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Abstract

Spatial ability predicts performance in mathematics and eventual expertise in science, technology and engineering. Spatial skills
have also been shown to rely on neuronal networks partially shared with mathematics. Understanding the nature of this
association can inform educational practices and intervention for mathematical underperformance. Using data on two aspects of
spatial ability and three domains of mathematical ability from 4174 pairs of 12-year-old twins, we examined the relative genetic
and environmental contributions to variation in spatial ability and to its relationship with different aspects of mathematics.
Environmental effects explained most of the variation in spatial ability (~70%) and in mathematical ability (~60%) at this age,
and the effects were the same for boys and girls. Genetic factors explained about 60% of the observed relationship between
spatial ability and mathematics, with a substantial portion of the relationship explained by common environmental influences
(26% and 14% by shared and non-shared environments respectively). These findings call for further research aimed at
identifying specific environmental mediators of the spatial–mathematics relationship.

Research highlights

• About a third of the variation in spatial ability at age
12 is explained by genetic factors; a little less than
half of the variation in mathematics at this age is
genetic.

• We find no sex differences in the genetic and
environmental influences (either in magnitude or
type) on mathematical and spatial variation at age 12.

• The observed overlap between spatial ability and
mathematics is substantial (r > .40). Approximately
60% of this overlap is explained by common genetic
effects, with 40% of the overlap due to environmental
experience.

Introduction

Individual differences in spatial and mathematical abil-
ities are correlated (~.5, e.g. Hegarty & Kozhevnikov,
1999), and rely on partly overlapping neural networks
(Hubbard, Piazza, Pinel & Dehaene, 2005). Spatial
ability at age 18 moderately correlates with raw SAT
(Scholastic Assessment Test) mathematics scores, and
remains a significant predictor of mathematical ability
after controlling for general intelligence, processing
speed and working memory (Rohde & Thompson,
2007). Greater spatial ability at age 13 is associated with
preference for mathematics-related subjects at age 18;
with choice of college major in Science, Technology,
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Engineering, or Mathematics (STEM), and with eventual
expertise in STEM domains (e.g. Wai, Lubinski &
Benbow, 2009).

Little is known about the aetiology of the associations
between spatial abilities and mathematics. The only
genetically sensitive study to date suggested that the
moderate (.32) correlation between mathematical and
spatial ability was largely explained by shared genetic
effects. However, a small sample (N = 278 twin pairs)
and a wide age range (6–12 years) meant that the study
was underpowered (Thompson, Detterman & Plomin,
1991).

Studies, mainly involving elementary–middle school
students, suggest that at a cognitive level, several
mechanisms are likely to underlie the space–mathematics
association (e.g. Hegarty & Kozhevnikov, 1999).
Research suggests that we think about numbers as
organized in space along a mental ‘number line’ (Deh-
aene, Bossini & Giraux, 1993; Ito & Hatta, 2004), and
that this mapping is independent from formal mathe-
matical instruction (de Hevia & Spelke, 2009). Perfor-
mance on a number line task correlates with later
mathematical performance, suggesting that precision of
symbolic number representation may bootstrap further
mathematical learning (e.g. Siegler & Opfer, 2003). An
observed correlation between performance on a 3-D
mental rotation task and mathematical word problem
solving further supports the importance of spatial ability
in mathematical learning (Johnson, 1984; van Garderen,
2006). Mathematical relations may be mentally spatially
represented, such as the translation of word problems
into equations (Geary, 1995). Moreover, representation
and decoding of complex mathematical ideas may rely
on spatial ability (Phillips, Norris & Macnab, 2010;
Shoresh & Wong, 2012; Tufte, 2001).

Recent research has begun to identify brain mecha-
nisms involved in the number–space cognitive processes.
Brain damage resulting in unilateral neglect produces
deficits in mental imagery and disrupts the ability to
think of numbers in spatial terms, along a mental
number line (Zorzi, Priftis & Umilt�a, 2002). Differences
in brain activation have been found during the mental
rotation task between typically developing and mathe-
matically gifted children (O’Boyle, Cunnington, Silk,
Vaughan, Jackson, Syngeniotis & Egan, 2005). Children
with developmental dyscalculia show structural deficits
in brain areas involved in visuo-spatial processing
(Rykhlevskaia, Uddin, Kondos & Menon, 2009).

