
RESEARCH ARTICLE

ProtFus: A Comprehensive Method

Characterizing Protein-Protein Interactions of

Fusion Proteins

Somnath Tagore1¤, Alessandro Gorohovski1, Lars Juhl Jensen2, Milana Frenkel-

MorgensternID
1*

1 The Cancer Genomics and BioComputing of Complex Diseases lab, Azrieli Faculty of Medicine, Bar-Ilan

University, Safed, Israel, 2 Cellular Network Biology Group, Novo Nordisk Foundation Center for Protein

Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

¤ Current address: Department of Systems Biology, Columbia University, New York, New York, United

States of America

* milana.morgenstern@biu.ac.il

Abstract

Tailored therapy aims to cure cancer patients effectively and safely, based on the complex

interactions between patients’ genomic features, disease pathology and drug metabolism.

Thus, the continual increase in scientific literature drives the need for efficient methods of

data mining to improve the extraction of useful information from texts based on patients’

genomic features. An important application of text mining to tailored therapy in cancer

encompasses the use of mutations and cancer fusion genes as moieties that change

patients’ cellular networks to develop cancer, and also affect drug metabolism. Fusion pro-

teins, which are derived from the slippage of two parental genes, are produced in cancer by

chromosomal aberrations and trans-splicing. Given that the two parental proteins for pre-

dicted fusion proteins are known, we used our previously developed method for identifying

chimeric protein–protein interactions (ChiPPIs) associated with the fusion proteins. Here,

we present a validation approach that receives fusion proteins of interest, predicts their cel-

lular network alterations by ChiPPI and validates them by our new method, ProtFus, using

an online literature search. This process resulted in a set of 358 fusion proteins and their cor-

responding protein interactions, as a training set for a Naïve Bayes classifier, to identify pre-

dicted fusion proteins that have reliable evidence in the literature and that were confirmed

experimentally. Next, for a test group of 1817 fusion proteins, we were able to identify from

the literature 2908 PPIs in total, across 18 cancer types. The described method, ProtFus,

can be used for screening the literature to identify unique cases of fusion proteins and their

PPIs, as means of studying alterations of protein networks in cancers.

Availability: http://protfus.md.biu.ac.il/

Author summary

Tailored therapy aims to cure cancer patients in a fully personal way. Thus, the continual

increase in scientific information and, particularly, in published literature, drives the need
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for efficient methods of data mining to find unique personal genomic features and their

connections. Fusion proteins, which are derived from the slippage of two parental genes

or chromosomal translocations, are frequently drivers of cancers. We used our previously

developed method for identifying chimeric protein–protein interactions (ChiPPIs) for

multiple fusion proteins. In this paper, we present a validation approach, ProtFus, which

receives fusion proteins of interest, predicts their cellular network alterations by ChiPPI

and validates them by online literature searches. This process resulted in a set of 358

fusion proteins and their corresponding protein interactions, as training set. Next, for a

test set of 1817 fusion proteins, we were able to identify 2908 previously published PPIs

across 18 different cancer types. The described method can be used for screening the liter-

ature to identify unique cases of fusion proteins and their PPI networks, as means of

studying alterations of protein networks for personalized approaches in cancers.

This is a PLOS Computational Biology Methods paper.

Introduction

Background

Fusion proteins resulting from chromosomal translocations have important roles in several

types of cancer and are extensively discussed in cancer research literature. The current bio-

medical literature resources, such as PubMed, comprise more than 28 million citations, with

approximately 14,000 cancer-related papers from 2018 alone, and more than 3 million

abstracts in total that mention ‘cancer’. Similarly, the number of PubMed articles that mention

‘fusion proteins’ is also increasing rapidly. Thus, there is a growing need to catalog as well as

curate this information. Hence, text mining-based methods to identify fusion proteins from

PubMed are extremely important. Moreover, information regarding fusion proteins men-

tioned in the current literature have no standard format. The upshot is that identifying a cer-

tain fusion protein is non-trivial; for example, a fusion protein such as BCR–ABL1 is

represented in variable forms in different texts [1–2]. These variations include the formatting

of the fusion events themselves (e.g., BCR-ABL1 vs. BCR:ABL1 vs. BCR/ABL1), and the key-

words used to describe them (fusions vs. fusion proteins vs. chimeric proteins vs. chimeras)

[3]. Moreover, when extracting protein–protein interactions (PPIs) of fusions, their actions

can be described in varying ways (e.g., activate vs. interact vs. express vs. induce [4]).

