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Abstract
Neutrophils have long been regarded as key effectors of the innate immune
response during acute inflammation. Recent evidence has revealed a greater
functional diversity for these cells than previously appreciated, expanding roles
for neutrophils in adaptive immunity and chronic pathologies. In this review, we
summarize some of the evolving paradigms in the neutrophil field and highlight
key advances that have contributed to our understanding of neutrophil behavior
and function . We examine the concept of neutrophil subsets andin vivo
polarization, we discuss novel immunomodulatory roles for neutrophils in
shaping the immune response, and, finally, we identify technical advances that
will further enhance our ability to track the function and fate of neutrophils.
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Introduction
Neutrophils are the predominant leukocyte population in human 
blood and are known as key first responders to sites of injury 
and infection. Their protection against invading pathogens has 
been well described with their ability to phagocytose combined 
with their production and release of reactive oxygen species,  
proteases, and extracellular traps1. Their role in aiding adap-
tive immunity is also expanding. Growing research in the field 
has highlighted roles for neutrophils in numerous inflammatory 
conditions including sterile injury2,3, cancer4, atherosclerosis5, and 
autoimmunity6,7. The concurrent improvement in the tools and 
techniques used to evaluate these cells within the in vivo setting has 
further expanded our view of their functions and has challenged  
existing dogmas within the field. This review aims to highlight 
some of these emerging concepts and technical advances that  
have enhanced our understanding of neutrophil function.

Breaking down neutrophil paradigms
Neutrophils are among the first cells to be recruited to an inflam-
matory site, where they help to neutralize harmful stimuli.  
Original studies in the rabbit and rat mesentery and the mouse 
cremaster muscle identified the key events in neutrophil recruit-
ment in post-capillary venules that included endothelial selectin-
dependent tethering and rolling that included rapid expression of 
P-selectin mediating early (within minutes) rolling and protein-
synthesis-dependent E-selectin expression mediating amplification  
of the rolling (within hours)8,9. Chemokines such as CXCL8, 
CXCL1, CXCL2, and CXCL3 as ligands for the CXCR2 receptor  
activate the neutrophils to adhere via CD11a/CD18 and then crawl 
to junctions via CD11b/CD18, where they emigrate via CD31 
JAMs and CD998,9. While this was initially thought to be the general 
scheme for neutrophil recruitment, it appears that this recruitment 
cascade may predominate in places like the muscle, skin, brain, and 
perhaps heart (although less is known about the latter). In direct con-
trast, selectins appear to be much less important in places like the 
liver and lung10,11 (P. Kubes and B. Yipp, unpublished observations). 
In addition, there is mounting evidence that while selectins may 
be important for neutrophil recruitment in the kidney12–14, platelets  
rather than the endothelium are the source of these adhesion mol-
ecules and the glomeruli capillaries are the site of adhesion15.  
Also, certain stimuli in the liver induce a CD44-dependent neu-
trophil adhesion while other stimuli make use of integrins2,16. In 
the lung, there is much evidence that neither integrins nor CD44 
are important for neutrophil adhesion in pulmonary capillaries11,17 
(P. Kubes and B. Yipp, unpublished observations). Clearly, the old 
textbook universal paradigm for leukocyte recruitment that invokes 
selectins and integrins is slowly changing.

Another important issue that has recently been debated is the  
lifespan of neutrophils. While these cells in humans were thought 
to be short lived (8–12 hours) for many years, recent work has 
suggested that these cells may live for up to 5 days in the circulation18.  
Some have challenged this latest concept, with a main criticism 
stating that the labeling technique utilized likely also labeled 
bone marrow neutrophils19,20. A shorter lifespan of 8–12 hours has 
also been noted in mice21,22. Casanova-Acebes et al. showed that 
neutrophils undergo aging in the circulation by increasing their  