Genetically sensitive studies address the nature of
these behavioural, cognitive, and neural associations.
The present study is the first adequately powered
investigation to evaluate the relative contribution of
genetic and environmental factors to individual

differences in spatial ability and to its relationship with
different aspects of mathematics. By including same-sex
and opposite-sex twins we also explored whether varia-
tion in spatial and mathematical abilities and the
relationship between them is driven by the same genetic
and environmental factors in males and females. Previ-
ous research found some evidence for an average male
advantage in some spatial and mathematical tasks, but
the results are inconsistent across studies (Casey, Nuttall,
Pezaris & Benbow, 1995; Halpern, 2000; Levine, Hut-
tenlocher, Taylor & Langrock, 1999; Astur, Tropp, Sava,
Constable & Markus, 2004). Differences in the patterns
of brain activation between males and females during
spatial tasks have also been shown (Hugdahl, Thomsen
& Ersland, 2006). However, the twin method explores the
sources of individual variation, which can be unrelated
to those of average sex differences.

Method

Sample

We assessed spatial ability and mathematics in a sample
of twins drawn from the population-based Twins Early
Development Study (TEDS), with a mean age of
11.56 years (SD = 0.69).We had data for at least one
twin in 4601 twin pairs (1663 MZ, 2938 DZ) for spatial
ability and mathematics; of these, 4174 complete pairs
(1539 MZ, 2635 DZ) provided data on all measures. The
study identified from birth records all the twins born in
England and Wales in 1994, 1995, and 1996 (Haworth,
Davis & Plomin, 2013). More than 10,000 pairs of twins
were recruited to the longitudinal study. Since the first
contact with the twins’ families, the TEDS sample
remains representative of the United Kingdom (UK)
general population. A validated parent-rated instrument,
with 95% accuracy when compared to zygosity estab-
lished from DNA markers, was used to assign zygosity
(Price, Freeman, Craig, Petrill, Ebersole & Plomin,
2000); uncertainties were followed up with DNA marker
testing.

Measures

Data for this study were collected using a web-based
battery of tests. Details of Internet testing and its
validation can be found in Haworth et al. (Haworth,
Harlaar, Kovas, Davis, Oliver, Hayiou-Thomas, Frances,
Busfield, McMillan, Dale & Plomin, 2007). Cronbach’s
alphas (a) reported below are based on the present
sample. See Figure 1 for an example of each of the
spatial ability and mathematics tests.
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Spatial ability

Spatial ability was assessed by the Jigsaws and Hidden
Shapes tests, drawn from the National Foundation for
Educational Research Spatial Reasoning 8–14 series
(Smith & Lord, 2002). The two tests require reasoning
about the properties of shapes and their relationship in
addition to the ability to visualize shapes and mentally
manipulate them according to precise rules.
Jigsaws (28 items, a = 0.74) was a multiple-choice

test assessing the ability to identify which of four
shapes is the assembly of the given set of smaller
shapes.
Hidden Shapes (27 items, a = 0.87) was a multiple-

choice test assessing the ability to identify in which of
four complex patterns a given polygon was embedded.
Our two spatial tests correlated moderately with each

other (r = 0.34, p < .01) and both had similar correla-
tions with the three mathematical components: the
correlations of Hidden Shapes were .39 with Under-
standing Numbers (M1), .42 with Non-numerical Pro-
cesses (M2), .37 with Computation and Knowledge
(M3). Correlations of Jigsaws were .30 with Understand-
ing Numbers, .35 with Non-numerical Processes, and .30
with Computation and Knowledge. The composite
measure of spatial ability (S) correlated on average .43
with each of the three mathematics subtests (see
Figure 2a for these phenotypic correlations).

Both spatial tests were normalized using a Van der
Waerden rank transformation (Lehmann, 1975), and
their mean was used to index a general spatial ability. All
further analyses reported here were conducted on this
restandardized composite spatial ability measure. The
analyses conducted on the two measures separately
yielded similar results (available in Supplementary
Online Material, Figures S1, S2, S3 and S4).