To collect information about multiple fusion proteins, we developed an in-house database,

ChiTaRS [1], which covers more than 11,000 cancer breakpoints. We continually mine the

new literature for mentions of fusion proteins, their parent proteins and their associated PPI

networks, so as to provide a constantly updated fusion protein database tool for the scientific

community worldwide.

Previous studies in the field

Text mining is used in biology to reveal associations between genes and proteins, as described

in the literature. Several earlier studies focused on developing text-mining approaches for

modern medical text, in general, and cancer research, specifically. For example, several anno-

tated corpora have been created to distinguish mutations, cancer processes, tumor
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suppressors, oncogenes and transcription factors [5–7]. Natural language processing (NLP)

methods use named-entities that have different sequences/phrases of nouns and adjectives,

while named-entities involved in relationships are designated by verbs. Syntactic analysis may

be defined as the process of analyzing by NLP the strings of symbols that conform to the rules

of formal language grammar. Further, several previous and currently available tools enable

extracting a specific set of information from the literature. Examples of such biomedical text

mining tools are: MetaMap [8], WhatIzIt [9], iHOP [10], PubTator [11] and Gimli [12]. More-

over, to provide a constantly up-dated resource for research purposes, continuous evaluations

and verifications are performed by the biomedical text mining community through multiple

data assessment initiatives, e.g. BioCreative [13–14], BioNLP [15] and i2b2 [16], to name a

few. Therefore, NLP and text mining of medical literature is a growing field that may provide a

novel resource in fusion moieties and their cellular processes.

Screening for fusion proteins and their PPIs is a relatively new field in biomedical text min-

ing, and as such, only a limited number of relevant resources are available [17–18]. Some well-

known databases of fusion proteins have been developed, such as ChiTaRS-3.1 [1], ChimerDB

3.0 [19], COSMIC [20] and TICdb [21]. However, no available biomedical resource can auto-

matically extract the PPIs of fusion proteins that have been confirmed experimentally from sci-

entific papers. Moreover, given that the two parental proteins for predicted fusion proteins

were known, our previously developed method may be used to predict chimeric PPIs (ChiP-

PIs) associated with the fusion proteins [22]. Here, we present a text-mining approach, called

Protein Fusions Server (ProtFus) that receives fusion proteins of interest, predicts their cellular

network alterations by ChiPPI [22] and validates them by searching PubMed references. Prot-

Fus mines the literature to identify unique cancer fusion proteins and their experimentally

described PPIs in scientific publications. Thus, ProtFus provides unique ways for extracting

and interpreting information present in public scientific resources. Our objectives and process

for employing ProtFus were as follows:

1. We aimed to identify fusion proteins and their interactions, from published scientific arti-

cles [23–24]. From the point-of-view of text mining, this task deals with identifying infor-

mation that must be tagged to find co-mentions, like "human fusion proteins" with "cancer"

or "cancers" and with "interactions" or "interactors" etc. Assuming that we are interested in

the fusion protein BCR-ABL1, we will want to find all the mentions of BCR-ABL1 in the lit-

erature. But, BCR-ABL1 can be written in different forms (see above); thus, we looked for a

specific ‘tagger’ that can identify all the possible forms.

2. Identifying interaction co-occurrences with fusion proteins is more complicated since it

requires tagging “interaction tokens” from the literature and linking them to their correct

fusion proteins. An example is the text ‘Grb2 has been shown to bind NPM-ALK and ATI-

C-ALK in previous works using the interaction token that was ‘bind’.’

3. We developed ProtFus, a new online server, which identified instances of fusion proteins

and their interactions from the literature [25], based on text mining approaches using NLP

methods [26]. The major goal was to identify the co-occurrences of both fusion proteins

and their corresponding interactions by filtering out the false positive cases from general

searches using PubMed, such that a more focused result may be generated.

