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ABSTRACT
Bone morphogenetic proteins (BMPs) play important roles in embryonic and 

postnatal development by regulating cell differentiation, proliferation, motility, 
and survival, thus maintaining homeostasis during organ and tissue development. 
BMPs can lead to tumorigenesis and regulate cancer progression in different stages. 
Therefore, we summarized studies on BMP expression, the clinical significance of 
BMP dysfunction in various cancer types, and the molecular regulation of various 
BMP-related signaling pathways. We emphasized on the paradoxical effects of BMPs 
on various aspects of carcinogenesis, including epithelial–mesenchymal transition 
(EMT), cancer stem cells (CSCs), and angiogenesis. We also reviewed the molecular 
mechanisms by which BMPs regulate tumor generation and progression as well as 
potential therapeutic targets against BMPs that might be valuable in preventing tumor 
growth and invasion.

INTRODUCTION

BMPs are important cytokines belonging to the 
Transforming Growth Factor (TGF)-β superfamily, which 
also includes TGF-βs, activins, inhibins, nodal, and 
myostatin [1, 2]. They were first described by Marshall 
R. Urist in the 1960s, when he suggested the presence of 
osteoinductive molecules in demineralized bone matrix 
extracts, but further gene identification only occurred in 
the late 1980s [3]. Thus far, more than 20 kinds of BMP 
ligands have been identified in humans. Based on the 
disparity of their sequences and functions, these ligands 
have been divided into at least four subgroups: BMP-2/-4 
group; BMP-5/-6/-7/-8 group (osteogenic protein-1 [OP-
1] group); BMP-9/-10 group; and BMP-3, -13, -11, -12, 
-14, and -15 group [4]. Among these ligands, the first three 
groups were profoundly studied in tumors and have been 
reported to participate in tumorigenesis and dissemination.

Several reviews have illustrated the rough backbone 
of the BMP signaling pathways [1, 5]. Briefly, BMP 
ligands bind to two receptor types (type I and type II) to 
form a heterotetrameric complex, which then binds to 
and phosphorylate the receptor-activated (R)-SMADs. 
The activated R-SMADs bind to the common SMAD 

(Co-SMAD) to form a complex, which translocates to 
the nucleus along with a number of transcription factors 
to drive the target genes expression [6-8]. In addition to 
the canonical SMAD pathway, BMPs activate the non-
canonical SMAD pathways, such as phosphatidylinositol 
3-kinase (PI3K)/AKT, mitogen-activated protein kinase 
(MAPK), nuclear factor kappa B (NF-κB), and Janus 
kinase/signal transducer and activator of transcription 
(JAK/STAT) signaling pathways, which form a complex 
network of molecular signals regulating a multitude of 
processes throughout the body [5, 9, 10].

BMPs were originally reported to induce bone 
and cartilage formation, which exhibit a wide range 
of biological effects on various cell types. BMPs play 
important roles in embryonic and postnatal development 
by regulating cell differentiation, proliferation, motility, 
and survival, thus maintaining homeostasis in different 
organs and tissues [6, 11]. Recently, more evidence 
demonstrated that BMPs participate in cancer development 
and progression.
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PARADOXICAL EFFECTS OF BMP 
SIGNALING ON TUMORIGENESIS AND 
DISSEMINATION

Studies have shown that BMPs display significantly 
higher expression in tumors, which have been used as 
new biomarkers for the prognosis of cancer patients. In 
hepatocellular carcinoma (HCC), several BMPs (BMP-4, 
-6, -7, -8, -9, -10, -11, -13, and -15) revealed enhanced 
expression levels [12]. In advanced non-small cell 
lung cancer, serum increased the BMP-2 level, and the 
advanced clinical stages were significantly correlated with 
poor prognosis, which can be regarded as an independent 
negative predictor for the prognosis of patients [13]. BMP-
4 upregulation is closely associated with shorter patients’ 
overall and disease-free survival, which serves as a novel 
marker for predicting the recurrence and prognosis of 
HCC patients after surgery [14]. In addition, high BMP-
7 expression could be a useful predictive marker of poor 
prognosis in patients with lung cancer [15, 16], esophageal 
squamous cell carcinoma [17], colorectal cancer [18], and 
clear cell renal carcinoma [19].

