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Wallenda regulates JNK-mediated cell death in
Drosophila

X Ma*,1,2, W Xu1, D Zhang1, Y Yang1, W Li1 and L Xue*,1

The c-Jun N-terminal kinase (JNK) pathway plays essential roles in regulating a variety of cellular processes including proliferation,
migration and survival. Previous genetic studies in Drosophila have identified numerous cell death regulating genes, providing
new insights into the mechanisms for related diseases. Despite the known role of the small GTPase Rac1 in regulating cell death,
the downstream components and underlying mechanism remain largely elusive. Here, we show that Rac1 promotes JNK-
dependent cell death through Wallenda (Wnd). In addition, we find that Wnd triggers JNK activation and cell death via its kinase
domain. Moreover, we show that both MKK4 and Hep are critical for Wnd-induced cell death. Furthermore, Wnd is essential for
ectopic Egr- or Rho1-induced JNK activation and cell death. Finally, Wnd is physiologically required for loss of scribble-induced
JNK-dependent cell death. Thus, our data suggest that wnd encodes a novel essential cell death regulator in Drosophila.
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Programmed cell death (PCD) is a fundamental biological
process required for normal organ development and tissue
homeostasis in multicellular organisms.1 Disruption of PCD
would result in a variety of diseases including neurodegen-
erative diseases, autoimmune disorders and cancers.2

Drosophila melanogaster, with its well-established genetic
techniques and compact genome size, has been regarded as
an excellent model organism to study PCD and its related
signaling pathways.3,4 The c-Jun N-terminal kinase (JNK)
signaling has been implicated as one of the most important
pathways that regulates various fundamental cell behaviors,
such as proliferation, migration and cell death.5,6

Rac1 belongs to the Rho family of small GTPase that
regulates many aspects of physiological activities ranging
from immune response to wound healing and migration.7–11

For instance, Rac1 has been implicated in JNK-mediated
dorsal closure via Slpr (Slipper) in fly,7 osteoclast differentia-
tion through TAK1-mediated NF-κB signaling12 and myocyte
hypertrophy via Ask1 (apoptotic signal-regulating kinase 1) in
mammals.13 However, despite the reported role of Rac1 in cell
death,14 its underlying mechanism and downstream compo-
nents remain largely elusive.
Here by using Drosophila compound eye as a model, we

found Rac1 expression induces JNK-dependent cell death
and identifiedWallenda (Wnd), a MAPKKK (mitogen-activated
protein kinase kinase kinase) member as an essential
downstream mediator. Furthermore, we found that Wnd is
sufficient to induce JNK-mediated cell death through both Hep
and MKK4. Finally, we established Wnd as a general

modulator of cell death in Drosophila by showing that it is
also required for ectopic Egr or Rho1 and loss of Scribble
(Scrib)-induced cell death.

Results and Discussion

Wnd is essential for Rac1-induced cell death and JNK
activation. Consistent with previous results that overexpres-
sion of the small GTPase Rac1 would affect eye
development,7,14 we found that expression of Rac1 under
GMR promoter produced a complete eye loss phenotype
(Figure 1b), resulting from extensive cell death posterior to
the morphogenetic furrow (MF) in third instar eye discs
(Figure 2f), as shown by acridine orange (AO) staining, a dye
used to detect dying cells.15 In accordance with the genetic
evidence that Rac1 regulates JNK-mediated dorsal closure,10

we found that blocking JNK activity by expressing a dominant
negative allele of Bsk (BskDN) or the JNK phosphatase
Puc could dramatically suppress Rac1-triggered eye loss
phenotype (Figures 1c and d), although some pigment
cells defects still remain. Furthermore, knocking down
either of the two JNK kinases, Hemipterous (Hep) or MKK4,
significantly suppressed Rac1-triggered no-eye phenotype
(Figures 1e and f), indicating a critical role of JNK signaling in
Rac1-induced cell death.
In Drosophila, upstream of Hep and MKK4 in the JNK

pathway are five JNKKKs, including dTAK1, Slpr, Mekk1, Ask1
and Wnd. All of them, except Wnd, have been previously
implicated in cell death.16–21 In addition, dTAK1 plays a role in
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innate immunity,22 Slpr is required for dorsal closure,7 and
Ask1 is involved in pigmentation.23 Wnd has been shown to
play pivotal roles in regulating axon transportation, regenera-
tion and degradation,24–26 but its role in cell death has
remained unknown. We found GMR4Rac1-induced no-eye
phenotype was slightly suppressed by knocking downmekk1,
Ask1 or slpr (Figures 1j and l), but remained unaffected by
expressing a dominant negative form of dTAK1 (dTAK1DN) or
mutation in dTAK1 (Figures 1h and i), suggesting dTAK1 is

