abstracted representation of circulating fatty acid regulation outside the cell.

XixX Highly abstracted representation of circulating glucose regulation outside the cell.

PDK, which was expected as per the logical parameters.
The STG of model 1 is provided in Additional file 6, and
shows the size, density, and complexity of the network and
behaviours contained within.

We then proceeded to collapse the four STGs into
their respective HTGs (hierarchical transition graphs; see
Methods section), to compare the behavioural patterns
and substructures in the models. We observed that due
to the regulation of Glucose and Circulating Fatty Acids
as inhibitory self-loops, the majority of the states from
the STGs, 992 to be exact, are collapsed into a single
node in the HTG with the remaining nodes showing fluc-
tuations of Glucose and Circulating Fatty Acids without

any effect on the cellular environment. Essentially, the
various groups of system dynamics were being integrated
together by the fluctuation of the glucose and circulat-
ing fatty acid input nodes. The self-inhibitory loop on
each of the input nodes would switch them between 0
and 1, thereby linking all different strongly connected
components together to form a single strongly connected
component. Although this behaviour does show how
interconnected the biological behaviours are, it makes the
analysis of these behaviours that much complex. To rem-
edy this situation, we opted to remove the self-inhibitory
loops and restricted the input nodes to the four combi-
nations of 0 and 1 to see how the system behaves for
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Circuit Diagrams of the Logical Parameters
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Fig. 4 Circuit diagrams of the logical parameters for the regulatory network of cellular metabolic flexibility. a) The circuit diagrams representing the
entities other than PDK. Each entity has a single circuit diagram representing the respective set of parameters. b) Shows the four models of PDK
regulation, differing on how the activators (Fatty Acids and Acetyl-CoA) are able to affect the activation of PDK in the presence of the inhibitor
(Pyruvate). The tabulated logical parameters for all entities are provided as Additional file 3

Fatty Acids

Acetyl-CoA

Pyruvate

these particular input conditions. The only difference is
that the edges that connected the pairs of states differing
in only the level of either glucose or circulating fatty
acids are no longer connected due to the absence of
the self-inhibitory loop governing the change in level,
neatly dividing the previously large 1,024 state STG into
four smaller 256 state STGs for detailed analysis. We
then proceeded with comparing the HTGs of each model
with the respective input combination discussed below.
Figure 5 shows the HTGs of Model 1 for all four input
combinations.

Input 1: glucose only

This input combination models the availability of circulat-
ing glucose and the unavailability of circulating fatty acids.
All four models of PDK regulation collapse the STG into
a two node HTG containing all 256 states pertaining to
this input combination. The root node is an irreversible
component that does not contain any incoming edges, and
consists of either 31, 33, 29 or 39 states for models 1, 2, 3
and 4 respectively. This root node shows a situation from
which the system is able to recover to stable behaviours,
but is unable to return to the original situation (hence
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Table 3 CTL formulae used for system verification of the regulatory network of cellular metabolic flexibility

Property CTL Formula

Glucose Oxidation

A

((Glucose = 1 A Pyruvate = 0 A Citrate = 0) — EX(Glucose = 1 A Pyruvate = 1))

((Pyruvate = 1 A PDC = 1 A Acetyl-CoA = 0) — EX(Pyruvate = 1 A PDC = 1 A Acetyl-CoA = 1))

Fatty acid Oxidation

((Fatty Acids = 1 A Malonyl-CoA = 0 A Acetyl-CoA = 0) —

EX(Fatty Acids = 1 A Malonyl-CoA = 0 A Acetyl-CoA = 1))

Presence of PDK

((PDK =1 APDC = 1 A Pyruvate = 1 A (Fatty Acids = 0 | Malonyl-CoA = 1) A Acetyl-CoA = 1) —

EF(PDK =1 A PDC = 0 A (Fatty Acids = 0 | Malonyl-CoA = 1) A Acetyl-CoA = 0))