The aberrant expression of BMPs is correlated 
with the proliferation, differentiation, and apoptosis of 
cancer cells and thus may be regarded as an oncogene. 
BMP-9 promotes the cell proliferation of ovarian cancer 
[20]. In addition, BMP-9 triggered the phosphorylation of 
SMAD1, 5, and 8 and the overexpression of inhibitors of 
DNA binding 1 (Id1), thereby promoting a proliferative 
response and exerting a remarkable anti-apoptotic function 
in HCC cells [21]. BMP-9 also led to an observable 
alteration in cell cycle regulator expression, including 
cyclinD1 protein upregulation and the downregulation 
of CDK-interacting protein p27 expression. Both events 
are involved in the progression from the G0/G1 phases 
toward the S-phase of the cell cycle [22, 23]. The BMP-
downstream signaling pathway, such as SMAD, has a 
role in tumor development and metastasis. Reportedly, 
SMAD1, 5, and 8 promote tumors. For instance, SMAD5 
expression is inversely correlated with the prognosis of 
serious ovarian cancer patients, and BMP-2 stimulated 
cellular proliferation by inducing phosphorylated SMAD5 
(pSMAD5) translocation into the nucleus in ovarian 
cancer cells [24].

Aside from these impacts on tumorigenesis, BMP 
signaling is involved in the invasion and migration 
processes, which are prerequisites to metastatic spread. 
BMPs significantly promoted tumor migration by 
affecting the extracellular matrix (ECM) environment, 
such as integrin and matrix metalloproteinases (MMPs), 
which is a crucial factor in tumor migration. BMP-7 
upregulates integrin avb3 expression, thereby inducing 
the migration activity in human chondrosarcoma cells 
[25]. BMPs accelerate pancreatic cancer cell invasiveness, 
which involves MMP-2 upregulation [26]. Furthermore, 
BMP-2-induced phosphorylation of SMAD2/3 promotes 

epithelial-mesenchymal transition (EMT) and induced cell 
invasion and migration in breast and pancreatic cancer 
cells [27].

However, some data revealed an opposite role of 
BMP signaling in tumors. BMP-10 was downregulated 
in gastric cancer samples [28]. BMP-6 expression was 
also absent in breast cancer tissues and might suppress 
breast cancer metastasis [29]. The inhibitory role of 
BMPs in tumorigenesis and dissemination has been widely 
reported in previous studies. For instance, BMP-2 and 
BMP-7 function as potent tumor suppressors in gastric 
carcinoma, renal cell carcinoma, lung and colorectal 
cancer, and osteosarcoma, in which BMPs suppress tumor 
growth by reducing the gene expression of tumorigenic 
factors and inducing the differentiation of cancer stem 
cells (CSCs) [30-33]. In HCC, BMP-2 induces apoptosis 
and plays an inhibitory role by virtue of their ability to 
increase the expression of the pro-apoptotic proteins 
caspase-3 and cleaved caspase-3 [34]. Correspondingly, 
BMP-4 and BMP-9 were also found to be potential 
anticancer agents in breast cancer [35]. BMP-4 causes a 
decline in granulocyte colony-stimulating factor (G-CSF) 
secretion, thereby reducing the number and activities of 
myeloid-derived suppressor cells (MDSCs) [36]. BMP-
9 inhibits the bone metastasis of breast cancer cells by 
downregulating connective tissue growth factor expression 
[37]. BMP-9 also prevents the growth of prostate cancer 
cells by inducing tumor apoptosis, which is related to the 
upregulation of prostate apoptosis response-4 [38]. In 
other solid tumors, BMP-4 paraclinically inhibits tumor 
angiogenesis via the induction of thrombospondin-1 (TSP-
1) [39]. At times, SMADs in the BMP signaling pathway 
could prevent tumor progression. The knockout of 
SMAD1 and SMAD5 in somatic cells of male and female 
gonads promotes metastatic granulosa cell tumorigenesis 
in mice, which implicated SMAD1 and SMAD5 as critical 
tumor suppressors [40]. In HCC, the inhibition of the 
BMP-4/SMAD1 signaling has been reported to suppress 
tumor migration, invasion, and EMT [41].