dispensable for Rac1-triggered cell death. Consistent
with previous studies, expression of dTAK1DN almost com-
pletely suppressed GMR4Egr-induced small-eye phenotype
(Supplementary Figures 1A and C),20,21,27,28 suggesting
dTAK1 is specifically required for Egr- but not Rac1-triggered
JNK-dependent cell death. Intriguingly, we found that knocking
down wnd dramatically suppressed Rac1-induced no-eye
phenotype (Figure 1g). Consistently, Rac1-induced JNK
activation (indicated by puc-LacZ staining29) and cell death

Figure 1 Wnd is essential for Rac1-induced small-eye phenotype. Light micrographs of Drosophila eyes are shown. Compared with theGMR-Gal4 control (a), GMR4Rac1-
induced small-eye phenotype (b) was significantly suppressed by expression of BskDN (c) or Puc (d), or RNAi-mediated knocking down of hep (e), mkk4 (f) or wnd (g), and
partially suppressed by knocking down mekk1 (j), Ask1 (k) or slpr (l), but remained unaffected by expression of dTAK1DN (H) or mutation in dTAK1 (i)

Figure 2 Wnd is required for Rac1-induced JNK activation and cell death. Light (a–d) and fluorescence (e–h) micrographs of Drosophila eye discs are shown. Compared with
theGMR-Gal4 control (a and e), Rac1-induced upregulated puc transcription (b) and cell death (f) posterior to MF in third instar eye discs were suppressed by the expression of a
wnd RNAi (c and g), but not that of dTAK1DN (d and h)
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in developing eye disc were also suppressed by knocking
down wnd (Figures 2a–c and e–g), but remained unchanged
by blocking dTAK1 activity (Figures 2d and h). Together, the
above data demonstrate that wnd plays a major role in
mediating Rac1-triggered cell death in Drosophila.
Rac1–JNK signaling is also known to play essential role in

the process of dorsal and thorax closure during normal
development.10 In accordance with previous study, we found
knocking down slpr in the thorax by pnr-Gal4 produced
a cleft phenotype (Supplementary Figures 2A and B),7

whereas depletion of wnd produced no obvious phenotype
(Supplementary Figure 2C). Thus, Wnd appears dispensable
for the thorax closure function of Rac1–JNK signaling.

Wnd is physiologically required for JNK-mediated cell
death. Correct establishment and maintenance of cell
polarity are critical for development and tissue homeostasis.
Loss of cell polarity results in JNK-dependent cell death and
invasion in Drosophila.30–35 To investigate whether wnd is
required for the physiological functions of JNK signaling in
development, we knocked down scrib along the anterior/
posterior (A/P) compartment boundary in third instar larval
wing discs by patched (ptc)-Gal4, and observed intensive cell
death (indicated by cleaved Caspase 3 staining) and cell
invasion into the posterior compartment (Figures 3b–b”).
Depletion of wnd dramatically suppressed loss of scirb-
induced cell death and invasion phenotypes (Figures 3c–c”),
suggesting that Wnd also modulates the physiological
functions of JNK signaling.

Wnd induces JNK-mediated cell death. Next, to examine
whether Wnd is sufficient to induce JNK activation and cell
death, we expressed Wnd in the developing eye under the
GMR promoter, and observed a small-eye phenotype in the
adults (Figure 4b). As expected, such phenotype could be
suppressed by coexpression of a wnd RNAi (data not shown).
In addition, Wnd prompts extensive cell death and JNK
activation in third instar eye discs posterior to the MF, as
indicated by AO staining (Figure 4b’) and puc-LacZ expres-
sion (Figure 4b’’), respectively. In contrast, a kinase-dead
form of Wnd (WndKD) 25 fails to induce cell death and JNK
activation in the eye disc, and produces a wild-type eye in the
adults (Figures 4c–c’’), suggesting the kinase domain is
necessary for Wnd to induce JNK activation and cell death.
Finally, Wnd-triggered JNK activation, cell death and small-
eye phenotype is fully suppressed by coexpression of BskDN

or Puc (Figures 5g, g’), indicating Wnd triggers JNK-
dependent cell death.