Thus, ProtFus can be used to validate from the biomedical literature, protein interactions of

fusion proteins in cancer, which can then be empirically tested. Furthermore, the interactions

can be used to validate the predicted ChiPPI networks [22] of multiple fusion proteins in dif-

ferent public databases.
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Methods

The basic framework of ProtFus is depicted in (Fig 1). It consists of basic computational meth-

ods, such as text mining, machine learning and a distributed database system for storing the

text, as well as features extracted from biomedical literature. Here, we explain the development

of ProtFus to extract fusion protein information (e.g., BCR-ABL1), cancer type (e.g., BCR-

ABL1 that causes chronic myelogenous leukemia) and prediction models (e.g., Naïve Bayes)

for classifying text extracted from PubMed references. We also used a list of the cancer fusion

proteins from the Mitelman Database of Chromosome Aberrations and Gene Fusions in Can-

cer [27], and the Cancer Breakpoints Collection of the ChiTaRS-3.1 database [1] (Tables 1

and 2) to validate fusion proteins obtained by text mining of biomedical literature.

Fig 1. The overall methodology of ProtFus. The algorithm begins with collecting abstracts and full-texts from

PubMed, followed by normalization, tokenization and entity recognition, cross-references, databases, and machine

learning classifier.

https://doi.org/10.1371/journal.pcbi.1007239.g001
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Initial text validation

The initial text validation was performed on input from PubMed to remove false positive

results, followed by segregation into tokens. We performed stemming of words for sentences,

followed by identifying named-entities within sentences with the ‘Porter2’ algorithm, using

the ‘stemming’ package in Python [28]. The named-entities within sentences were blanked out

to make them more generalized. This step was followed by using a bag-of-words representa-

tion [29] based on a frequency score (FS) for estimating the importance of selecting a token.

For the bag-of-words representation, we used the FS threshold (Ts,a) (Eq 1):

Ts;a ¼ FSs;a � log
10

t

s

� �
ðEq 1Þ

Here, FSs,a denotes the frequency of token s in article a, τ is the number of articles/abstracts, σ
is the number of articles having s. This threshold is used to estimate the frequency score. We

used the Naïve Bayes classification method to build the PPI extraction model [29]. This catego-

rizes the tokens in abstracts and articles to either fusion proteins or interactions of fusion pro-

teins, and assigns them to Medical Subject Headings (MeSH) terms. The ProtFus framework

was developed on an Apache Dell R820 server, with 1TB RAM and with a back-end My-SQL

database and 1PB of support data from ChiTaRS-3.1 [1]. The tool was developed using Python,

whereas the interface was developed using CGI-Perl (http://protfus.md.biu.ac.il/).

Feature extraction

We used the N-gram model for detecting N-words at a time from a given sentence. An N-

gram model is a model of "strings" or "sequences" in NLP by means of the statistical properties

of N-grams, based on the appearance of letters, according to the Shannon information theory

of likelihood [30]. Specifically, using a 2-gram method, all words in a sentence were broken

down into two combinations, including unigrams and bigrams, i.e., one- and two-word com-

binations [31]. For example, some possible sets of combinations were provided in Fig 2. We

extracted a set of bigrams, as well as combinations of 3- and 4-grams, from abstracts or full-

text articles in order to train ProtFus to detect specific fusion protein instances. In addition,

the instances of these tokens were counted in the back-end corpus [32]. A back-end text

Table 2. Datasets considered for testing ProtFus.

PubMed Year Abstracts Full Texts ”Fusion proteins” “Fusion proteins”+PPI

2017 25830 7819 65 5

2016 528146 245826 1747 148

2015 530960 257148 1697 155

2014 481971 234136 1780 167

2013 449069 212268 1805 165

https://doi.org/10.1371/journal.pcbi.1007239.t002

Table 1. Datasets considered for training. (collected from PubMed between January 2013 and April 2017).