In conclusion, BMPs are described as both 
stimulator and inhibitor in different cancers; thus, we 
cannot simply define BMPs as oncogenes or anti-
oncogenes. Collectively, the aforementioned evidence 
indicated that the effects of BMP signaling on tumor 
progress depends on the cell types and the tumor 
microenvironment. Therefore, in the current study, we 
reviewed recent studies focusing on BMP bilateral effects 
in tumorigenesis and the underlying signaling pathways 
regulating the paradoxical dilemmas.

BILATERAL ROLES OF BMP 
SIGNALING IN CELLULAR EVENTS OF 
CARCINOGENESIS 

Considering that BMPs simultaneously displayed 
both tumor-promoting and tumor-inhibiting effects, we 
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must emphasize on the disparity of biological behavior 
and molecular events along the BMP signaling to disclose 
the underlying mechanisms involved in such paradoxical 
biological behaviors. Therefore, we focus on the different 
aspects during tumorigenesis and metastasis, including 
EMT, CSCs, and angiogenesis. 

BMP signaling and EMT

EMT is primarily defined as a phenotypic 
conversion that facilitates embryonic development and 
wound healing in physiological processes. Moreover, the 
acquisition of the EMT phenotype is related to fibrosis 
and tumor progression in certain pathological processes 
[42, 43]. Undergoing EMT, the epithelial cancer cells 
go through multiple changes, which mainly include the 

suppression of epithelial characteristics and the acquisition 
of a mesenchymal phenotype at the invasive front [44-46]. 
These hallmarks of EMT in cancers include the loss of 
E-cadherin expression, reduction of tight junction proteins 
[such as zona occludens-1 (ZO-1)] and cytokeratin, and 
increase of mesenchymal markers, such as vimentin, 
fibronectin, and N-cadherin [47, 48]. 

Multiple transcriptional factors and molecules 
take part in the tumor EMT procedure. Among them, the 
Snail superfamily (particularly Snail 1 and Snail 2), the 
basic helix-loop-helix family (such as Twist), and two 
Zeb factors (Zeb1 and Zeb2) regulate the expression of 
various epithelial and mesenchymal genes and thus affect 
the biological processes of cytoskeletal reorganization, 
extracellular matrix remodeling, and cell movements 
during EMT [49, 50]. For instance, Zeb1 and Zeb2 lead 

Figure 1: Relevant pathways regulate the paradoxical effects of BMP signaling in tumors. BMP signaling influences 
cancer cell progression through canonical SMAD and non-SMAD signaling pathways. The canonical SMAD-signaling pathway functions 
as a stimulator for cancer progression. However, non-SMAD signaling pathways, including PI3K/AKT, MAPK, NF-κB, and JAK/STAT 
signaling pathways, play bidirectional roles in various cancers. BMP signaling can cause the activation and inactivation of these non-
SMAD signaling pathways to promote or suppress tumor progression. 
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to E-cadherin repression, cause dramatic morphological 
transition of cells, and enhance migration and invasion 
during cancer progression [51]. Overexpression of 
Twist causes E-cadherin downregulation and vimentin 
upregulation to induce cellular morphological changes, 
expands the stem cell population, and promotes cell 
migration and invasion [52]. β-catenin and ZO-1 induced 
cytoplasmic/nuclear relocalization is a common process 
for EMT associated with tumor invasion [53].

EMT is associated with cancer invasion and 
metastasis in various tumor types, and the acquisition of 
mesenchymal features is related to the enhancement of 
tumor invasive capacity during cancer progression [54-
56]. In breast cancer, the downregulation of the epithelial 
marker E-cadherin and upregulation of the mesenchymal 

markers, N-cadherin and vimentin, were positively 
correlated with the high aggressiveness and rapid spread 
of cancer [57]. Consistently, EMT plays a crucial role 
in the early steps of metastasis in HCC where the low 
E-cadherin expression and high vimentin expression 
were closely associated with high-grade tumor vascular 
invasion [58, 59]. The mesenchymal to epithelial transition 
(MET) is the reverse procedure of EMT, during which cell 
motility dramatically decreases [46]. MET attenuates the 
malignancy of cancer cells in squamous cell carcinoma 
[60]. Similarly, the proliferation, migration, and invasion 
of gastric carcinoma cells are suppressed during MET 
[61]. Therefore, MET plays an inhibitory role in tumor 
metastasis.