expression of CXCR4 and reducing their expression of CD62L 
prior to their return to the bone marrow following a circadian pat-
tern22. Using adoptive transfer of newly emigrated neutrophils 
(CXCR4lo CD62Lhi), the authors noted a transition to an aged 
phenotype and subsequent removal from the circulation within  
8 hours22. Work from Zhang et al. has further demonstrated that 
the microbiome is involved in driving this aged phenotype, as they 
noted reductions in circulating aged neutrophils in germ-free and 
antibiotic-treated animals23. In addition to their circulation in the 
bloodstream, neutrophils can also enter some compartments such 
as the spleen and lung, forming marginated pools under steady-
state conditions24–26. These marginated neutrophils are noted to play 
homeostatic functions and have the ability to mobilize back into the 
circulation24,26,27. However, their residence time within these 
peripheral sites is still an area of uncertainty. This can be further  
confounded by the role of peripheral tissues in neutrophil homeos-
tasis. Uptake of apoptotic neutrophils in peripheral sites (e.g. the 
intestine, spleen, and lung) by macrophages and dendritic cells 
provides negative feedback signals for the IL-23/IL-17/G-CSF axis 
that regulates granulopoiesis28,29. The lifespan of neutrophils can be 
prolonged upon activation, which is thought to ensure the presence 
of primed neutrophils at the site of inflammation1,30. Recent work, 
primarily in zebrafish embryos, has noted that neutrophils could 
enter sites of sterile injury and then return back to the circulation 
(termed reverse transmigration)31–33. Although this has not been 
shown in mammalian cells, one group has shown that neutrophils 
could at least extend a pseudopod or even their whole body out of 
the vasculature before returning back into the circulation34. As such,  
reverse transmigration may represent a key mechanism to extend 
neutrophil lifespan in the context of inflammation.

Finally, until about 10 years ago, neutrophils were thought to  
catch and kill bacteria via opsonization, phagocytosis, and  
oxidant- and protease-dependent killing. In 2004, Zychlinsky and 
colleagues first demonstrated that neutrophils could, in a last-gasp 
effort to kill bacteria, release all of their cytotoxic molecules on 
a DNA backbone, forming what are now known as neutrophil  
extracellular traps (NETs)35. The adhesive nature of DNA 
combined with proteases on their surface helps NETs to catch 
and ultimately kill or at least immobilize various bacteria. This  
explains why DNAse is a virulence factor in numerous bacterial 
strains, as it helps their escape from NETs, and it also explains why 
histones are so potently anti-microbial.

A subsequent study, however, showed that NET production 
could lead to injury and raised the possibility that this could be 
a mechanism by which neutrophils contribute to inappropriate  
inflammatory situations36. In that study, a very clear collaboration 
of platelets binding to neutrophils was observed before NETs were 
produced, and the authors suggested that platelets function as a 
barometer for neutrophils to make NETs when bacteria and their 
products exceed a platelet-tolerable level. Since that publication, a 
very significant number of studies have begun to further show that 
platelets collaborate with neutrophils on many different aspects of 
their function including chemotaxis and recruitment in addition to  
bacterial killing37–42.
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Neutrophil heterogeneity and plasticity
The concept of neutrophil heterogeneity has emerged with 
accumulating evidence of neutrophil populations with distinct 
functions under both homeostatic and pathological conditions. 
Many strategies have been used to identify neutrophil populations, 
including distinct cell surface markers, cell maturity, function,  
and residency. Subsets of human circulating neutrophils have been 
identified under steady-state conditions based on their expression 
of CD177 or OLFM4 and linked them with autoimmunity43,44. 
It should be noted that there is considerable variability in 
CD177 expression within the population and it is not expressed 
by all individuals45. Pro-angiogenic neutrophils that are 
CD49d+VEGR1hiCXCR4hi are also present in low quantities in 
both mouse and human blood and are recruited in response to 
VEGF-A46,47. Aged neutrophils and neutrophils that have under-
gone reverse transmigration also display changes in their cell 
surface markers1,48. In addition to these examples, the preva-
lence of novel neutrophil populations has recently been identified 
during infection49–52, autoimmunity53, cancer54–56, cardiovascular 
disease57,58, and pregnancy59. Despite our advancement in the 
identification of different neutrophil populations, it is still not 
understood whether these examples are distinct neutrophil subsets 
that derive from separate lineages or simply represent activation or 
polarization states of a common plastic neutrophil precursor.

