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Abstract

Telomeres are nucleotide sequences located at the ends of chromosomes that promote

genome stability. Changes in telomere length (dynamics) are related to fitness or life expec-

tancy, and telomere dynamics during the development phase are likely to be affected by

growth and stress factors. Here, we examined telomere dynamics of black-tailed gull chicks

(Larus crassirostris) in nests with and without siblings. We found that the initial telomere

lengths of singletons at hatching were longer than those of siblings, indicating that single-

tons are higher-quality chicks than siblings in terms of telomere length. Other factors likely

affecting individual quality (i.e., sex, laying date, laying order of eggs, and clutch size) were

not related to telomere lengths. Within broods, initial telomere lengths were longer in older

chicks than in younger chicks, suggesting that maternal effects, which vary with laying

sequence, influence the initial lengths. Additionally, telomeres of chicks with a sibling

showed more attrition between hatching and fledging than those of singleton chicks, sug-

gesting that being raised with siblings can cause a sustained competitive environment that

leads to telomere loss. High growth rates were associated with a low degree of telomere

shortening observed in older siblings, perhaps because slower growth reflects higher food

stress and/or higher aerobic metabolism from increased begging effort. Our results show

that developmental telomere attrition was an inevitable consequence in two-chick nests in

the pre- and post-hatching microenvironments due to the combination of social stress within

the nest and maternal effects. The results of our study shed light on telomere dynamics in

early life, which may represent an important physiological undercurrent of life-history traits.

Introduction

Telomeres are nucleotide sequences located at the ends of chromosomes; they promote

genome stability and shorten with each cycle of cell division in the absence of restoration [1].

In addition, telomeres are shortened by oxidative damage due to physiological and psychologi-

cal stresses [2,3] and can be lengthened via the enzyme telomerase [4]. Telomere length

appears to change most drastically during periods of growth and/or before sexual maturation
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when resources need to be allocated between different functions, as reported in several studies

(e.g., in young Homo sapiens [5], medaka Oryzias latipes [6], European shag Phalacrocorax
aristotelis, wandering albatross Diomedea exulans [7], and black-tailed gull Larus crassirostris
[8]). For instance, in barnacle geese (Branta leucopsis), the rate of telomere shortening during

a 2-year period in juveniles was greater than that in adults [9]. Because telomere length and

change in telomere length (dynamics) are suggested to be related to fitness or life-expectancy

in animals [10–13], telomere dynamics in early life can potentially affect survival and fitness

similarly to, or to a greater degree, than at adulthood. For example, Western jackdaw (Corvus
monedula) nestlings that experienced greater telomere attrition during the growth period had

lower survival rate in later life [14]. Thus, it is important to examine how telomeres of young

animals change throughout the growth period in order to understand the evolution of life-

history traits such as lifespan and growth.

The factors governing telomere dynamics in the developmental phase of young individuals

are as follows: increased cell division [7,15], high telomerase activity [16], and enhanced oxida-

tive stress levels [17–19]. These three mechanisms probably interact and their effects on telo-

mere length in young animals need to be carefully dissected [7,8,20].

Several ecological factors affecting telomere dynamics during the early period of life via

these causal mechanisms are considered important. First, elevated growth rates lead to

increased aerobic metabolism, which leads to the production of reactive oxygen species and

oxidative stress [21,22]. For instance, Geiger et al. [23] reported that excessive catch-up or

compensatory growth induced higher oxidative damage and extensive telomere shortening in

later-born chicks of king penguins (Aptenodytes patagonicus). Alternatively, slower growth

may be related to a high level of food stress and/or a lower level of telomerase activity [24],

which can produce the opposite effect [25].

Secondly, sibling competition, which is often observed in birds [26,27] and mammals [28],

may increase the metabolic rate of the young, which in turn, can affect telomere dynamics.