MKK4 and Hep are both required for Wnd-induced cell
death. Previous studies found DLK (Wnd ortholog in
mammal) utilize MKK7 (Hep ortholog) but not MKK4 as a
substrate in mammalian cells.36 To investigate whether Mkk4
or Hep is required for Wnd-induced JNK activation and cell
death, we reduced their activities by mutations or RNAi
expression. Intriguingly, loss of either hep or mkk4
strongly blocked GMR4Wnd-induced cell death in eye discs

Figure 3 Wnd is required for loss of scrib-induced cell death. Fluorescence
micrographs of Drosophila wing discs are shown. Compared with ptc-Gal4 control
(a–a’’), loss of scrib-induced cell death and invasion (b–b’’) was strongly impeded by
knocking down wnd (c–c’’)

Figure 4 Wnd requires its kinase domain to induce JNK activation and cell death.
Light micrographs of Drosophila eyes (a–c), eye disc (a’’–c’’) and fluorescence
micrographs of eye discs (a’–c’) are shown. Compared with the control (a–a”),
expression of Wnd induced extensive cell death (b’) and elevated puc transcription
(b’’) in eye discs, and produced a small-eye phenotype in adults (b), whereas
expression of WndKD produced no obvious phenotypes (c–c’’)
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(Figures 5c–f) and the small-eye phenotype in adults (Figures
5c’–f’), suggesting both MKK4 and Hep are necessary for
Wnd-induced cell death in vivo. Consistently, both MKK4 and
Hep are required for Wnd-triggered JNK activation, as loss of
either gene strongly suppressed Wnd-induced puc-LacZ
expression (Figures 5i–k). Collectively, these results imply
that MKK4 and Hep might work together rather than in
parallel, for instance in the same complex, to mediate Wnd-
triggered JNK activation and cell death in Drosophila.

Wnd is required for Egr-induced cell death and JNK
activation. It has been reported that both MKK4 and Hep
are required for cell death induced by Egr (Figures 6b, e and f),
the Drosophila ortholog of TNF.37 Although dTAK1 has
been previously implicated in Egr-induced JNK activation
and cell death,20,38 a potential role of Wnd in Egr–JNK
signaling cannot be excluded. Indeed, we found that knocking
down wnd partially suppressed GMR4Egr-induced cell
death and JNK activation in eye discs (Figures 6a’–c’ and
a’’–c’’), and the small-eye phenotype in adults (Figures 6a–c).
This suppression was further confirmed in wnd mutants
(Figure 6d), suggesting Wnd also contributes to Egr-induced

cell death. However, inactivation of dTAK1 almost fully blocked
GMR4Egr-induced small-eye phenotype (Supplementary
Figure 1C), suggesting dTAK1 is the major MAPKKK in
Egr-induced JNK-dependent cell death. Furthermore, in
accordance with the role of Rac1 in regulating JNK-
mediated cell death, we found Rac1 is also required for
GMR4Egr-induced small eye and cell death (Supplementary
Figures 1B and E).
To investigate whether Wnd is required for Egr-induced cell

death in a nontissue-specific manner, we characterized the
genetic interaction between Wnd and Egr in the developing
wing. Expression of Egr driven by ptc-Gal4 triggers cell death
in the wing disc and generates a loss of anterior crossvein
(acv) phenotype in the adult wing, both of which were strongly
suppressed by loss of wnd (Figures 6g–l, g’–i’ and s).
Furthermore, ptc4Egr-induced puc-LacZ expression in the
wing disc was also suppressed by depletion of wnd
(Figures 6m–o). Together, these results demonstrate that
Wnd is required for Egr-induced JNK activation and cell death
in wing development.
Furthermore, expression of Wnd driven by ptc-Gal4