PubMed Year Abstracts Full Texts “Fusion proteins” “Fusion proteins”+PPI

2017 17220 5212 43 2

2016 352097 163884 1164 99

2015 353972 171432 1132 104

2014 321314 156091 1187 112

2013 299380 141512 1203 110

https://doi.org/10.1371/journal.pcbi.1007239.t001
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corpus was a structured set of texts that can be used for statistical analysis; it checks occur-

rences and validates linguistic rules in a specific context. In our case, the back-end corpus was

used for performing background feature extraction using N-grams. Further, when FS was the

standard feature score, a considerably high threshold (Ts,a) was given to tokens that appeared

frequently in the corpus. Moreover, we also converted all abstracts or full-text articles into

‘similar-length’ feature vectors, where each feature represents Ts,a of the identified token. The

rationale was that these feature vectors are further used for rescaling the overall feature score.

Subsequently, we organized a bag-of-words representation of the feature vectors (Table 3).

A bag-of-words was a representation of text that described the occurrence of words within a

document. Its two components are a vocabulary of known words and a measure of the pres-

ence of known words. Thus, S1–S2 Tables (Supporting information) include the back-end

corpus considered for tagging fusion proteins and their interactions. The word-token tagger

had a back-end Synonyms (with synonyms resource, S3 Table, Supporting information),

whereas the RegEx tagger had a back-end Synonyms (with rulebase, S4 Table, Supporting
information). Likewise, Table 4 represents Precision and Recall for a retrieval step.

Named-entity recognition

The tokens were used to parse the texts for performing named-entity recognition (NER) [33].

NER locates and classifies named-entities in text into pre-defined categories. For example, the

unannotated block of text ‘CRKL binds to BCR-ABL fusion protein’ can be annotated as

‘[CRKL] protein binds to [BCR] protein—[ABL] protein [fusion protein] key’. This was followed by

searching for a pattern like protein1-protein2 key or protein1/protein2 key or protein1:pro-

tein2 key (e.g., [BCR] protein—[ABL] protein [fusion protein] key). To associate a fusion event

with a certain cancer we performed NER of ‘diseases’. For example, in ‘BCR-ABL causes leuke-

mia’, we performed annotations such as ‘[BCR] protein-[ABL] protein [causes] action-verb

Fig 2. N-gram model for detecting N-words by ProtFus. The N-gram model and some possible sets of combinations.

https://doi.org/10.1371/journal.pcbi.1007239.g002
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[leukemia] cancer’. The ProtFus method performs a search in PubMed abstracts or uploads a

full text file that is based on a specific input text. For example, in the case of an input text, the

result is displayed in a separate pop-up window, and the fusion proteins are highlighted. Simi-

larly, in the case of PPIs among fusion proteins, the result window includes the input text, and

the interactions are highlighted. Thus, another feature of ProtFus is direct searching using

PubMed articles. Users can select from the drop-down menu of 100, 200 or more, the number

of articles to be considered for searching fusion proteins and their interactions. The result

includes the abstracts of the articles that match best with fusion protein keywords (e.g., for

BCR-ABL). This file can be further used for highlighting the fusion proteins and their interac-

tions. Thus, Table 5 represents Precision and Recall for NER.

Designing a model for training and testing

We downloaded abstracts from PubMed to generate both training and test datasets. For a training

set we used several datasets (Table 1). Other datasets served as test sets to evaluate the model that

was built and a 10-fold cross-validation was performed, each time using 40% of the entities to

train an extraction model and the remaining 60% to test it [33] (see Supporting information).

The NLP tokenization of bag-of-words

Tokenization is the task of chopping a character sequence and a defined document unit into

pieces, called tokens, while perhaps throwing away certain characters, such as punctuation.

Tokenization was performed using two specific taggers:

Table 3. Bag-of-words collection for 10 PubMed ID abstracts.

PMID Fusion proteins Fusion Gene Biological Token Miscellaneous Token

24186139 1 1 20 35

22101766 0 1 25 30

18451133 0 1 28 38

11930009 1 1 26 32

15735689 0 1 21 34

18850010 0 0 27 33

21193423 1 0 23 33

22570737 1 0 30 38

18383210 1 0 29 35

24345920 1 0 26 32

16502585 1 0 21 33

https://doi.org/10.1371/journal.pcbi.1007239.t003

Table 4. Precision and Recall for retrieval step.