Mathematical ability

Mathematics was assessed with a web-based battery
closely linked to the UK National Curriculum require-
ments, with items drawn from the nferNelson Mathe-
matics age 5–14 series (nferNelson, 1994, 1999, 2001).
The following three components of mathematics were
assessed: Understanding Numbers (33 items, a = 0.90)
required an understanding of numeric and algebraic
processes to be applied when solving problems; Non-
numerical Processes (25 items, a = 0.87) required
understanding of processes and concepts such as rota-
tional and reflective symmetry, with no significant
numerical content; Computation and Knowledge (37
items, a = 0.93) required recollection of mathematical
facts and terminology and the ability to perform
straightforward calculations using well-rehearsed tech-
niques.

Figure 1 Spatial ability tests: 1. Jigsaws – which of four shapes is the assembly of the given set of smaller pieces, 2. Hidden shapes –
in which of four complex patterns is the given polygon embedded; Mathematics subtests: a. application of numeric and
algebraic processes, b. non-numerical problems, c. recollection of mathematical facts and terminology.
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The twin method

We used the twin method – a comparison of reared-
together identical (monozygotic) and non-identical
(dizygotic) twins – to partition the variance and covari-
ance between spatial and mathematical ability into
additive genetic (A), shared environmental (C), and
non-shared environmental (E) components (Boomsma,
Busjahn & Peltonen, 2002; Plomin, DeFries, Knopik &
Neiderhiser, 2013). The known genetic relatedness
between monozygotic and dizygotic twins allows the
decomposition of individual differences (or variation) in
behaviour into A and C factors that make siblings reared
together similar, and E factors that make them dissim-
ilar.

Structural equation modelling

Structural equation model fitting, with full information
maximum likelihood estimation, provides a comprehen-
sive way to estimate genetic and environmental variance
components. We used the structural equation modelling
package OpenMx (Boker, Neale, Maes, Wilde, Spiegel,
Brick, Spies, Estabrook, Kenny, Bates, Mehta & Fox,

2011) in the statistical computing environment R (www.
R-project.org; R Development Core Team, 2011) to fit
ACE models. The fit of a given model to the observed
data is summarized by a likelihood statistic (�2lnL;
minus 2 * log likelihood) and degrees of freedom (df;
observations � number of estimated parameters). Com-
parison of models is achieved with a chi-square (v2)
likelihood-ratio test, with v2 given by the difference in fit
(D�2lnL), and df given by the difference in degrees of
freedom (Ddf). We also present the Bayesian information
criterion (BIC: � ln(N)*df; Raftery, 1995), which is a
measure of model fit relative to parsimony with lower
BIC values indicating a better fit. In large datasets, BIC
is preferred as it allows one to choose the most
parsimonious model by taking into account the number
of observations (sample size).

Genetic analyses

Univariate analyses

We first analysed our spatial ability composite and the
three aspects of mathematics with univariate sex-limited
models. Sex-limitation modelling provides a test for the
presence of quantitative and qualitative sex differences,
irrespective of the mean differences between males and
females. Quantitative sex differences are a difference in
magnitude of genetic or environmental effects. For
example, although the same genes may influence the
trait in males and females, the effect may be stronger in
males. Estimating A, C, and E covariance components
separately for males and females, then comparing the
model fit to one in which the covariance components are
constrained to be equal for males and females, provides a
test for the presence of quantitative sex differences.
Qualitative sex differences suggest that a (partially)
different set of genetic or environmental influences
contributes to individual differences in the trait for
males and females. With opposite-sex twins it is possible
to measure qualitative sex differences. For the DZ
opposite-sex pairs, allowing the coefficient of genetic
relatedness (or the coefficient of environmental related-
ness) to differ from that of the DZ same-sex pairs, and
comparing the model fit to one in which the coefficients
are constrained to be equal, provides a test for the
presence of qualitative sex differences.

Multivariate analysis

Multivariate structural equation modelling with twin
data is an extension of the univariate twin analyses: both
the variation within, and the covariation between, traits
is divided into genetic and environmental components.