A

((PDK =1 A (PDC = 0 | Pyruvate = 0) A Fatty Acids = 1 A Malonyl-CoA = 0 A Acetyl-CoA = 0) —
EX(PDK =1 A (PDC = 0 | Pyruvate = 0) A Fatty Acids = 1 A Malonyl-CoA = 0 A Acetyl-CoA = 1))

Absence of PDK

((PDK = 0 A PDC = 1 A Pyruvate = 1 A (Fatty Acids = 0 | Malonyl-CoA = 1) A Acetyl-CoA = 0) —

EX(PDK = 0 A PDC = 1 A Pyruvate = 1 A (Fatty Acids = 0 | Malonyl-CoA = 1) A Acetyl-CoA = 1))

A

((PDK = 0 A PDC =1 A Pyruvate = 1 A Malonyl-CoA = 0 A Acetyl-CoA = 1) —
EF(PDK = 0 A PDC = 1 A Pyruvate = 1 A Malonyl-CoA = 1 A Acetyl-CoA = 1))

the irreversible component). The remaining states are col-
lapsed into the leaf node, which represents a terminal
SCC. The system can remain in the terminal SCC indefi-
nitely, following the cyclic behaviours it represents. In case
the input conditions change, the system would then be
able to move to complementary state in one of the HTGs
representing the new input combination.

Input 2: both glucose and circulating fatty acids

In this input combination, both glucose and fatty acids
are available for cellular metabolism. Models 1, 2 and 3
generate a four node HTG each, all consisting of two irre-
versible components (one of which is a root node), and
two SCCs (one of which is a terminal SCC). Model 4
generates ten nodes, consisting of five irreversible compo-
nents and five SCCs. We observed that the smaller HTGs
of the first three models represent very similar sets of
dynamics because the logical parameters for these mod-
els tie the regulation of PDK completely or partially to
the TCA cycle. In model 4, this dependency is nullified as
the Fatty Acid mediated activation via PPARy signalling is
able to bypass the TCA cycle. This results in stable cyclic
behaviours in the terminal SCC untying from each other
and dispersing into smaller groups of cyclic behaviours,
accompanied by irreversible components. However, the
non-terminal SCC remains the same as those of models
1, 2 and 3. In essence, the larger structure of the HTGs
remains intact.

Input 3: circulating fatty acids only

In this input combination, only circulating fatty acids are
available for metabolism. All four models show strong
divergence in their respective HTGs, with different types,
number, and sizes of nodes. The only conserved pattern
in the HTGs is the terminal SCC, along with three more
non-terminal SCCs leading to the terminal SCC. This sub-
network maintains both the number of states, as well as
the edges between the respective SCCs across all four
models, suggesting that although the change in PDK reg-
ulation has a strong effect in the upstream behaviours in
the HTGs, the system converges to the same behaviours
and patterns.

Input 4: no glucose or circulating fatty acids

This input combination represents an extreme scenario
where neither circulating glucose nor circulating fatty
acids are available to fuel metabolism. As such, the sys-
tem moves towards cell death, which can be seen as the
only deadlocked state (also known as stable state) in the
all four HTGs, labelled as ‘ss-0001000010’ Models 2, 3 and
4 show very similar behaviour patterns in terms of the
node types and the edges between them, whereas model
1 shows some behaviours as separate nodes instead. How-
ever, as with the previous input combination, this one
also has a sub-network conserved between all four HTGs
consisting of an SCC, an irreversible component, and the
deadlocked state.
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Hierarchical Transition Graphs of Model 1
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Fig. 5 Hierarchical transition graphs (HTGs) of Model 1. Each node is labelled with a set of letters denoting the type of the node, followed by the
number of states that node is representing. For states having the same type and number of states, a number in parentheses is added to the name to
differentiate them. The size of the node represents the number of states contained within the node. The irreversible components (i#') represent
states which do not contain any cycles or homoeostatic behaviours. The strongly connected components ('ct# and ‘ca#) represent cyclic or
homoeostatic behaviours. The deadlocked state (‘'ss-) represents a single state where the system dynamics seize to function. The nodes and edges
in cyan represent the nodes and edges which are conserved in all four models of PDK regulation. The HTGs of the remaining models 2, 3 and 4 are
provided as Additional file 7
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Perturbation of regulatory components for impact
propagation