The cancer field in particular has struggled with these questions. 
The involvement of neutrophils has been linked to many steps of 
tumor progression, including initiation, growth, and metastasis for 
which the numerous mechanisms have been highlighted in recent 
reviews4,60,61. Contradictory roles for neutrophils in this disease 
setting have been established, with a large proportion of studies 
identifying pro-tumoral functions62–67 while others demonstrate 
anti-tumor properties68–72. Fridlender et al. first introduced the 
concept of N1/N2 polarization states in an effort to reconcile 
some of the opposing functions for tumor-associated neutrophils 
(TANs)54. Based on similarities in function to tumor-associated 
macrophages (TAMs), they termed these populations N1 and N2 to 
describe anti-tumor and pro-tumor neutrophil populations, respec-
tively. They provided the first evidence in vivo to demonstrate that 
TGF-β produced by the local tumor microenvironment could polar-
ize a mature neutrophil to adopt a pro-tumor N2 phenotype54. Since 
then, angiotensin-II, type I IFNs, and the proto-oncogene MET have 
also been shown to promote N2 or N1 polarization states68,73,74.

A similar neutrophil phenotypic duplicity has been identified in the 
blood of tumor-bearing mice and cancer patients based on sepa-
ration by density gradient55,75. In these samples, elevated levels of 
both immature and mature neutrophil populations were found in the 
low-density fraction, collectively termed low-density neutrophils 
(LDNs), in addition to the previously named tumor-entrained 
neutrophils (TENs) in the high-density layer, termed high-density 
neutrophils (HDNs). The HDN and LDN populations displayed 
anti-tumor and pro-tumor functions, respectively55. Using adop-
tive transfer approaches, Sagiv et al. demonstrated that HDNs 
could transition to mature LDNs both in tumor-bearing mice and 
during self-resolving peritonitis55. They also showed that, similar 
to the polarization of N2 neutrophils in the tumor microenviron-
ment, TGF-β is a key determinant for this conversion in blood55.  

A subsequent study by Guglietta et al. provided additional evi-
dence for this transition, which was driven by NET-induced blood 
clots in an intestinal cancer model75. Transcriptome evaluation 
in this study supported the idea that LDNs represent a transitory  
phenotype between HDNs and N2 TANs75. The similarities 
between the N1/N2 polarized neutrophils and circulating mature 
HDNs/LDNs have prompted a new nomenclature of N

C1
 and N

C2 
for 

these latter populations, respectively55. Although this nomenclature 
may help to distinguish between overall pro- and anti-tumor func-
tions, the lack of specific markers for these polarized states makes 
it difficult to evaluate distinct populations and the relationships that  
may exist between them.

The evaluation of neutrophils in cancer is further complicated by 
the inclusion of myeloid-derived suppressor cells (MDSCs), which 
are characterized as a heterogeneous population of CD11b+Gr-1+ 
myeloid cells at different stages of differentiation with immunosup-
pressive functions76,77. Subsequent analysis has described two popu-
lations, granulocytic MDSCs (G-MDSCs) and monocytic MDSCs 
(M-MDSCs), based on their expression of Ly6G and Ly6C76. The 
overlapping markers between G-MDSCs and TANs have made it 
difficult to distinguish between these populations; however, recent 
transcriptome analysis has noted differences between G-MDSCs 
and N2 TANs, suggesting that they are in fact distinct populations78. 
It is still unclear whether G-MDSCs represent a separate lineage 
of cells or a polarized immature neutrophil. Sagiv et al. have pro-
posed that G-MDSCs represent the immature LDN population55. 
Although some have postulated that G-MDSCs could potentially 
give rise to N2 or N

C2
, there is little evidence to support this con-

cept. Furthermore, an immature phenotype in the cancer setting 
may also not be limited to G-MDSCs and their immunosuppressive  
function. Singhal et al. recently reported that immature neutrophils 
contribute to a hybrid antigen-presenting neutrophil found in 
early lesions in humans56. They demonstrated that only immature 
neutrophil populations and not mature neutrophils could differ-
entiate into this anti-tumor phenotype in response to low levels of 
GM-CSF and IFN-γ, as encountered in the tumor microenviron-
ment56. Further, by simply increasing the levels of IFN-γ, they 
also noted the generation of hybrid neutrophils with immunosup-
pressive functions56. A similar hybrid phenotype was also noted 
in a separate study when immature neutrophils were exposed to 
only GM-CSF79. This highlights the innate plasticity of immature 
neutrophils with their ability to integrate multiple signals to drive 
their phenotype. Importantly, it also supports the concept that 
polarization does not have to be unidirectional and that it can lead 
to the acquisition of multiple functions simultaneously.