(a) (b)

(c) (d)

Figure 2 (a) Phenotypic (observed), (b) genetic (A), (c) shared
(C), and (d) non-shared (E) environmental correlations between
spatial ability (S) and Understanding Numbers (M1), Non-
numerical Processes (M2), and Computation and Knowledge
(M3).

© 2014 The Authors Developmental Science Published by John Wiley & Sons Ltd.

Spatial abilities predict mathematical performance 465



The variable-specific and common genetic, shared and
non-shared environmental factors were estimated by
maximum likelihood using the Cholesky decomposition
analysis (Loehlin, 1996). The Cholesky procedure is
conceptually similar to a hierarchical regression where
the trait-specific variance is explained by trait-specific
latent factors after the common variance has been
accounted for by common factors. As the variance
explained by the latent factors is determined by the order
of the variables in the model, we modelled the data
including the spatial variable last, in order to estimate
genetic and environmental influences on spatial ability
independent from mathematics. We further converted the
initial Cholesky decomposition into a correlated factor
solution, which provides two useful summary statistics of
the relationship between any pair of variables: the
correlation between latent components, and the propor-
tion of the phenotypic correlation explained by each of
the ACE components. These parameters are not affected
by the ordering of the variables. The correlation between
latent genetic components can be interpreted as the
extent to which genes found to be associated with one
trait are associated with the other; the proportion of the
phenotypic correlation explained by genetic factors
describes the extent to which the relationship is driven
by genes.

Results

Descriptive statistics and analyses of variance (ANOVA)
by sex and zygosity are shown in Table 1. To preserve

independence of data, these analyses were conducted on
one randomly selected twin in each pair. For both spatial
ability and mathematics, R2 for the ANOVA models
indicates that both sex and zygosity account for no more
than 1% of the variance. Same-sex twins are perfectly
correlated for age and sex, an association that could be
misinterpreted as within-family resemblance due to the
shared environment. So, as is standard practice in the
analysis of twin data, all subsequent analyses were
performed on the residuals after correcting for the effects
of age and sex (McGue & Bouchard, 1984).
Intraclass correlation coefficients (ICC; Shrout &

Fleiss, 1979) provide coefficients of twin similarity and,
when these are separated by sex and zygosity, give a first
indication of potential sex differences (supplementary
Table S1). For example, doubling the difference between
the MZ and DZ ICCs for each sex/zygosity group
provides a first approximation of the genetic contribu-
tion to each trait. Univariate sex limitation modelling
provides a formal test of sex differences. Results of the
univariate sex limitation analyses (summarized in sup-
plementary Table S2) suggested no significant quantita-
tive or qualitative sex differences for mathematics and
spatial ability. Therefore, data from males and females
were combined for the multivariate analyses.

What is the nature of the relationship between spatial
ability and mathematics?

The path diagrams in Figure 2 are a visual summary of
the correlated factor model. The path values are stan-
dardized so that squaring each path gives the relative

Table 1 Means, standard deviations and analysis of variance by sex and zygosity

ANOVA

All MZ DZ Female Male Zyg. Sex Zyg.*Sex
Tot.

Measures M SD M SD M SD M SD M SD p g² p g² p g² R2

Jigsaws total (0–28) 16.82 3.47 16.71 3.40 16.88 3.51 16.66 3.38 16.92 3.52 .337 <.001 .039 .001 .915 <.001 .002
Hidden Shapes
total (0–27)

15.67 5.05 15.51 4.90 15.77 5.14 15.30 4.95 15.92 5.10 .527 <.001 <.001 .003 .124 .001 .004

Spatial Ability* 0.00 0.82 �0.04 0.80 0.02 0.84 �0.06 0.80 0.04 0.84 .220 <.001 <.001 .003 .431 <.001 .004
Understanding
Numbers (0–33)

22.73 5.54 22.52 5.43 23.03 5.55 22.22 5.49 23.25 5.48 .155 <.001 <.001 .007 .684 <.001 .009

Non-numerical
Processes (0–25)