Intense begging behavior in yellow-legged gull chicks (Larus michahellis) was associated with

lower nutritional condition and higher oxidative stress [29]. Therefore, additional siblings are

expected to decrease nutrition per chick and increase the cost of begging for food. This process

may be exacerbated by hatching asynchrony, which creates competitive asymmetry within

broods [30]. In the European starling (Sturnus vulgaris), experimental manipulation of nestling

competitive hierarchies indicated that more advantaged siblings experienced less telomere

shortening than disadvantaged nestlings [31,32]. Similarly, in free-living jackdaws, increased

brood size led to decreased fledging mass and telomere length compared to brood-size reduc-

tion [14]. Previous studies examined species that naturally have large brood sizes (e.g., 4–5 in

jackdaw [14] and starling [31,32]) in which the hierarchy in a nest is changed or the brood size

is reduced to two or more. However, it is difficult to manipulate and quantify the level of com-

petition among chicks in brood manipulation experiments, because social interaction is com-

plicated in large families and the relationship between brood size and competition is not

straightforward [33–36]. To dissect the effect of growth and sibling competition, physiological

comparisons between chicks with zero competition (i.e., singleton chicks) and chicks with

competition between siblings, while taking differences in growth rate into account, may shed

light on the effects of competition on telomere dynamics.

In this study, we investigated how growth and competition are related to telomere dynam-

ics during the nestling period of a long-lived seabird, the black-tailed gull, by comparing telo-

mere lengths among chicks with different growth rates and brood sizes (i.e., naturally

occurring broods of one or two; [37]). We also considered other factors that are likely to affect

individual quality (i.e., sex, laying date, laying order of eggs, and clutch size). We examined the

following hypotheses: (1) whether telomere lengths are different at hatching and at fledging
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between singleton chicks and chicks with a sibling; (2) whether chicks with a higher growth

rate show more telomere shortening or lengthening; and (3) whether sibling rivalry promotes

telomere shortening in two-chick nests during the first month of life.

Materials and Methods

Ethics statement

The procedures used in this study adhered to the guidelines of the Animal Experimental Com-

mittee of Nagoya University. The protocols followed for the survey and to capture chicks at

Kabushima Island, a national natural monument, were approved by the Agency for Cultural

Affairs, Japan (permit number 21-4-1047) and the Aomori Prefectural Government (permit

number 4–2010).

Fieldwork

Fieldwork was conducted from the middle of April to July 2010 during the chick-rearing

period of the black-tailed gull following an incubation period of about 25 days [37] on Kabush-

ima Island, Japan (40˚32018 N, 141˚33027 E). We recorded the number of eggs, laying date,

hatching order, and number of chicks in the nest, and checked the nests every day from pre-

laying to hatching. We confirmed that the hatching order was the same as the laying order.

Chicks were individually marked with colored plastic rings on their leg.

We measured the body mass (BM), bill depth, head length, tarsus length, and natural wing

length, and sampled blood from 41 chicks from 27 nests. There were 13 singletons and 14

nests containing two chicks. Younger siblings hatched 0–3 days (median 1 day) after the older

sibling hatched. The original clutch sizes were not different between one-chick and two-chick

nests (t = 0.065, p = 0.95, t-test). In one-chick nests, the clutch size varied from one (n = 1) to

three (n = 3), but most nests (n = 9) contained two eggs. The singletons hatched from the first

(n = 8), the second (n = 4), and the third (n = 1) eggs. In the two-chick nests, the clutch size

was two, except for two nests (clutch size of three), and older chicks hatched from the first eggs

and the younger chicks hatched from the second eggs.

We checked each nest every 5 days following hatching of the singleton or the younger sibling

and measured BM and external measurements of all chicks in the nest. We used BM and exter-

nal measurements taken at the closest age point for older siblings. We collected blood from the

chicks at 1 and 30 days of age. Each nest was enclosed within fences sufficiently large for breed-

ing territories to prevent any interference from neighbors, who sometimes intrude and attack

chicks [38]. We analyzed data from nests in which brood size did not change from hatching to

fledging. Therefore, the fledge size (the number of chicks fledged) was equal to the brood size.