These polarization schemes have also been adopted in other inflam-
matory pathologies. Cuartero et al. demonstrated the identification  
of an N2 subset in the injured brain following stroke57. In this 
model, PPAR-gamma agonist-mediated protection was dependent 
on neutrophils and coincided with an increase in the proportion of 
N2 neutrophils57. Recently, a temporal polarization of N1 to N2 
neutrophils in the heart following myocardial infarction was also 
noted58. These studies support the expanded view that N2 can also 
contribute to resolution and tissue repair. LDN fractions have also 
been noted in patients with systemic lupus erythematosus; however, 
in this context, they displayed a pro-inflammatory phenotype53. 

Page 4 of 10

F1000Research 2016, 5(F1000 Faculty Rev):2912 Last updated: 23 DEC 2016



These examples highlight that the current N1/N2 and HDN/LDN 
(N

C1
/N

C2
, G-MDSCs) nomenclature is likely an oversimplification 

and does not capture the spectrum of phenotypes that are likely 
present both at the inflammatory site and in the circulation under 
different pathological conditions. Similar issues with the M1/M2 
model in the macrophage field have prompted reevaluation and the 
conceptualization of new nomenclature and polarization models80,81. 
These may serve as appropriate templates for defining polarization 
in neutrophils, which will be important given the constant identifi-
cation of neutrophil populations with novel functions.

Immunomodulation by neutrophils
It is well established that neutrophils are rapidly recruited to sites 
of inflammation where they are able to eliminate harmful stimuli 
through direct mechanisms1. Recent findings have identified new 
strategies by which neutrophils also contribute to the progression of 
the immune responses by modulating the function of other compo-
nents of the innate and adaptive immune systems.

Neutrophils drive the amplification of the inflammatory response 
through the release of chemokines and granule proteins, which 
contribute to the recruitment of additional neutrophils, monocytes, 
dendritic cells, and lymphocytes. Indeed, neutrophils, through the 
release of CCL3, recruit dendritic cells while neutrophil-derived 
CRAMP induces monocyte recruitment82,83. However, it is worth 
mentioning that monocyte recruitment can occur independently of 
neutrophil-derived cues, as depletion of neutrophils in a liver ster-
ile injury model did not influence the accumulation of monocytes 
at the inflammatory site84. New evidence has extended this guid-
ance function for neutrophils to the recruitment of lymphocytes. 
Lim et al. showed that in response to influenza infection in mice, 
neutrophils that migrate to the infection site deposit membranous 
trails in the interstitial tissue containing the chemokine CXCL12 
to serve as a chemokine map for migrating CD8+ T cells85. The 
blockade of this mechanism resulted in worse outcomes to the 
infection85. A recent study identifies a similar guidance role for 
neutrophils in iNKT cell recruitment out of the lung86. In response 
to Streptococcus pneumoniae infection, iNKT migration out of the 
vasculature and subsequent activation in the interstitial space was 
dependent on prior transmigration of neutrophils. This mechanism 
was mediated by neutrophil release of CCL17, and blocking this 
signal disrupted iNKT localization and activation and increased 
susceptibility to S. pneumoniae infection86. In fact, simply using 
the neutrophil chemokine CXCL1 to elicit neutrophil migration out 
of the pulmonary vasculature also induced iNKT cell emigration. 
Another intravital imaging study in skin elegantly delineates how 
neutrophils have the capacity to modulate the behavior of other 
neutrophils locally. Using a sterile injury model, Lammermann 
et al. demonstrated that select neutrophils localize to the sterile 
injury site, undergo cell death, and release leukotriene B4 (LTB4) 
to initiate swarming of neutrophils in the area to the site of injury3. 
As such, these leading neutrophils serve as a beacon of sorts to 
locally amplify neutrophil recruitment to the injury more precisely. 
This mechanism is also observed during infection3. This new 
evidence highlights the important role that neutrophils play in 
shaping the type of immune response locally at the site of  
inflammation.