15.98 4.77 15.88 4.71 16.13 4.88 15.71 4.79 16.25 4.83 .522 <.001 .001 .002 .990 <.001 .003

Computation &
Knowledge (0–37)

28.29 6.55 28.13 6.54 28.49 6.66 27.92 6.54 28.64 6.65 .378 <.001 .001 .002 .444 <.001 .003

Math total** 0.02 0.89 �0.04 0.86 0.05 0.90 �0.08 0.86 0.08 0.90 .112 .001 <.001 .005 .763 <.001 .008

*Spatial Ability is the mean of the two standardized spatial tests (requiring a score on both); **Math total is the mean of the three standardized
mathematics tests (requiring a score on two out of the three subtests); ANOVA based on a random selection of one twin from each pair ANOVA =
analysis of variance; MZ = monozygotic; DZ = dizygotic; Zyg. = zygosity; Zyg.*Sex = zygosity by sex interaction term; Tot. = total variance explained
by the ANOVA full model;M = mean; SD = standard deviation; p = p-value; g² = partial eta squared; R2 = variance explained by zygosity, sex, and
zygosity 9 sex interaction.
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contribution of each variance component. Thus, the
relative genetic contribution (or heritability) of spatial
ability was a modest 27%. The mathematics subtests
were moderately heritable – average heritability of 44%
(Figure 2b). The same logic is applied to the calculation
of the environmental influences (Figure 2c and 2d).

In Figure 2, correlations between the latent genetic
(2b) and environmental (2c and 2d) components are
shown as double-headed arrows. The total contribution
of the genetic, shared environmental and non-shared
environmental factors to the phenotypic correlation
between any two measured traits can be derived by
multiplying each element in a path chain from one
measured trait to the other, then summing these products
for the A, C and E chains. Each phenotypic correlation
can be broken down into fractions attributable to
genetic, shared and non-shared environmental factors
by expressing each chain as a fraction of the sum of all
three. For example, the genetic contribution to the
phenotypic relationship between spatial ability and
mathematics subtest Understanding Numbers, is given
by: (√.27*.67*√.43) / ((√.27*.67√.43) + (√.15*.68√.21) +
(√.58*.15√.26)) = .56 or 56%. Applying the same
calculation to all three mathematics subtests for both
genetic and environmental components, genetic factors
explain on average 60%, shared environmental factors
26%, and non-shared environmental factors 14% of the
phenotypic correlation between spatial ability and math-
ematics. Figure 3 summarizes the genetic and environ-
mental origins of the covariation between spatial ability
and each of the mathematics subtests. All confidence

intervals for the multivariate solution are presented in
the supplementary Table S3.

A Cholesky decomposition path diagram, presented in
the supplementary Figure S5, shows the partitioning of
the variance in the four traits into common and specific
influences. The first latent genetic factor A1 influences the
three mathematical subtests and spatial ability, suggest-
ing that the genetic effects are mostly shared among the
measures. The remaining three latent genetic factors show
small influences, suggesting very modest genetic influ-
ences specific to each measure. The path between Non-
numerical Processes and the spatial composite (.11)
indicates that some modest common genetic effects may
influence the two traits, independent of other mathemat-
ical components. The fourth latent genetic factor A4

shows a non-significant path for the spatial composite,
indicating that there is no significant genetic influence on
the spatial composite independent of the mathematics
measures. Although the influences of shared environ-
mental factors are small, these factors are almost entirely
shared among all the measures. The non-shared environ-
mental influences are largely specific to each trait.

Discussion

The substantial overlap between spatial and mathemat-
ical abilities at age 12 (r = .43) is driven by both genetic
(60%) and environmental factors (40%). Although spa-
tial ability and mathematics are only moderately herita-
ble (h2 = .27 and .43 on average, respectively), the genetic
factors contributing to variation in these traits are highly
correlated (average genetic r = .75). This finding leads to
the prediction that when genes associated with variation
in spatial ability are identified, most will also be
associated with mathematical ability. Our results also
suggest that, despite reported mean sex differences, the
aetiology of individual differences in spatial and math-
ematical abilities and of the covariation between them is
the same for boys and girls.