DNA sampling and telomere measurements

Blood samples (15–30 μl) were collected by puncturing the brachial vein when chicks were 1-

and 30-days old. Immediately after collection blood samples were stored in a stock solution

prepared by mixing 180 μl of PBS with 20 μl Proteinase K (Qiagen) at room temperature, with

no direct sunlight until laboratory analysis. Genomic DNA was extracted from whole-blood

samples using a DNeasy Blood and Tissue Kit (Qiagen) and terminal restriction fragments

were analyzed by Southern blotting and DNA hybridization with non-radioactive DNA probes

following the method described by Mizutani et al. [39]. We analyzed telomere length using

TELOMETRIC (ver. 1.2 [40]). We electrophoresed the same individual samples (i.e., 1-day

and 30-days old chicks) in the same gel to avoid differences in color distorting the measure-

ments of within-individual changes.
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Chromosomal distributions of telomeric repeats vary according to bird species [41]. If telo-

meric sequences are found in the pericentric regions of chromosomes (interstitial telomeres),

it could lead to inaccurate measurements of telomere length. Before measuring telomere

length, we confirmed that black-tailed gulls did not have interstitial telomeric sequences on

chromosomes using fluorescence in situ hybridization in cultured fibroblasts (Y. Mizutani,

unpublished data). Therefore, it was not necessary to consider the effect of interstitial telo-

meric sequences in this study. Sex was determined using a PCR-based method [42].

Statistical analysis

We defined the telomere length of 1-day-old chicks as the initial telomere length (ITL), and telo-

mere length of 30-day-old chicks as the final telomere length (FTL). Change in telomere length

(CTL) was defined as the FTL minus the ITL, with more negative values indicating a higher

degree of telomere shortening during the nestling period. All statistical analyses were conducted

using R version 3.2.4 [43]. Mean values are presented with ± 1 standard deviation (SD).

We used linear mixed models fitted by maximum likelihood estimations using the R pack-

age lme4 [44] to examine which factors affected ITL and CTL. The dependent variables were

normally distributed (ITL: p = 0.51; CTL: p = 0.12, Kolmogorov–Smirnov tests). Nest identity

was set as a random factor in the linear mixed models. We selected the most parsimonious

model among all possible candidate models based on Akaike’s information criterion corrected

for small sample size (AICc). The best model is the one that minimizes the value of AICc.

Residual plots and normal probability plots were used to visually check for deviations from

normality among residuals in the best model. We calculated marginal (R2m) and conditional

R2 (R2c) values to evaluate the goodness of fit for the best model [45].

First, we examined which factors affected the ITL of chicks. We entered sex, laying date, lay-

ing order nested in clutch size, and sibling order nested in brood size, and their interactions, as

independent variables, possible parameters affecting individual quality at hatching, in the full

model. Secondly, we examined whether CTL was dependent on sex, “mass gain”, “size gain”,

sibling order nested in brood size, and their interactions. We distinguished statural growth

(temporal variation in body size) and mass gain (temporal variation in body mass) [46,47].

The mass gain was defined as the BM at 20 days of age minus the BM at 5 days of age, during

which the BM increased linearly from approximately 100 to 500 g [37,48]. We conducted a

principal components analysis (PCA) to obtain a composite body-size index for chicks by

incorporating four measurements taken at hatching and fledging: bill depth, head length, tar-

sus length, and natural wing length. We did not include BM in the PCA of individuals, because

BM varies with the timing of feedings, which occur at random during the day. We used the

first PC (PC1) score as body size in the analysis. The PC1 score explained 58.0% and 67.4% of

the variation in the measurements at hatching and fledging, respectively. We calculated the

PC1 scores of size gain, in which measurements from 5- and 20-day-old chicks were pooled.