In the perturbation analysis, we opted to perturb the non-
metabolite inhibitors of the regulatory network to either
ectopic or knockout levels to observe how their effects
propagate through the system. The reason for selecting
non-metabolite inhibitors is that the metabolite inhibitors
are derived from the metabolic processes themselves, thus
perturbing those would create a self-fulfilling prophecy
in terms of gauging the effects of the regulators on cel-
lular metabolic flexibility. The only two entities in our
regulatory network fulfilling this criterion are PDK and
AMPK.

We started with perturbing PDK to knockout level by
restricting it to level 0. We then initialised the system
with all entities at level 0 and tested it with all four
input combinations. We observed the same behaviours
as those in the network analysis for all input combi-
nations, except for when both circulating glucose and
circulating fatty acids are available for metabolism. For
this input combination, we observed that when PDK is
locked to level 0 the STG shows that the Acetyl-CoA is
derivable from both glucose and fatty acid sources simul-
taneously, contrary to the known biological properties
which were also checked via CTL model checking. When
we allowed the system to change the PDK level to 1, we
immediately observe only fatty acid driven Acetyl-CoA
production.

We then proceeded to test PDK at ectopic level by
restricting it to level 1 and testing again with the four input
combinations (while the remaining entities of the system
are initialised at level 0). We observed that, like previ-
ously, the behaviours were similar to those observed in the
network analysis except for one input combination, this
time it being the availability of circulating glucose and the
absence of circulating fatty acids. The STG of this combi-
nation showed that there was no Acetyl-CoA production
as the ectopic activity of PDK was barring Pyruvate con-
version to Acetyl-CoA, and there were no available fatty
acids to fuel metabolism. When we allowed the system
to change the PDK level to 0, glucose driven metabolism
resumed.

Lastly, we perturbed AMPK using the same method
used for PDK. We did not observe any changes when
AMPK was restricted to level 0. However, when restricted
to level 1, we observed that changes in the behaviours
generated when both the circulating glucose and circulat-
ing fatty acids are available. For this input combination,
the ectopic activity of AMPK led to a fatty acid pre-
ferred metabolism, which, in turn, led to ectopic PDK
levels, leading solely to fatty acid driven metabolism,
instead of any switching behaviour. Here, we observed that
AMPK perturbation still acted through PDK mediated
regulation.
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Discussion

In this study, we have utilised a logical modelling and net-
work analysis workflow to assess the hypothesis of the
PDC-PDK regulatory switch being a key regulatory mech-
anism behind cellular metabolic flexibility. We start with
the construction of the regulatory network by abstract-
ing the cellular network of metabolic flexibility reviewed
earlier f. The regulatory network, consisting of ten enti-
ties and nineteen interactions, covers both the glucose
and fatty acid oxidative metabolism pathways, merging
them with the fatty acid synthesis pathway along with
AMPK and PPARy signalling pathways. The selection
of the logical parameters for all but one of the entities
was relatively straightforward as the biological processes
being represented have been well studied [37-40]. The
remaining entity, PDK, had four possible sets of logical
parameters as it has competing activators and inhibitors
in the regulatory network. As opposed to other entities,
the competitive regulation of PDK is difficult to decipher
because the interactions are not direct outputs of bio-
chemical reactions. On top of this, various regulators of
PDK have different intensities of regulations for the four
PDK isoenzymes in different tissues [41].