The mathematical and spatial tests used in this study
measured different processes that make up the complex
mathematical and spatial domains. For example, Non-
numerical Processes might rely on visual processing to a
greater extent than the other two mathematical subtests.
Hidden Shapes might require more visual-attentional
processing as compared to the Jigsaws test. However,
regardless of the cognitive processes involved, most
genetic effects were found to be shared among the four
constructs. No independent genetic effects were found on
Computation and Knowledge. Small additional genetic
effects were present on Non-numerical Processes, and
these effects were partially shared with spatial ability.

Figure 3 Proportion of the phenotypic correlation between
Spatial Ability (S) and three mathematics subtests,
Understanding Numbers (M1), Non-numerical Processes (M2),
and Computation and Knowledge (M3), explained by A, C, and
E. A = additive genetic factors; C = shared environmental
factors; E = non-shared environmental factors.
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In other words, these results suggest the presence of some
small genetic influences that link spatial ability and non-
numerical mathematical abilities, beyond the general
genetic effects on all four constructs. It is possible that
these genetic effects are associated with shared demands
for visual attention or visuo-spatial reasoning.
There were no significant genetic effects that were

specific to spatial ability once the shared genetic effects
with the mathematical measures were taken into account.
The strong genetic overlap between spatial and math-

ematical ability is in line with previous research showing
genetic overlap among a range of cognitive abilities and
disabilities – the ‘Generalist Genes’ hypothesis (e.g.
Plomin & Kovas, 2005). This research has also shown
that genetic effects on diverse cognitive and learning
abilities are also associated with variation in general
cognitive ability (g) (Davis, Haworth & Plomin, 2009). It
is likely that the genetic overlap we observed between
spatial and mathematics will also be shared with g; we
will specifically explore this link in future investigations.
The present investigation focuses on the differential
relationships between spatial ability and three different
aspects of mathematics. Figure S5 in the Supplementary
Materials presents the results of the Cholesky decompo-
sition analyses testing the aetiological differences in the
links between three mathematical measures with the
spatial ability composite. These results suggest some
small specific aetiological links between non-numerical
mathematical processes and spatial ability.
Although the phenotypic relationship between math-

ematical and spatial abilities is largely due to the same set
of pleiotropic genes, about 40% of the overlap between
them is attributed to environmental factors. The same
shared environments contribute to variation in the three
mathematical subtests. The shared environmental corre-
lation between spatial ability and all three mathematical
components is very similar (~ .69). Interestingly, both
shared and non-shared environments contribute to the
observed overlap between mathematical and spatial
abilities, explaining 26% and 14%, respectively. Relevant
shared environmental factors might include aspects of
the classroom, school, and home experience. Non-shared
environments may include individual specific experiences
and perceptions that differ even for identical twins in the
same classroom (Asbury, Almeida, Hibel, Harlaar &
Plomin, 2008).
Some work has already shown several potentially

relevant specific environmental pathways to the link
between spatial and mathematical performance. For
example, several studies demonstrated positive effects
of training on spatial tasks performance (e.g. Baenninger
& Newcombe, 1989; Vasta, Knott & Gaze, 1996). If
spatial skills, like finger counting and other spatial

strategies, are used to bootstrap mathematics, then
improving or capitalizing on spatial abilities may
improve mathematical learning. The use of visual mate-
rial in education is on the increase with the hope of
improving mathematics and science learning (Phillips
et al., 2010), with much attention recently devoted to
efficient visual communication in STEM fields (see
Nature Methods series, Points of View; e.g. Shoresh &
Wong, 2012). Intervention studies have shown that
improving the ability to think of numbers in spatial
terms improves arithmetical skills in typically developing
children and those with developmental dyscalculia (e.g.
Booth & Siegler, 2008; Kucian, Grond, Rotzer, Henzi,
Sch€onmann, Plangger, G€alli, Martin & von Aster, 2011).
Given that early spatial ability has been found to predict
expertise in STEM domains, as well as creative and
innovative achievements (Wai et al., 2009; Kell, Lubin-
ski, Benbow & Steiger, 2013), further research needs to
focus on identifying the shared and non-shared environ-
mental mediators of these associations. These could be
used in developing new individualized approaches to
fostering spatial ability, potentially supporting further
intellectual development in other domains, or vice versa.
As the present investigation has decomposed the co-