Observable EMT features of cancer cells could be 

Table 1: The list for BMP family members
Known receptors

Ligand Gene locus Type I receptors Type II receptors Functions

BMP-1 8p21.3  Extracellular matrix maintenance, 
chondrogenesis

BMP-2 20p12 ALK-2, ALK-3, ALK-6 BMPR-II, ActR-IIA, 
ActR-IIB

Osteoblast differentiation, bone and 
cartilage formation. Aretinoid mediator. 
Involved indorsoventral patterning, 
craniofacial and heart development

BMP-3 14p21.21 ALK-4 ActR-IIA, ActR-IIB Bone formation

BMP-4 14q22-q23 ALK-2, ALK-3, ALK-5, 
ALK-6 BMPR-II, ActR-IIA

Fracture repair, Formation of 
teeth, limbs, lung, eye, and bone 
fromMesoderm, Dorsoventral 
patterning and craniofacial 
development

BMP-5 6p12.1 ALK-3 BMPR-II, ActR-IIA, 
ActR-IIB Chondrogenesis

BMP-6 6p24-p23 ALK-2, ALK-3, ALK-6 BMPR-II, ActR-IIA, 
ActR-IIB

Involved in joint integrity, osteogenesis 
and chondrogenesis

BMP-7 20q13 ALK-2, ALK-3, ALK-6 BMPR-II, AMHR-II
Osteoblast differentiation, renal 
development/repair, eye and 
craniofacial development

BMP-8a 1p34.3 ALK-2, ALK-3, ALK-4, 
ALK-7 BMPR-II, AMHR-II Osteogenesis, chondrogenesis and 

craniofacial development

BMP-8b 1p35-p32 ALK-3, ALK-6 BMPR-II, ActR-IIA, 
ActR-IIB

Osteogenesis, chondrogenesis and 
craniofacial development

BMP-9 10q11.22 ALK-1, ALK-2 BMPR-II, ActR-IIA, 
ActR-IIB

Chondrogenesis, nervous system, 
hepatogenesis and hepatic 
reticuloendothelial system development

BMP-10 2p13.3 ALK-1, ALK-3, ALK-6 ActR-IIA, ActR-IIB Trabeculation of embryonic heart

BMP-11 12q13.2 ALK-3, ALK-4, ALK-5, 
ALK-7

BMPR-II, ActR-IIA, 
ActR-IIB

Mesodermal patterning and nervous 
system development

BMP-12 2p24.1 ALK-3, ALK-6 BMPR-II, ActR-IIA Joint morphogenesis, Facilitates growth 
of ligament and tendon

BMP-13 8q22.1 ALK-3, ALK-6 BMPR-II, ActR-IIA, 
ActR-IIB

Joint morphogenesis, Facilitates growth 
of ligament and tendon

BMP-14 20q11.2 ALK-3, ALK-6 BMPR-II, ActR-IIA
Chondrogenesis, limb development, 
fracture healing and facilitates growth 
of tendon

BMP-15 Xp11.2 ALK-6 Oocyte and follicular development

This table shows the members of BMP family, gene locus, relative receptors and functions (if known).
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induced by BMPs via SMAD and non-SMAD signaling 
pathways, which promote tumor invasion and metastasis in 
vitro and in vivo [62-64]. For instance, in breast epithelial 
and ovarian cancer cells, BMP-4 could induce EMT by 
decreasing E-cadherin, increasing N-cadherin, disrupting 
the polarity of ZO-1, and inducing transcription factors, 
Slug and Snail, to facilitate tumor progression [65, 66]. 
The reduction of E-cadherin and ZO-1 and an induction 
of vimentin and Snail expression have also been observed 
after the BMP-9 treatment in HCC [67]. Similarly, BMP-
2 and BMP-7 were reported to promote the characteristic 
morphologic conversion of EMT in gastric and prostate 
cancer cells [62, 63]. 