recapitulates the loss-of-acv phenotype of ptc4Egr

Figure 5 Wnd acts through MKK4 and Hep to induce JNK-dependent cell death. (a–h) Fluorescence micrographs of Drosophila eye discs (a–h) and light micrographs of
adult eyes (a’–h’) are shown. Compared with the control (a), Wnd-induced cell death and small-eye phenotype (b) could be strongly suppressed by loss of hep (c and d) ormkk4
(e and f), or expression of BskDN (g) or Puc (h). (i–l) Light micrographs of Drosophila eye disc are shown. Wnd-induced puc-LacZ expression (i) was impeded by loss of hep (j) or
mkk4 (k), or expression of BskDN (l)
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(Figures 6p, p’ and s). As ptc4Wnd results in lethality at larva
stage, we used tub-Gal80ts expressing a temperature-
sensitive form of the Gal4 inhibitor Gal80 (Gal80ts) to block
Gal4 activity at low temperature (18 °C), and to unchain the
inhibition at high temperature (29 °C).39 Interestingly,
ptc4Wnd-induced loss-of-acv phenotype was fully sup-
pressed by inactivation of JNK (Figures 6q, q’ and s), but
remained unaffected by expression of p35 that blocks
caspase’s activity (Figures 6r, r’ and s). These data are
consistent with our previous report that JNK signaling induces
caspase-independent cell death.27

Wnd acts in parallel with dTAK1 in the TNF–JNK
signaling pathway. The above results suggest that Wnd
may act as a novel component in the TNF–JNK signaling

pathway. To further genetically map Wnd in this pathway, we
performed epistasis analysis between Wnd and dTAK1 or
Hep. Consistent with previous data, expression of a
constitutive activated form of Hep (HepCA) in the developing
eye under GMR promoter induced JNK-mediated cell death
and resulted in a small-eye phenotype (Figure 7a).27,32 This
phenotype could not be suppressed by loss of Wnd
(Figure 7b), consistent with our genetic data that Hep is
required for Wnd-induced cell death (Figures 5c and d).
Furthermore, we found dTAK1-triggered rough-eye pheno-
type (Figure 7d)34 remained unaffected by the loss of Wnd
(Figure 7e). Conversely, blocking dTAK1 activity could not
suppress Wnd-induced small-eye phenotype as well
(Figures 7g and h). As a positive control, the eye phenotype
induced by ectopic expression of HepCA, dTAK1 or Wnd was

Figure 6 Wnd regulates Egr-induced cell death and JNK activation. (a–f) Compared with the GMR-Gal4 control (a–a”), Egr-induced small-eye phenotype (b), cell death (b’)
and puc-LacZ expression (b’’) were suppressed partially by knocking down wnd (c–c’’). The GMR4Egr small-eye phenotype was suppressed partially in wnd mutants
(d, wnd1/wnd3), but near fully in hemizygous hep (e, hep1/Y) or heterozygousmkk4 (f,mkk4G673/+) mutants. (g–o) Compared with the ptc-Gal4 control (g, j andm), Egr-triggered
cell death (k) and JNK activation (n) in wing discs and the loss of anterior crossvein in adult wings (h and h’) were suppressed by knocking down wnd (i, i’, l and o). (p–r) Wnd-
induced loss of anterior crossvein phenotype (p and p’) was completely suppressed by the expression of BskDN (q and q’), but not that of p35 (r and r’). (s) Quantification data of
loss of anterior crossvein phenotype in (g’, h’, i’, p’, q’ and r’)

Wnd regulates JNK activation and cell death
X Ma et al

5

Cell Death and Disease



significantly suppressed by a mutation in one copy of
endogenous bsk (Figures 7c, f and i; Supplementary Figure 3).
Together, these results indicate that Wnd acts in parallel with
dTAK1 in regulating JNK-mediated cell death.

Wnd is required for Rho1-induced cell death. Apart from
Rac1, another Rho GTPase family member Rho1 has been
implicated in cell death and neurodegeneration.18,40 In
accordance with these findings, we found ectopic Rho1
expression driven by GMR-Gal4 resulted in increased cell
death and JNK activation in third instar eye discs and
produced a small rough-eye phenotype in adults (Figures 8b–b’’).
These phenotypes were suppressed by knocking down wnd
(Figures 8c–c’’), suggesting Wnd is also required for Rho1-
induced JNK activation and cell death. Intriguingly, loss of
wnd fully suppressed Rho1-induced JNK activation, cell
death and reduced eye size, but not the rough-eye phenotype
(Figures 8c–c’’), suggesting Rho1-induced eye roughness is
likely independent of JNK signaling. Consistent with this
explanation, blocking JNK activity by knocking down hep or
mkk4, or expressing Puc, was able to suppress the reduced
size, but not the roughness, of GMR4Rho1 adult eyes
(Figures 8d–f).