variation between mathematical and spatial ability only
at one age, it cannot establish any direction of effects.
Longitudinal genetically sensitive cross-lagged designs
are necessary in order to examine the presence and
nature of any causal links. In addition, more molecular
genomic research is needed to identify specific genetic
markers and related biological pathways involved in the
overlap between mathematical and spatial abilities
(Docherty, Davis, Kovas, Meaburn, Dale, Petrill, Schalk-
wyk & Plomin, 2010).
This study is a step closer towards understanding

aetiological links between spatial ability and mathemat-
ics. As both are complex domains that involve a wide
range of processing, more research is needed to form a
more comprehensive picture of these relationships. Our
spatial tasks involved manipulation of two-dimensional
objects. Future investigations should include 3-D mental
rotation tasks and other aspects of visuo-spatial reason-
ing as these may have different aetiological links to
diverse aspects of mathematics. Extending research to
samples of different ages and employing longitudinal
designs will lead to better understanding of the dynamic
nature of mathematic–spatial relationships.
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Additional Supporting Information may be found in the online
version of this article:
Figure S1. Cholesky decomposition of the genetic (1a),

shared environmental (1b) and non shared environmental (1c)
influences on the 3 mathematical measures and the Jigsaws Test
with 95% confidence intervals in brackets, below the estimates.
The direct paths (vertical arrows) represent specific genetic and
environmental influences, the oblique paths indicate genetic
and environmental influences shared among the measures. The
comparison between the fit statistics of the multivariate
saturated model (-2LL = 158139.81, df = 38211, BIC =
-179612.25, ep = 88) and the multivariate ACE model (-2LL =
91102.13, df = 38265, BIC = -247127.25, ep = 34) indicates a
good fit of the model to the observed data.
Figure S2. Correlated Factor Solution of the model including

the Jigsaws Test and the 3 mathematical sub-tests. The curved
arrows represent the genetic (2a), shared environmental (2b)
and non-shared environmental (2c) correlations among the 4
measures. 95% confidence intervals are in brackets, below the
estimates. The vertical paths represent the estimates of the
heritability (2a), shared (2b) and non-shared (2c) environmen-
tal influences.
Figure S3. Cholesky decomposition of the genetic (3a),

shared environmental (3b) and non shared environmental (3c)
influences on the 3 mathematical measures and the Hidden
Shapes Test with 95% confidence intervals in brackets, below
the estimates. The direct paths (vertical arrows) represent
specific genetic and environmental influences, the oblique paths
indicate genetic and environmental influences shared among
the measures. The comparison between the fit statistics of the
multivariate saturated model (-2LL = 121703.89, df = 38469,
BIC = -218328.67, ep = 88) and the multivariate ACE model
(-2LL = 91296.14, df = 38523, BIC = -249213.73, ep = 34)
indicates a good fit of the model to the observed data.
Figure S4. Correlated Factor Solution of the model including

the Hidden Shapes Test and the 3 mathematical sub-tests. The
curved arrows represent the genetic (4a), shared environmental
(4b) and non-shared environmental (4c) correlations among the
4 measures. 95% confidence intervals are in brackets, below the
estimates. The vertical paths represent the estimates of the
heritability (4a), shared (4b) and non-shared (4c) environmen-
tal influences. Small discrepancies between the above estimates
the estimates reported in Fig 1S and 2S are due to rounding up
the decimal places in the two different model fitting.
Figure S5. Cholesky decomposition of the genetic (5a),

shared environmental (5b) and non shared environmental (5c)
influences on the 3 mathematical measures and the spatial
composite. Confidence intervals are in brackets, below the
estimates. The direct paths (vertical arrows) represent specific
genetic and environmental influences, the oblique paths indi-
cate genetic and environmental influences shared among the
measures.
Table S1. Intra-class correlations.
Table S2. Univariate sex-limitation.
Table S3. Correlated factor solution.
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