Dataset Precision Recall F-Score Accuracy

Set A 0.79 0.82 0.76 0.81

Set B 0.81 0.83 0.78 0.80

Set C 0.85 0.84 0.82 0.85

Set D 0.72 0.76 0.72 0.74

Set E 0.80 0.82 0.78 0.82

Set F 0.81 0.81 0.78 0.82

Set G 0.78 0.83 0.81 0.83

Set H 0.75 0.81 0.78 0.80

Set I 0.85 0.82 0.81 0.83

Set J 0.73 0.78 0.76 0.75

https://doi.org/10.1371/journal.pcbi.1007239.t004
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1. Word-token tagger

2. RegEx tagger

The word-token tagger identified the property of words from the text for fusion proteins,

like ‘fusion proteins’, ‘fusion transcripts’, ‘chimeric proteins’, ‘chimeric genes’ and ‘fusion gene

transcripts’; and "action words" for PPIs, like ‘activate’, ‘block’, ‘depend’, ‘express’ and ‘interact’.

Similarly, the RegEx tagger recognizes and associates these word-tokens with their corre-

sponding “literals” (attributes). The tokenizer module segregates the text into ‘Biological’,

‘Miscellaneous’, ‘Function’ and ‘Literal’ tokens. For example, given the following text, “The

small molecule BCR-ABL-selective kinase inhibitor imatinib is the single most effective medi-

cal therapy for the treatment of chronic myeloid leukemia”, the tokenization output is: Biologi-

cal Tokens—‘small’, ‘BCR-ABL-selective’, ‘single’, ‘medical’ and ‘chronic’; Miscellaneous

Tokens—‘molecule’, ‘kinase’, ‘imatinib’, ‘therapy’, ‘treatment’, ‘myeloid’ and ‘leukemia’; Func-

tion Tokens—‘effective’ and ‘inhibitor’; Literal Tokens—‘is’, ‘the’, ‘for’ and ‘of’.

Entity recognition from fusion and PPI corpus

Here, we present the structure of the corpus that was used for validation and testing. ProtFus

considered all possible combinations of representing fusion proteins in text, by looking the

back-end Rule-base as well as the fusion and PPI corpus. Now, we define the different key-

words and tokens used by our method, as part of entity recognition. The back-end ‘Synonyms’
(fusion corpus) consists of ‘entity’ ‘relation token’, such as ‘fusion’ ‘fusions, fusion transcript,

fusion transcripts, fusion protein, fusion proteins, fusion gene, fusion genes’, whereas ‘Syno-
nyms’ (PPI corpus) consists of ‘entity’ ‘relation token’, such as ‘Activate’ ‘activate, activates,

activated, activating, activation, activator’. Similarly, the back-end ‘Synonyms’ (fusion) consists

of ‘Fusion proteins’ ‘Synonyms’ ‘Alternate representations’, such as ‘EWS-FLI1’ ‘TMRPSS2-

ERG’ ‘ews: fli1, EWSR1: EWS, EWSR1/FLI1, EWS/FLI-1’. The ‘parser’ and the entity recogni-

tion module used ‘Rule-base’ and ‘Short Form Recognition’ back-end resources for identifying

the final ‘best-suited’ entities and tokens, and also for filtering out the false positives. The

‘Rule-base’ (for normalization) consisted of ‘Rule’ ‘Input’ ‘Output’ ‘Reg Ex’, such as ‘Normali-

zation of case’ ‘BCR-ABL, bcr-abl, BCR:ABL, bcr:ABL, BCR/ABL, bcr/abl’. Similarly, the

‘Rule-base’ (for regular expression) consisted of ‘Characteristics’ ‘Description’ ‘Rule’ ‘Reg Ex’,

such as ‘Fusion token’ ‘Tokens with fusion word occurrence’ should be separated by space/

tokens (‘fusion|fusions|fusion genes|gene fusion|fusion protein|fusion transcripts’) etc.

Table 5. Precision and Recall for named-entity recognition.