In addition to this guiding mechanism, neutrophils can also play 
an immunomodulatory role by priming or activating immune cells 
to promote an effector function. Different neutrophil populations 
have the ability to promote or suppress T cell activation and sub-
sequent proliferation in vitro52,55. In vivo studies further note the 
capacity of neutrophils to transport antigen to the lymph node and 
bone marrow87,88 and promote direct or indirect cross-presentation 
of antigen to T cells88,89. Recently, Hampton et al. combined the use 
of a photoconvertible mouse system with intravital microscopy to 
accurately track the fate of neutrophils following Staphylococcus 
aureus skin infection90. Using this platform, they clearly demon-
strated that neutrophils recruited in response to skin infection can 
than egress to the draining lymph and drive both CD4 and CD8 
T cell responses90. Alternatively, recent evidence has also demon-
strated a T-cell-suppressive function for neutrophils, particularly 
in the context of cancer. Using a lung cancer model, Coffelt et al. 
demonstrated that neutrophils recruited to the pre-metastatic niche 
inhibit CD8+ T cell activity via an iNOS-dependent mechanism to 
promote tumor metastasis62.

Neutrophils are equally important determinants of humoral 
responses. A subset of neutrophils, termed B-helper neutrophils, 
found within the perifollicular zone of human spleens have the 
capacity to induce T-independent antibody production by marginal 
zone B (MZB) cells in vitro, possibly via the production of  
B-cell-stimulating factors (e.g. BAFF, APRIL, and IL-21)26. This 
observation has been recently extended in vivo to mice, where 
Chorny et al. recently demonstrated that pentraxin 3 (PTX3) 
produced by B-helper neutrophils contributes to this MZB cell 
activation27. This function is likely due to spleen-specific polari-
zation of neutrophils, as circulating neutrophils from patients 
could not initiate the same response26. In fact, innate lymphoid 
cells and endothelial cells within the spleen are believed to at least 
partly drive the generation of this B-helper neutrophil subset via 
GM-CSF- and IL-10-mediated mechanisms26,91. Furthermore, 
neutropenic patients also display reduced levels of antibodies to 
T-independent antigen26. Conversely, Kamenyeva et al. demon-
strated that neutrophils recruited to the lymph following immu-
nization or infection of the skin suppress antibody production by 
follicular B cells92. They showed by intravital microscopy that, 
upon entry into the lymph node from the circulation, neutrophils 
form long-term interactions with both B cells and plasma cells 
and block their ability to make antibodies through the secretion of 
TGF-β92.

Neutrophil-mediated priming can also induce effector maturation 
of macrophages in vivo. Using a parasitic infection model, Chen 
et al. showed that neutrophils within infected animals entrained 
long-term alternative macrophage polarization that was crucial 
to the clearance of the parasite49. They proposed that neutrophils 
mediate this regulation through the release of IL-1349. More 
recently, Warnatsch et al. identified a novel role for NETs in priming 
macrophage inflammasome activity, which when given in combi-
nation with cholesterol crystals led to the production of IL-1β93. 
They proposed that the release of this cytokine led to the recruit-
ment of Th17 cells and this in turn promoted further recruitment of 
neutrophils, perpetuating a chronic inflammatory cycle within the 
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atherosclerotic lesion. Importantly, the use of NET-deficient ani-
mals or their breakdown by DNase treatment resulted in reduced 
atherosclerotic plaque development and inflammatory status within 
the vascular wall93. In contrast, NET production in gout patients 
resulted in the sequestration of cytokines and the resolution of 
inflammation in this acute inflammatory condition. These newly 
described mechanisms could have important applications in other 
Th2 (e.g. allergies) and chronic inflammatory (e.g. rheumatoid 
arthritis) settings, respectively.