Aside from the positive effects on EMT, literature 
has shown the opposite roles of the BMP signaling in 
inhibiting EMT-related metastasis of cancer. In melanoma 
cells, BMP-7 induced MET, a process opposite to EMT 
at the primary tumor site, thereby leading to metastasis 
inhibition [68]. BMP-7 also inhibited cholangiocarcinoma 
cell migration by suppressing TGF-β-mediated Twist 
expression, which is an important EMT transcription 
factor [69]. Accordingly, the effects of BMPs reversing 
EMT have been determined in breast cancer cells where 
BMP signaling induced E-cadherin expression and limited 
cancer cell metastatic potential by repressing EMT-
activator Zeb1genes [70].

BMP signaling and CSCs

CSCs were described as immortal, possessing self-
renewal capacity [71, 72], highly tumorigenic [73], and 
resistant to conventional chemotherapies [74]. They were 
initially reported in acute myeloid leukemia [75]. Recent 
reports verified the CSCs’ presence in breast [76], colon 
[77], prostate [78], skin [79], liver [80], stomach [81], lung 
[82], and brain cancers [83]. BMP signaling participated 
in CSC-related tumor maintenance and progression by 
influencing the CSCs’ functional properties, such as 
self-renewal, chemo-resistance, and tumor-initiating 
capacities [84]. For instance, BMP signaling hyper-
activated and accelerated the amplification of tumor stem 
cell populations during the initiation and progression of 
breast cancer and oral squamous cell carcinoma [85, 86]. 
BMP-2 enhanced the motility and invasiveness of colon 
cancer cells by inducing CSC proliferation [87]. In ovarian 
cancer, human carcinoma-associated mesenchymal stem 
cells could increase the number of CSCs and promote the 
chemotherapy resistance of ovarian cancer by activating 
the BMP-4/Hedgehog signaling pathway [88]. BMP 
signaling could crosstalk with several known stem cell 
pathways in cancer, such as the Notch pathway and the 
Wnt pathway. In colorectal cancer, Notch signaling 
interacts with the BMP signaling in CSC regulation, 
in which Notch-1 expression increased along with the 
upregulation of multiple EMT/stemness-associated 
molecules CD44, Slug, and SMAD3 that led to a more 

aggressive phenotype [89]. 
By contrast, other reports demonstrate that BMP 

signaling diminishes the CSC pool. In colorectal cancer 
and nervous system tumors, BMP-4 promotes the 
differentiation, apoptosis, and chemo-sensitization of 
CSCs and restricts the self-renewal capacity of CSCs, 
which plays an inhibitory role on tumor progression 
[90-92]. Furthermore, other known stem cell pathways, 
such as the Wnt/β-catenin signaling, have been found 
to crosstalk with the BMP signaling in CSC regulation. 
For example, intestinal adenoma cells produce BMP-4 to 
counteract the Wnt/β-catenin signaling-related CSC-like 
traits, such as losing self-renewal capacity and initiating 
irreversible cellular differentiation [93]. In human renal 
cancer, BMP-2 suppresses the growth of aldehyde 
dehydrogenase (ALDH)+ cells, downregulates the 
expression of embryonic stem cell markers, and inhibits 
renal CSC migration [94]. BMP-2/-7 heterodimer, the 
most efficient stimulator of BMP signaling, diminishes 
the ALDHhi/CD44hi/CD24low CSC pool and effectively 
reduces the activation of TGF-β-driven SMAD signaling 
pathway, thereby inhibiting tumor invasion in breast 
cancer [95]. In prostate cancer, BMP-7 increases the 
expression of cell cycle inhibitor p21 and metastasis 
suppressor gene NDRG1 (N-myc downstream-regulated 
gene1) to induce CSC senescence [96]. In glioblastoma, 
BMP-7 reduces cell growth, inhibits sphere formation, and 
decreases self-renewal capacity via canonical SMAD1, 5, 
and 8 signaling [97]. Similarly, a BMP-7 variant (BMP-
7v) represses the proliferation of stem-like cells and 
the expression of stem cell markers and enhances the 
expression of differentiation marker in glioblastoma [98]. 
The BMP-mediated repression on CSCs was also found 
in head and neck squamous cell carcinoma (HNSCC), in 
which inhibiting BMP signaling potentiated the long-term 
survival of HNSCC CSCs [99].