Dataset Precision Recall F-Score Accuracy

Set A 0.79 0.82 0.77 0.81

Set B 0.77 0.82 0.80 0.82

Set C 0.87 0.83 0.82 0.89

Set D 0.80 0.81 0.76 0.78

Set E 0.84 0.83 0.82 0.82

Set F 0.81 0.84 0.83 0.83

Set G 0.81 0.89 0.85 0.84

Set H 0.82 0.82 0.84 0.80

Set I 0.82 0.84 0.83 0.87

Set J 0.78 0.80 0.77 0.79

https://doi.org/10.1371/journal.pcbi.1007239.t005
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Results

The fusion protein information extracted by ProtFus was validated using the ChiTaRS-3.1 [1]

database of known cases of fusion proteins and interactors, as well as the Mitelman database of

Chromosome Aberrations and Gene Fusions in Cancer [27]. The fusion protein occurrences,

as predicted by ProtFus, were validated by searching the corresponding occurrences of break-

points in cancers from the ChiTaRS database [1]. The Mitelman database was used mainly for

identifying potential fusion proteins and their roles in cancer. Finally, the PPIs predicted by

ChiPPI [22] were validated by ProtFus. The interactions of information that we received were

compared with that of ChiPPI [22] and STRING [34–35], by performing simultaneous

searches in both of these for cross-validation of the reliability of the results. We were particu-

larly interested in searching for instances of interactions from the scientific literature.

Next, ProtFus was tested on 358 fusion proteins (based on the Mitelman Database) from

PubMed articles; and the result statistics of the top 100 fusion proteins were provided based on

their identification from the text (S5 Table, Supporting information). For example, in the case

of the BCR-ABL1 fusion protein (PubMed ID = 9747873), ProtFus identified its occurrence in

all PubMed articles, like, ‘Both Bcr-Abl fusion proteins exhibit an increased tyrosine kinase

activity and their oncogenic potential has been demonstrated using in vitro cell culture systems

as well as in in vivo mouse models’ (S5 Table, Supporting information). Similarly, ProtFus

also identified interactions among fusion proteins (S6 Table, Supporting information), such

as in the case of the BCR-ABL1 fusion protein (PubMed ID = 9747873), ‘The SH2-containing

adapter protein GRB10 interacts with BCR-ABL’ (S6 Table, Supporting information). Particu-

larly, the essential parameters for examining the accuracy of text-mining based algorithms

involved the identification of Precision, Recall and F-Score. Moreover, ProtFus identified

fusion proteins with Precision ranging from 0.33 to 1.0 (average = 0.83), Recall = 0.4 to 1.0

(average = 0.84) and F-Score = 0.4 to 1.0 (average = 0.81); whereas for PPIs with: Preci-

sion = 0.42 to 1.0 (average = 0.81), Recall = 0.5 to 1.0 (average = 0.81) and F-Score = 0.59 to 1.0

(average = 0.83). A high scoring system would typically have a Precision of ~0.8–1, Recall of

~0.8–1 and F-score of ~0.8–1, depending on the quality of data. Thus, the overall accuracy of

ProtFus enabled extracting different attributes of fusion proteins and their interaction appear-

ances in the biomedical texts.

Training and testing

We used a classical Naïve Bayes algorithm for training as well as extraction. The datasets were

partitioned based on known fusion proteins and their interactors from the literature. This

resulted in a training set (40%) (Table 1) and a set (around 60%, when there was no reported

fusion) that was used for testing the algorithm in all PubMed references (2013–2017)

(Table 2). There was no overlap between training and testing data. Subsequently, decisions

were modeled for assigning labels to raw input data. This type of classification algorithm can

also be thought of as a convex optimization problem, in which one needs to identify the min-

ima of a convex function ρ, associated with an input vector v, having n entries (Eq 2),

minðrðvÞÞv 2 Zn ðEq 2Þ

Here, the objective function can be defined as Eq 3,

rðvÞ ¼ Zn þ
1

n
sn

i¼1
mðv; aðiÞ; bðiÞÞ ðEq 3Þ

where vectors a(i)2Zn are training instances (1�n),y(i)2Zn that act as labels. To examine the

accuracy of our algorithm, we performed a 10-fold cross-validation. For this purpose, we
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partitioned the input text into ten equal-sized sub-samples, of which five were retained for test-

ing and five were used for model building. We also used the standard Precision, Recall and F-

score values for validating the results. Precision (P) was defined as the fraction of retrieved

instances that was relevant to the study. Precision can also be defined as the probability that

randomly selected retrieved information is relevant (Eq 4).