The PC1 score explained 97.1% of the variation. The body-size gain was defined as the body

size at 20 days of age minus that at 5 days of age. We compared BM and body size at hatching

and fledging among singletons, older siblings, and younger siblings using ANOVAs. These

variables were normally distributed (BM at hatching: p = 0.97; BM at fledging: p = 0.79, body

size at hatching: p = 0.96; body size at fledging: p = 0.90, Kolmogorov–Smirnov tests).

Results

We obtained telomere lengths from 41 chicks (16 males and 25 females). ITL for all chicks was

9.62 ± 1.40 kb (singletons: 10.70 ± 0.71 kb, older siblings: 9.32 ± 1.39 kb, younger siblings:

8.92 ± 1.36 kb; Fig 1). FTL for all chicks was 8.78 ± 1.94 kb (singletons: 10.67 ± 0.89 kb,
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Fig 1. Telomere length of chicks at hatching and fledging. The red circles and boxes represent single chicks. The green triangles and boxes and

blue squares and boxes represent older and younger siblings, respectively. In the scatter plot, the line between a triangle and a square connects

siblings from the same nest. The dotted line represents equality of the telomere lengths: in which chicks over the line experienced telomere lengthening

from hatching to fledging, whereas chicks below the line experienced telomere attrition. The siblings had shorter telomere length at hatching and

fledging and experienced more drastic telomere attrition than singletons during the nestling period.

doi:10.1371/journal.pone.0167261.g001
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older siblings: 7.90 ± 1.83 kb, younger siblings: 7.92 ± 1.52 kb; Fig 1). CTL for all chicks was –

0.84 ± 1.50 kb (singletons: –0.03 ± 0.80 kb, older siblings: –1.42 ± 1.99 kb, younger siblings: –

1.00 ± 1.16 kb).

Hatching BM for all chicks was 43.20 ± 5.11 g (singletons: 43.5 ± 7.03 g; older siblings:

44.3 ± 3.62 g; younger siblings: 41.8 ± 4.21 g; Fig 2a). Fledging BM for all chicks was

511.15 ± 68.71 g (singletons: 514.9 ± 79.04 g; older siblings: 518.5 ± 57.46 g; younger siblings:

500.3 ± 72.50 g; Fig 2b). PC1 scores at hatching in singletons, older siblings, and younger sib-

lings were 0.09 ± 1.76, 0.08 ± 1.11, and –0.17 ± 1.73, respectively (Fig 2c), whereas those at

fledging in singletons, older siblings, and younger siblings were 0.21 ± 1.72, 0.20 ± 1.72, and –

0.40 ± 1.54, respectively (Fig 2d). BM and body size at hatching and fledging showed no

significant difference among the three groups (BM at hatching: F2, 38 = 0.92, p = 0.41; BM at

fledging: F2, 38 = 0.26, p = 0.77, body size at hatching: F2, 38 = 0.13, p = 0.88; body size at fledg-

ing: F2, 38 = 0.60, p = 0.56; Fig 2).

For ITL, the best model included brood size and the interaction between brood size and sib-

ling order (Table 1) with R2m of 0.327 and R2c of 0.867. The best model indicated that single-

tons had a longer ITL than siblings, and younger siblings had a shorter ITL than older sibling

(Table 1).

For CTL, the best model included mass gain, brood size, and interactions among brood

size, mass gain, and sibling order (Table 2) with R2m of 0.474 and R2c of 0.534. The best model

indicated that the CTL was larger in singletons than in siblings. This model did not show a sig-

nificant relationship between the mass gain and CTL for all chicks, but the slope was steeper

for siblings than for singletons (Table 2; Fig 3). Moreover, the CTL of younger siblings was

larger than that of older siblings and the slope of the CTL on the mass gain was steeper for

older siblings than for younger siblings (Table 2; Fig 3).