Materials and Methods
Drosophila stocks and genetics. All stocks were raised on standard
Drosophila media and crosses were performed at 25 °C unless otherwise indicated.
For experiments involving tub-Gal80ts, flies were raised at 18 °C to restrict Gal4

activity for 5–6 days, then shifted to 29 °C for 2 days to inactivate Gal80ts. The
following stocks were used: GMR-Gal4, ptc-Gal4, sev-Gal4, UAS-GFP, UAS-Rac1
(6680), UAS-Rho1 (7334), UAS-LacZ (3956) and wndExel6135 (7614, EP line use for
overexpression), all obtained from the Bloomington Stock Center (Bloomington,
IN, USA), UAS-Rac1-IR (2248R-1)43 obtained from National Institute of Genetics
(NIG, Mishima, Japan), UAS-WndKD, wnd1, wnd3 (gifts from Aaron DiAntonio,
St. Louis, MO, USA), UAS-Ask1DN (gift from Masayuki Miura, Tokyo, Japan),
hep1, UAS-Egr, UAS-dTAK1, UAS-dTAK1DN, UAS-BskDN, UAS-hep-IR, UAS-Puc,
pucE69,44 bsk1,34 UAS-HepCA, dTAK11,27 UAS-wnd-IR,24 UAS-MKK4-IR,43

mkk4G673,37 UAS-slpr-IR18 and UAS-mekk1-IR,45 as previously described.

Immunostaining. Third instar larvae wing discs were fixed in freshly made 4%
paraformaldehyde for 15 min and washed 3 times with 1 × PBS, then stained using
rabbit anti-active Caspase 3 (1 : 200) (Cell Signaling Technology, Danvers, MA, USA).
Secondary antibody was anti-rabbit-Cy3 (1 : 1000, Jackson Immunochemicals,
West Grove, PA, USA).

X-gal staining. Eye and wing discs were dissected from third instar larvae in
PBST (1 × PBS pH 7.0, 0.1% Triton X-100) and stained for β-galactosidase activity.

AO staining. AO staining was done as previously described.33 Briefly, eye or
wing discs were dissected from late third instar larvae in PBST and incubated in
1 × 10− 5 M AO for 5 min at room temperature before imaging.

Conclusions

We have uncovered Wnd as a crucial regulator of JNK-mediated cell death in
Drosophila. Specifically, our genetic epistasis analysis established Wnd as a novel
cell death modulator downstream of Rac1, Egr, Rho1 and loss of scrib. Furthermore,
we show that Wnd is sufficient to induce JNK-dependent cell death through both
MKK4 and Hep, and this is different from previous mammalian study that DLK utilize
only MKK7 as its substrate.36 Our finding also clarifies the independent roles of Wnd

Figure 7 Wnd acts in parallel with dTAK1 in Egr–JNK pathway. Light micrographs
of Drosophila eyes are shown. The small-eye phenotype ofGMR4HepCA (a) and the
rough eye of sev4dTAK1 (d) was not suppressed by knocking down wnd (b and e),
but was significantly suppressed in heterozygous bsk mutants (c and f). Conversely,
GMR4Wnd-induced small-eye phenotype (g) was not affected by blocking dTAK1
activity (h), but was dramatically suppressed in heterozygous bsk mutants (i)

Figure 8 Wnd is required for Rho1-induced cell death and JNK activation.
Compared with the control (a–a’’), GMR4Rho1-triggered cell death (b’) and puc-
LacZ expression (b’’) in eye discs and small-eye phenotype (b) were significantly
suppressed by knocking down wnd (c–c’’). The GMR4Rho1 small-eye phenotype
was also suppressed by knocking down hep (d) or mkk4 (e), or expression of Puc (f)
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and the well-known JNKKK dTAK1 in regulating JNK-mediated cell death. Whereas
dTAK1 is required only for Egr- but not Rac1-triggered cell death, Wnd plays crucial
roles in both situations. Furthermore, Wnd and dTAK1 act in parallel to regulate JNK-
dependent cell death upstream of MKK4 and Hep. Besides the established role in cell
death, the Drosophila JNK pathway is also required for cell migration and tumor
metastasis.2,34,41 Consistent with this notion, loss of DLK, the mammalian ortholog of
Wnd, results in delayed radial migration of neuronal cells.42 Therefore, a potential role
of Wnd in regulating cell migration and tumor metastasis is worth further investigation.
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