P ¼
TP

TP þ FP
ðEq 4Þ

Here, TP = true positive and FP = false positive. Similarly, Recall (R) is defined as the fraction

of relevant instances that are retrieved for the study. Recall can also be defined as the fraction

of the information relevant to the query that is successfully retrieved (Eq 5).

R ¼
TP

TP þ FN
ðEq 5Þ

Here, FN = false negative. Finally, F-score is the harmonic means of precision and recall (Eq

(6).

F � score ¼ 2
P � R
P þ R

� �

ðEq 6Þ

For example, if the standard query text contains 3 tokens that could be categorized as fusion

proteins, and ProtFus identifies 2 of them, the accuracy can be calculated as: True (standard)

tokens = n, y, n, a; Predicted (by ProtFus) tokens = n, n, n, a (here, n = no token instance, y =

token instance, a = noise). In this case, Precision = 0.75, Recall = 0.75 and F-score = 0.75. Simi-

larly, the corresponding accuracy plot can be drawn by providing information about Precision,

Recall, and F-score values, and the number of runs. ProtFus still had a high false-positive rate,

due to the diverse corpus of texts and different forms of fusion mentions. However, this rate

automatically decreased when the corpus was updated with better literals.

Big Data processing using ProtFus and ChiPPI

To display the results of ProtFus in a user-friendly manner, we also built the Protein-Protein

Interaction of Fusions (PPI-Fus) database (http://protfus.md.biu.ac.il/bin/protfusdb.pl), sup-

ported by Apache Tomcat and My-SQL. This is an open source Big Data processing frame-

work that supports ETL (Extract, Transform and Load) and machine learning, as well as graph

generation. Some classical text mining tasks can also be performed by identifying biological,

functional, literal and miscellaneous tokens, as well as chunks from text. Further, for the pur-

pose of entity recognition, the word-token tagger has back-end Synonyms (with a synonym

resource), whereas the RegEx tagger has back-end synonyms (with rule base).

Further, in the case of identifying PPIs among fusion proteins, the pop-up result window

included the input text with interactions highlighted. Another feature of ProtFus is direct

searching using PubMed articles. Users can select from the given drop-down box, the number

of articles to be considered for searching fusion proteins and their interactions. The result

includes the abstracts of all the articles that best match with fusion protein keywords. This file

can be further used for highlighting the fusion proteins and their interactions.

Interestingly, the biological tokens correspond mainly to nouns; miscellaneous tokens may

correspond to verbs, pro-verbs, adverbs. etc; function tokens correspond to verbs and adjec-

tives; and literals correspond to conjunctions. Tables 4 and 5 represent the Precision and

Recall for the retrieval step and NER, respectively (see Methods). Similarly, Table 6 provides

the overall accuracy of the Naïve Bayes classifier, whereas Table 7 represents a comparative
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analysis of the overall extraction rate of fusion proteins and their PPIs using ProtFus and a

selection of other resources. This comparison showed that ProtFus performs much better in

overall extraction, with 92% accuracy. Thus, the process of tokenization was a very important

step in our script, as it filtered out essential tokens (like protein and function tokens) from

non-essential ones (like miscellaneous and literals) for better data extraction.

Considering discrete protein domains as binding sites for specific domains of interacting

proteins, we catalogued the protein interaction networks of more than 11,000 cancer fusions in

order to predict PPIs of fusion proteins using ChiPPI [22]. Mapping the effects of fusion pro-

teins on cell metabolism and protein interaction networks reveals that chimeric PPI networks

often lose tumor suppressor proteins and gain onco-proteins. As a case study, we compared the

results generated by ProtFus with the interaction prediction accuracy of ChiPPI [22]. For exam-

ple, in BCR-JAK2 fusion, ProtFus provided multiple hits regarding its occurrence in literature,

such as, “It was demonstrated in preclinical studies that BCR-JAK2 induces STAT5 activation

that elicits BCRxL gene expression” (PMC3728137), as correctly predicted by ChiPPI (Fig 3).