BMP signaling and angiogenesis

Tumor lymphatic and vascular angiogenesis 
has a key role in cancer development and progression 
by providing a faster and easier route for cancer cells 
to spread to other body parts. The tumor-associated 
angiogenesis is affected by multiple factors, among 
which BMPs are considered as important modulators. 
BMPs participate in angiogenesis not only by directly 
regulating the functions of vascular endothelial cells 
but also by indirectly influencing the expression of 
multiple angiogenic factors [100, 101]. For instance, 
BMPs upregulate the expression of vascular endothelial 
growth factor (VEGF) in both prostate cancer cells and 
osteoblasts, thereby induce brain metastases [102]. BMP-
9 and BMP-10 increase gene expression along the Notch 
signaling pathway in vascular endothelial cells, thereby 
coordinating postnatal vascular remodeling [103].

Recently, increasing evidence indicated that BMP 
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signaling promotes tumor angiogenesis. BMP co-receptor 
repulsive guidance molecule b (RGMb) was upregulated 
in vascular endothelial cells after hepatocyte growth factor 
(HGF) stimulation, which was combined with BMP-7 to 
induce angiogenesis in breast and prostate cancers [104]. 
In human dermal microvascular endothelial cells, BMP-
2 induces Id1 expression and cooperates with VEGF 
signaling to promote angiogenesis in murine breast 
cancer xenograft models [105]. Another case for the 
pro-angiogenic role of the BMP signaling during cancer 
development came from colorectal cancer studies in which 
miR-885-3p inhibited the growth of HT-29 colon cancer 
cell xenografts by disrupting angiogenesis via targeting 
BMPRIA and blocking the activation of the BMP/SMAD/
Id1 signaling [106].

However, most data implied the paradoxical role 
of BMP signaling in tumor angiogenesis. For example, 
BMP-4 was downregulated in high endothelial venules 
of lymph nodes draining metastatic tumors [107]. In 
multiple myeloma, BMP-6 induces cell apoptosis, inhibits 
angiogenesis, and causes growth suppression [108]. BMP-
9 inhibits basic fibroblast growth factor (bFGF)-induced 
proliferation and migration of bovine aortic endothelial 
cells and represses VEGF-stimulated angiogenesis in 
glioblastoma [109]. BMP-9/ALK1-induced Crossveinless 
2 and matrix Gla protein inhibits angiogenesis by limiting 
proliferation, tube formation, and expression of VEGF of 
endothelial cells [110]. In addition, BMP-9 suppresses 
lymphatic vessel formation and restrains sprouting 
angiogenesis and blood circulation [111, 112]. 

MOLECULAR PATHWAYS REGULATED 
BY THE BMP SIGNALING PATHWAY

As previously described, BMP signaling plays a 
paradoxical role in cancer by affecting various features 
of carcinogenesis, which include EMT, CSCs, and 
angiogenesis. Increasing evidence has focused on 
multiple molecular events regulating BMP-induced 
biological processes in cancer and demonstrated that BMP 
signaling influenced the tumorigenesis and dissemination 
by modulating either the canonical SMAD or the non-
canonical SMAD signaling pathways [113].

In skull-based chordomas, the BMP-4/SMAD 
signaling pathway upregulation was reported to be 
the dominant molecular mechanism of chordoma 
pathogenesis, which indicated poor clinical outcome [114]. 
Growth and Differentiation Factor (GDF)-9, a member of 
the BMP ligand family, promotes the adhesive and motile 
capacity of cancer cells by upregulating focal adhesion-
associated proteins FAK and paxillin via the SMAD-
dependent pathway, which implied pro-tumorigenic 
effects of the canonical BMP/SMAD signaling pathway 
in prostate cancer [115]. 