Technical advances and future directions
Novel technologies have been created or applied in the last few 
years to enhance our ability to track and characterize neutrophils in 
the in vivo setting. Until recently, non-specific reporter mice includ-
ing the LyzM mouse that reported on myeloid cells and the GR-1 
antibody that reported on myeloid cells at low concentrations and 
depleted both neutrophils and monocytes at higher concentrations 
left ambiguous conclusions in the neutrophil field. The development 
of the neutrophil-specific “Catchup” reporter mouse has been long 
overdue and an important advancement in the field. To achieve this, 
Hasenberg et al. created a cre-based reporter system that is driven 
by the Ly6G promoter and paired with the dtTomato reporter94. 
This provided an upgrade for intravital imaging users over the 
much-utilized LysM-GFP reporter mouse, as it does not label both 
monocytes and macrophages. These authors demonstrated that 
disrupting both Ly6G alleles did not result in any apparent 
defects in an exhaustive number of different models. This work 
gives credence to results using the Ly6G antibody as a neutrophil 
lineage-specific reagent that can selectively deplete this cell type. 
Just as important, this work points to the possibility of generating 
conditional neutrophil-specific knockout animals using the Ly6G 
cre recombinase, complementing the recently described approach 
using the Mrp8-promoter-driven cre recombinase system for 
specific deletion of Card9 and MET68,95.

Photoconversion of neutrophils in situ, as demonstrated by 
Hampton et al.90, provides a powerful tool in evaluating the fate 
of neutrophils at the site of inflammation. This technique has 
also been employed to study reverse transmigration back into the 
circulation in zebrafish33. It should be mentioned that these 
examples use preparations that are easily accessible and/or 
transparent, thus optimal for light penetration and activation. The 
challenge will be to apply this approach to organs in mice that lack 
the same transparent properties. Morton et al. demonstrated the 
effectiveness of an endoscopic approach for the activation and 
tracking of lymphocytes in the gut96. Furthermore, increasing the 
precision of this platform with the use of photoconvertible and 
photoactivatable reporters driven by a neutrophil-specific promoter 
(e.g. Ly6Gcre) would enhance our ability to track neutrophils by 
intravital microscopy. Another issue in the neutrophil field is that 
sterile injury of any kind induces neutrophil recruitment, and so 
preparations without the need for invasive surgery would certainly 
benefit the field. The use of a cranial or abdominal chronic 
window could serve as a solution for longer-term tracking in the 
brain, liver, spleen, and kidney97,98. However, the recent observations 

that peritoneal macrophages invade visceral organs directly from 
the peritoneum99 could be affected by immobilizing a window on 
the tissue.

In order to better understand the dynamics of neutrophil het-
erogeneity, in-depth profiling of these cells both temporally and  
spatially will be important. The recently developed platforms of 
mass cytometry, histo-cytometry, and next-generation sequenc-
ing (e.g. ChIP-seq, ATAC-seq, and RNA-seq) may prove to be 
useful in this regard. Mass cytometry, which labels cells with the 
use of heavy metal conjugated antibodies and subsequently runs 
them through a mass spectrometer, removes the requirement for 
compensation and as such can accommodate larger antibody panel 
sizes than conventional flow cytometry systems. Becher et al. have 
recently used a 38-marker panel to characterize the mouse myeloid 
compartment and demonstrated the ability to identify five differ-
ent neutrophil populations100. However, whether this was simply 
a reflection of different ages of neutrophils or different environ-
mental modulations of the same cell remains to be determined. 
Histo-cytometry combines immunohistochemistry with cytometry 
software in order to spatially display different cell subsets within a 
given tissue. This technology has recently been used to distinguish 
the different dendritic cell populations in the lymph node101. Next-
generation sequencing uses high-throughput platforms that can 
provide information regarding cell-specific transcriptome and gene 
regulation profiles. Combinations of these platforms, including  
single-cell sequencing approaches, have recently been employed to 
characterize myeloid progenitor and myeloid populations includ-
ing neutrophils, defining signatures for different subsets62,102–104. 
Collectively, these techniques could provide additional context to 
functional differences between neutrophil subsets within a particu-
lar inflammatory setting, such as N1 and N2 neutrophils within the 
tumor microenvironment.

Neutrophils are now known to play important roles in many 
pathologies, including cancer, cardiovascular disease, and autoim-
munity. This knowledge, combined with the emergence of novel 
immunomodulatory functions and phenotypes for neutrophils, has 
helped to re-invigorate interest in the field. Targeting the mecha-
nisms that regulate these functions has proven to be a promising 
therapeutic approach in numerous experimental settings. The key 
challenge moving forward is integrating these concepts within the 
human context.
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