Discussion

In this study, we found that singleton had already longer telomeres at hatching than chicks

from two-chick broods. Singletons were therefore considered chicks of relatively high quality

than siblings in terms of telomere length, although ITL was not related to factors that are likely

to affect individual quality, i.e., sex, laying date, laying order of eggs, and clutch size. Assuming

that telomere length is partly heritable [49] (maternally inherited in birds [50,51]), a large ITL

was expected in dead chicks hatched in nests where only a single chick survived. However, the

mortality rate in one-chick nests was higher (53.6%) than that in two-chick nests (6.7%); there-

fore, the cause of egg death may not be related to telomere length.

The high mortality rate observed in one-chick nests could lead to the expectation that inex-

perienced young parents rear singletons and have long telomeres. However, young birds do

not necessarily have a small brood size (Y. Mizutani, unpublished data) nor long telomeres

[8,39]. Furthermore, in European shag, the parental age ranged from 2 to 22 years and did not

influence the ITL of the chicks [52].

Alternatively, singleton chicks (eggs) might lose competition with siblings following the

death of its/their sibling(s) at some point during the incubation period. Eggs in a nest may

communicate and compete with each other using vibrations or volatile chemicals [53]. These

egg-egg interactions may accelerate decrease of ITL in siblings rather than in singletons under

non-competition conditions. Another hypothesis is that mothers may transfer more antioxi-

dants in eggs of singleton broods than in eggs of sibling broods, which results in higher antiox-

idant defenses and longer telomeres in singletons than in siblings. Such differential

antioxidant allocation between eggs has already been described in several bird species [54–57].

Growth, Competition and Telomere Change
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Fig 2. Body mass and body size index (PC1 score). Body mass at hatching (a) and fledging (b), body

size index at hatching (c) and fledging (d). The red boxes represent singleton chicks, and the green and

blue boxes represent siblings: the left corresponds to older chicks and the right corresponds to younger

chicks.

doi:10.1371/journal.pone.0167261.g002
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Younger siblings exhibited shorter telomere length at hatching than older siblings. Female

parents increase the testosterone concentration or adjust other components of later-laid eggs

to mitigate or enhance sibling competition after hatching (i.e., maternal effect [58]), which

may also affect telomere length. We showed that the telomere length of younger siblings at

hatching tended to be shorter than that of the older sibling. In this species, the testosterone

concentration in yolk increases with laying order [59], which has also been reported in several

other gull species [56,60,61]. Early exposure to steroid hormones induces oxidative stress [62]

and accelerates telomere attrition in embryos [63], implying that maternal hormones in eggs

have negative effects on the ITL of offspring.

Telomeres of chicks with siblings showed more attrition between hatching and fledging

than those of singleton chicks did, suggesting that interactions between siblings, probably of a

competitive nature, affected telomere dynamics. Being raised with siblings can cause a sus-

tained competitive environment, which elevates aerobic metabolism and stress hormone levels

(corticosterone) to a higher level in siblings than in singletons. This is observed in the common

tern Sterna hirundo [64], although parents of black-tailed gulls seem to be able to provide

enough care to one- and two-chick-broods, but not to three-chick-broods in unfavorable envi-

ronmental conditions [37].

Although it was difficult to determine possible sources of competition in this study, siblings

from two-chick broods may compete for food because the relationship between CTL and mass

gain changed between singletons and siblings, and even between older and younger siblings.

The singletons retained their telomere length during the growth period, whereas older siblings

were more likely to decrease their CTL and show a more positive relationship between mass

gain and CTL than younger siblings. The relatively unchanged telomere length of fast-growing

older chicks was consistent with the yellow-legged gull chicks [25], indicating that faster

growth may be related to a lower level of food-related stress or vulnerability. One explanation

could be that the fast-growing chicks might get more antioxidant from dietary sources (e.g.,

vitamins C and E [22,56,57,65]) than slow-growing chicks.

Table 1. Linear mixed-effects model estimates of initial telomere length (ITL) in relation to brood size

and sibling order.