In addition to the canonical SMAD signaling 
pathways, the non-canonical SMAD signaling pathways 

participate in BMP-related cancer development and 
progression. BMPs activate the PI3K/AKT signaling 
pathways in gastric cancer, chondrosarcoma, and 
pancreatic cancer [116-118]. The PI3K/AKT pathway, 
a major cascade-promoting cell migration and invasion, 
could be activated by BMP-2 in gastric and pancreatic 
cancer cells, which can dramatically enhance the 
phosphorylation level of AKT protein. The blockage of 
the PI3K/AKT pathway using specific inhibitor LY294002 
significantly reverts EMT and inhibits BMP-2-induced 
motility and invasiveness [62]. In addition, MAPK/ERK 
signaling pathway is another important regulator in cell 
migration and invasion, which was promoted by BMPs 
in which the inhibition of the RAF/MEK/ERK cascaded 
along the MAPK pathway reduced BMP7-induced motility 
and migration that subsequently led to cell apoptosis in 
prostate cancer cells [63]. Furthermore, BMP-2 enhances 
the phosphorylation of IκBα and the nuclear translocation 
of NF-κB in gastric and prostate cancer cells [119, 120]. 
Similarly, exogenous BMP-7 activates the c-Src/PI3K/
AKT/IKK/NF-κB signaling pathway, thus resulting in 
the trans-activation of avβ3 integrin expression, which 
promotes tumor progression in human chondrosarcoma 
cells [25]. BMP-2 induces EMT and promotes colon 
cancer cell migration and invasion by increasing STAT3-
mediated tumor stemness [87]. 

However, some studies pointed out that BMPs 
could exert an antitumor effect by blocking non-canonical 
signaling pathways in certain cancers. BMP-9 prevented 
the proliferation of HER2-positive breast cancer cells by 
inactivating ERK1/2 protein and repressing the PI3K/
AKT signaling pathway [35]. In gastric cancer, PI3K/AKT 
pathway inhibition was involved in the tumor-suppressor 
effects of BMP-9 [121]. Similar to BMP-9, BMP-2 inhibits 
the growth and migration of HCC cells by attenuating the 
PI3K/AKT signaling pathway [34]. In addition, BMP-2 
causes cell cycle arrest at the G1 phase and induces the 
apoptosis of myeloma cells by STAT3 inactivation [122]. 
Additionally, BMP-4 reduces the secretion of G-CSF 
and decreases the number and activities of MDSCs by 
counteracting NF-κB activity in tumor cells [36].

Collectively, BMPs play bidirectional and 
paradoxical effects on cancer development and invasion 
both at the molecular and cellular levels, in which the 
dysregulation of both the canonical and non-canonical 
SMAD pathways, including PI3K/AKT, MAPK/ERK, NF-
κB, and STAT3 pathways, produces absolutely opposite 
influences on cell proliferation, apoptosis, migration, 
and invasion by affecting tumor EMT, generation and 
amplification of CSCs, and angiogenesis development. 

THERAPEUTIC APPROACHES AGAINST 
BMP SIGNALING IN CANCER

Considering the extensive involvement of BMP 
signaling in carcinogenesis and dissemination, target 
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therapy against BMPs and their receptors is a promising 
approach for cancer treatment. However, given that BMPs 
produce paradoxical effects in different types of cancer, the 
personalized treatment against BMPs should be discussed 
considering the characteristics of cancer cells, the disparity 
of components in tumor microenvironment, and the 
interaction among different signal pathways in each study 
model to achieve the best therapeutic efficiency.

Therapy against BMPs in cancer

BMPs are the hot topic of target therapy where 
some recombinant human BMPs, such as BMP-2 and 
BMP-7, have been used in orthopaedic and dental surgery 
[123-127]. However, clinical applications of BMPs in 
cancers are fewer because of their paradoxical effects 
on carcinogenesis and dissemination. Some studies have 
proposed potential applications for BMPs in cancer 
therapy.