The interactions in the regulatory network are both sim-
plified and abstracted so we relied on system verification
using model checking to test four possible logical param-
eter sets for PDK regulation. CTL formulae were used
to formulate both oxidative metabolisms and the known
behaviours of the PDC-PDK regulatory interactions. The
model checker, SMBioNet [22] verified all four logical
parameter sets of PDK to contain the formulated known
behaviours, leading us to proceed further with four mod-
els differing on the regulation of PDK. The verification of
all four logical parameter sets shows the biological plausi-
bility of the four different types of PDK regulation, in line
with the multiple intensities and tissue specific regulation
discussed in [41]. In addition, the various STGs and HTGs
generated by the four models show that the system even-
tually settled into very similar dynamics for the different
sets of inputs, again supporting the biological plausibility
of the four models. The STGs and HTGs differed only in
the upstream regulation of the dynamics because of the
difference in PDK regulation. However, the simplicity of
the abstraction used in our regulatory network, both in
terms of representing the four PDK isoenzymes as a single
entity as well as merging the various regulations (such as
acetyl-CoA, NADH and ATP mediated activation of var-
ious PDKs into a single edge), limits our model to being
non-tissue specific. This limitation also affects the eluci-
dation of the contexts involved and/or required by the four
models to exhibit the behaviours presented in this study.
As the base model itself is not completely tissue specific,
it is possible that these four models broadly represent dif-
ferent paths of metabolic flexibility in different tissues.
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However, it is equally likely that these four models can
exist in the same tissue but at different times because of
other effects not modelled in this study (such as epigenetic
effects over time).

As an additional verification step, we constructed the
larger cellular metabolic flexibility network from our
review [5] in the software GINsim, consisting of 63 entities
and 81 edges. This network included one modification
from the network depicted in our review — two inhibitory
edges, one from ATP to AMP and the other from NADH
to NAD+, were added to account for their cycling in the
cell. We then proceeded to find the deadlocked states
in the larger network to compare with the network we
had manually constructed in this study. We found that
the larger network generated only one deadlocked state.
However, comparing only the ten entities modelled in the
network in this study, we found that the levels of these
ten entities were the same for both deadlocked states.
We also used the reduction tool offered in GINsim that
computationally reduces a model. We reduced the larger
network, deselecting the ten entities found in our manu-
ally constructed model in this study, making the reduction
algorithm preserve them. The reduced model generated
by GINsim consisted of eleven entities, with the addi-
tional entity being the node for TCA cycle. This reduced
model also generated a single deadlocked state, as was
expected because the reduction algorithm preserves the
mathematical constraints in the model. This deadlocked
state only showed two entities deadlocked at level 1, PDC
and AMPK, the same as the ones from our manually con-
structed model (shown in the “Input 4:” sub-sub-section
of the Results section). These comparisons serve as an
alternative verification method for the manual construc-
tion of the network presented in this study. The additional
models are provided as Additional file 8.

The perturbation analysis, done by restricting certain
components to knockout or ectopic expressions, allowed
us to test the propagation of regulation in the regula-
tory network when the negative regulators in the system
malfunctioned. We elected to perturb the non-metabolite
negative regulators, namely PDK and AMPK, because
we wanted to test the regulation of the switching of
metabolism from glucose to fatty acids independent of
the increase or decrease in metabolite concentrations
implied in logical modelling. The results of the pertur-
bation analysis reveal that malfunctioning of PDK has a
direct effect on the switching of metabolism, which is
in line with our hypothesis. What is more interesting is
that the perturbation of the only other non-metabolite
inhibitor modelled in our regulatory network, AMPK,
also propagated its effects through persistent activation
or availability of PDK, providing additional support to
our hypothesis. The results of the perturbation analysis,
coupled with the conserved dynamics in all four models
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reinforces the hypothesis that the PDK isoenzymes are a
key regulatory element of cellular metabolic flexibility via
the PDC-PDK interaction.