ProtFus shows superior performance compared to other text-mining

resources

To demonstrate the added value of the ProtFus tool, we performed a direct comparison with

existing services. Table 7 represents the accuracy of ProtFus as compared to, ChimerDB-3.0

[19], FusionCancer [23] and FusionDB [36] resources. ChimerDB-3.0 chooses fusion gene

candidate sentences from PubMed, which are further used for training a machine learning

model. FusionCancer and FusionDB do not use text mining for fusion prediction. However,

we used these datasets for resource-based comparisons of predicted fusion proteins. For the

set of 1817 fusion proteins that were tested, the efficiency of our algorithm was about 92%,

including the false positive rate, with respect to extracting fusion proteins and their PPIs from

text. We compared ProtFus with other tools, according to Precision, Recall and F-score. We

also found the Receiver Operating Characteristic (ROC) curves useful for quantitative

Table 6. Accuracy score of classifiers.

Dataset Precision Recall F-Score Accuracy

Set A 0.82 0.86 0.79 0.84

Set B 0.83 0.85 0.82 0.83

Set C 0.91 0.92 0.89 0.91

Set D 0.79 0.81 0.74 0.77

Set E 0.86 0.85 0.83 0.85

Set F 0.85 0.85 0.83 0.84

Set G 0.85 0.87 0.84 0.85

Set H 0.81 0.83 0.83 0.82

Set I 0.87 0.86 0.84 0.86

Set J 0.75 0.81 0.79 0.78

https://doi.org/10.1371/journal.pcbi.1007239.t006

Table 7. Performance of ProtFus compared to other resources.

Resource Full-Text Extraction

ChimerDB-3.0 Yes 82%

FusionCancer (does not use text mining) Yes NA

FusionDB (does not use text mining) Yes NA

ProtFus Yes 92%

https://doi.org/10.1371/journal.pcbi.1007239.t007
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representation of our method. Fig 4 shows representative ROC curves generated in a typical

experiment using ‘abstracts’ data. Compared to full-text articles, the extraction was better for

abstracts. This is because the size of feature space is too large for full-text articles. For text clas-

sification purposes, abstracts may yield better results than full-text scientific articles. We also

used various full-text journal corpus information for the purpose of evaluating our method’s

performance over others [37]. Thus, text mining enables the inclusion of text-based data

(unstructured data) in models that are subsequently for classification and clustering, and even

anomaly detection. In our study, we used Bayesian learning to identify fusion proteins and

their interactions. The effectiveness of ProtFus derives from the manner that it is used in spe-

cific cases. For example, the script can be updated to include different annotations associated

with fusion proteins, which can be further used to study their properties.

Conclusion

This study focused on investigating large-scale biomedical text classification downloaded from

PubMed. We utilized classical text-mining and machine learning strategies, and also Big Data

Fig 3. ChiPPI analysis (a) PPI-Fus/ProtFus extraction for BCR-JAK2 and STAT5B interaction (b) as predicted by

ProtFus.

https://doi.org/10.1371/journal.pcbi.1007239.g003
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infrastructure to design and develop a distributed and scalable framework. This was applied to

identify fusion proteins and their interactions for classifying information extracted from tens

of thousands of abstracts and full-text articles with associated MeSH terms. The accuracy of

predicting a cancer type by Naïve Bayes using the abstracts was 92%. In contrast, its accuracy

using the 103,908 abstracts (for fusion proteins only), 90,639 full texts (for fusion proteins

only), 185,606 abstracts (for fusion protein interactions) and 353,535 full texts (for fusion pro-

tein interactions) was 88%. This study demonstrates the potential for text mining of large-scale

scientific articles using a novel Big Data infrastructure, with real-time updating from articles

published daily. ProtFus can be extended to other areas of biomedical research to improve

searches in multiple medical records and medical data mining approaches.
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