In certain cancer types, BMPs that play pro-
tumorigenic effects have been identified as novel 
prognostic biomarkers and potential therapy targets for 
cancer diagnosis and treatment. BMP-4, BMP-6, BMP-7, 
and BMP-9 are being proposed as biomarkers for HCC 
recurrence prediction and prognosis [14, 21, 128-131]. 
Some inhibitors that target BMPs have been proposed 
to be used in these cancers. Berberine, a natural alkaloid 
with important antitumor activities, has exerted inhibitory 
effects on the migratory and invasive abilities of highly 
metastatic prostate cancer cells by downregulating BMP-
7 [132]. The active compounds tetramethylpyrazine, 
which was extracted from a Chinese medicinal plant, and 
heparan sulfate mimetic WSS25 respectively inhibited 
angiogenesis and tumor growth of lung and hepatocellular 
cancer by blocking BMP/SMAD/Id-1 signaling [133, 
134]. Coleusin factor, an inhibitor targeting BMP-2, 
exerted its anticancer effects on osteosarcoma by inducing 
osteoblast differentiation [135]. Moreover, phosphoprotein 
Spp24 secreted by BMP binding protein diminished BMP-
2-initated tumor growth and thus resulted in significant 
apoptosis of cancer cells, which would be developed into 
a new therapeutic agent for clinical applications [136].

By contrast, BMPs function as tumor suppressors 
in some cancer types. BMP-4, BMP-6, and BMP-9 have 
been reported to inhibit metastasis in breast cancer. BMP-
2 plays a key inhibitory role in governing the proliferation 
and aggressive features of human cancer cells in HCC 
and colorectal carcinoma. Therefore, therapies based on 
BMP signaling activation may offer a novel treatment 
strategy for these cancer types [29, 33, 37]. Recombinant 
BMP ligand domains, which are being used as efficient 
agents for the repair of bony defects in preclinical and 
clinical studies of orthopaedic and maxillofacial surgery, 
are currently being tested for their therapeutic feasibilities 
in cancer. For instance, recombinant human (rh) BMP-7 
exerted antineoplastic effects in HNSCC and rhBMP-2 

was applied to treat osteosarcoma by increasing caspase-3 
and Bax-mediated cell apoptosis in cancer [137, 138].

Therapy against BMP receptors in cancer

BMP receptors have also been studied as target 
candidates for cancer therapy. Activin receptor-like kinases 
1 (ALK1), a BMP receptor type I, has been confirmed 
as a target for anti-angiogenesis in cancer. Both ALK1 
neutralizing antibodies and soluble ALK1 extracellular 
domain/Fc fusion protein (ALK1-Fc) attenuate the BMP 
signaling activity [139]. For example, Dalantercept, a 
fusion product composed of extracellular domain of 
ActRIIA and IgG-Fc fragment, was proposed as a novel 
anti-angiogenic therapy for treating a variety of cancers 
both in preclinical and clinical studies [140, 141].

Furthermore, the therapeutic effects of specific 
inhibitors against BMP receptor kinases have been 
investigated in various cancer types. Dorsomorphin 
and its analogue LDN-193189, which are the original 
inhibitors of ALK1, produce a block in cell migration 
and increase survival in human epithelial ovarian cancer 
[142]. Another small molecule inhibitor K02288, a 
2-aminopyridine compound targeting ALK1, could 
inhibit BMP-9 signal transduction and thus repress tumor 
angiogenesis in diffused intrinsic pontine glioma and other 
tumors [143]. EW-7197, a novel ALK5 kinase inhibitor, 
represses the activation of the SMAD/TGF-β signaling 
pathway, thereby preventing lung metastasis in mouse 
4T1 mammary cancer models and prolonging the survival 
of 4T1-bearing mice [144]. Recently, a selectively small 
molecule inhibitor DMH1, which specifically antagonizes 
the intracellular kinase domain of ALK2, significantly 
reduces cell proliferation, promotes cell death, and 
decreases cell invasion in NSCLC, thereby providing a 
promising development of target therapeutic strategy for 
clinical applications [145].

CONCLUSIONS AND PERSPECTIVES

In this review, we summarized studies regarding 
the paradoxical roles of BMP signaling in tumor 
generation and progression. The effects of BMP signaling 
on cancer are closely related to the pathological type, 
the tumor origin, the activation status of downstream 
signaling pathways, and the various factors in tumor 
microenvironment. BMP signaling plays a paradoxical 
effects on cancer development and progression by 
serving as either tumor promoters or tumor suppressors, 
which dramatically affects tumor EMT, stemness, 
and angiogenesis. Targeting BMPs and BMPRs were 
successful in preventing tumor growth and invasion 
in some preclinical and clinical studies, which implies 
a promising future on BMPs target therapy in cancer 
treatment.
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