This propagation of the regulatory effect places the PDK
enzymes squarely in the middle of perturbed metabolism,
as can be seen in cancer studies [42, 43] where PDKs
were found to be over-expressed. The reprogramming of
cellular metabolism has been identified as a new hallmark
of cancer where the cellular metabolism of the cancer-
ous cells moves away from complete glucose oxidation to
just glycolysis [44]. In the aforementioned cancer stud-
ies, PDK expression was suppressed via treatment with
Dichloroacetate (DCA), an inexpensive small molecule
suppressor, to switch metabolism over to glucose oxi-
dation. Similar treatments in other studies has shown
that the DCA treatment caused apoptosis in cancer cells
[45-48]. However, on the other side of the spectrum, a
study targeting Alzheimer’s disease via rat central nervous
system cell line models found that the overexpression of
PDK1 (along with lactate dehydrogenase A) conferred a
resistance to Ameloid 8 and other toxins, thereby miti-
gating some of the mechanisms underlying Alzheimer’s
disease progression [49]. When taken collectively, these
studies indicate that the balance of PDK enzyme expres-
sions play an important role in the health of various cell
types, thus, relying on the cellular metabolic flexibility
through the PDC-PDK regulatory interaction. In addition,
this maintenance of cellular metabolic flexibility as well
as the tweaking of the PDC-PDK switch can be further
used to supply new drug targets for the aforementioned
ailments and conditions.

In cell types reliant on a single substrate for oxidative
metabolism, the role of the metabolic switch is slightly dif-
ferent, likely to regulate the rate of oxidative metabolism
instead of metabolic flexibility. One example of such
cell types are Endothelial cells which utilise glucose. We
took the network resource developed in our previous
study [5] and visualised baseline RNA-Seq expression data
for endothelial cells from the BLUEPRINT Epigenome
project [50] (available from ArrayExpress as E-MTAB-
3827). These endothelial cells were extracted from the
umbilical vein during proliferating and resting states (the
visualisation is provided as Additional file 9). We observed
that the expression of PDKs is very low, and no expres-
sion of PPARy is taking place, indicating the absence of
cellular fatty acid mediated PPARy signalling. Interest-
ingly, there is expression of Stearoyl-CoA desaturase 1
(SCD), an enzyme from the fatty acid (re)synthesis path-
way. However, studies have shown that SCD in endothelial
cells plays a vital role in mitigating laminar stress [51, 52],
thereby justifying its expression and indicating the limited
role of the PDC-PDK regulatory switch in such cell types.

In essence, all four models of PDK regulation analysed
in this study, coupled with the network and perturbation
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analyses, strongly suggest the PDK mediated inactiva-
tion of PDC as a key switching mechanism of cellular
metabolism from glucose to fatty acids, and therefore, a
key regulator of cellular metabolic flexibility. However, the
model has its limitations, not least of which is that logical
modelling is time and quantity independent. This means
that that although our models suggests the PDC-PDK
switch as a key regulator, it does not tell us anything
about the intensity and duration of this regulation. In
addition, wet-lab experimentation is still required to vali-
date our findings, the design of which is difficult in itself
since many of the interactions and regulations modelled
in the system happen at extremely short time scales, the
accurate measurement of which is tricky at best. These
design constraints themselves are one of the reasons why
quantitative data was sparse and lacking at the time of
this study, resulting in the logical modelling conducted
in this study. While our study focuses on the substrate
switching in metabolism and specifically the enzymatic
regulation of this substrate switching, there are other fac-
tors/mechanisms of the regulation of cellular metabolism
that are not considered in our current model. One of
these is the ratio of deuterium to hydrogen in the cellu-
lar environment, which has been shown to affect cellular
metabolism [53, 54]. Although this aspect is out of the
scope of the current study, it would be interesting to fur-
ther investigate its impact on the regulation of cellular
metabolism and metabolic flexibility in future studies.

Conclusion

In this study, we have modelled and analysed cellular
metabolic flexibility using logical modelling and network
analysis. The results of our models strongly suggest that
the PDC-PDK regulatory switch plays an important role
in the regulation of cellular metabolic flexibility, revolv-
ing around the TCA cycle and the oxidative metabolism of
glucose and fatty acids. The results support the hypothesis
that this regulatory switch relies on the regulation of PDK
itself, and thus PDK regulation acts as the pivot balancing
cellular metabolic flexibility between available nutrients.
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