Fixed effects Estimate t p

(Intercept) 10.7 ± 0.30 35.33 < 0.0001

Brood size –1.38 ± 0.42 –3.28 0.0025

Brood size: Sibling order* –0.39 ± 0.18 –2.15 0.0473

* Relative to older siblings

doi:10.1371/journal.pone.0167261.t001

Table 2. Linear mixed-effects model estimates of change in telomere length (CTL) during the nestling

period in relation to mass gain, brood size, and sibling order.

Fixed effects Estimate t p

(Intercept) –1.60 ± 1.55 –1.03 0.3075

Brood size –10.11 ± 2.71 –3.73 0.0006

Mass gain 0.10 ± 0.09 1.03 0.3071

Brood size: Mass gain 0.56 ± 0.17 3.33 0.0018

Brood size: Sibling order* 8.35 ± 2.87 2.91 0.0076

Brood size: Mass gain: Sibling order* –0.51 ± 0.18 –2.78 0.0104

* Relative to older siblings

doi:10.1371/journal.pone.0167261.t002
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In addition, physical effort and stress might affect telomere dynamics during the growth

period, as observed in nestling European shags exposed to different degrees of stress

(unhandled chicks, chicks handled and given fish oil, and chicks handled and given corticoste-

rone), with increased telomere shortening observed in stressed groups compared with the con-

trol group [66]. If siblings engage in physical competition, differences in body size might be

important for determining stress, which may result in different degrees of telomere shortening

Fig 3. Relationship between mass gain and change in telomere length during the nestling period. The red circles represent singleton

chicks. The green triangles and blue squares represent older and younger siblings, respectively. The solid lines connect siblings. Dashed lines

represent regression lines for singletons (red), older siblings (green), and younger siblings (blue), respectively.

doi:10.1371/journal.pone.0167261.g003
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in chicks of different sizes. However, earlier-born siblings had physical advantages in body

size, but decreased their telomere length more than later-born siblings. This contrasted with

the finding of Nettle et al. [31,32] who found that disadvantaged chicks within a nest experi-

enced more telomere attrition than advantaged nestlings. In our studied species, nonphysical

contests such as scramble begging may cause oxidative damage to siblings [29], because sib-

lings often engaged in vigorous begging with siblings when their parents returned with food

items. Younger siblings could try to compensate for their relative size-disadvantage, although

the body size at birth was similar to that of older siblings, by increasing their begging effort,

which can cause telomere shortening. Nonetheless, we observed the opposite trend, such that

older siblings experienced more attrition of telomere length than younger siblings did. The

level of begging by individuals may not simply increase with brood size [67], and different beg-

ging strategies may be employed within broods [68]. These unobserved behavioral processes

might result in a different relationship between mass gain and CTL in chicks of this species.

Implications

The findings of this study suggest that parents end their reproduction for the season with

either large numbers of offspring with short-telomeres or small numbers of offspring with

long-telomeres. Telomere length during early development has been shown to be a strong pre-

dictor of lifespan [69]. Therefore, telomeres potentially constrain brood size. Assuming that

telomere lengths of siblings remain 20% shorter than those of singletons until the age of first

reproduction (approximately age 4; early-life telomere handicap cannot be overcome over a

year [70]), telomere length of singletons at age 4 would be 14 kb with a 0.3-kb decrease per

year during adulthood. Assuming that the lowest critical length of the telomere is 9 kb (because

no adults have telomeres <9 kb in length derived from 25 adult black-tailed gulls [39]), then

the life expectancy of singletons and siblings would be approximately 21 and 11, respectively,

although this is an estimate because telomere attrition of adults is affected by many environ-

mental factors [39,71,72]. If the fitness of rearing singletons and siblings is equal, natural selec-

tion would favor both brood sizes and generate variation in brood size in the population. As

several studies have already shown that the brood size has long-lasting effects on metabolic

rate in later life [73], reproductive output [74], and longevity [75], future studies should

explore the potential role of telomere dynamics for clutch and/or brood size determination,

which may serve as a novel physiological basis of life-history trade-offs [4,17,21,76], but see

[77] and may affect offspring adult phenotypes [78].
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