

Prevalence of Bacteria of Genus Actinomyces in Persistent Extraradicular Lesions—Systematic Review

Mario Dioguardi ^{1,*}, Vito Crincoli ², Luigi Laino ³, Mario Alovisi ⁴, Diego Sovereto ¹, Lorenzo Lo Muzio ¹ and Giuseppe Troiano ¹

- ¹ Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; diego_sovereto.546709@unifg.it (D.S.); lorenzo.lomuzio@unifg.it (L.L.M.); giuseppe.troiano@unifg.it (G.T.)
- ² Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Division of Complex Operating Unit of Dentistry, "Aldo Moro" University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy; vito.crincoli@uniba.it
- ³ Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", 80121 Naples, Italy; luigi.laino@unicampania.it
- ⁴ Department of Surgical Sciences, Dental School, University of Turin, 10126 Torino, Italy; mario.alovisi@unito.it
- * Correspondence: mario.dioguardi@unifg.it

Received: 11 January 2020; Accepted: 5 February 2020; Published: 7 February 2020

Abstract: Actinomyces are anaerobic, rod-shaped, Gram-positive bacteria. They are associated with persistent extraradicular endodontic infections, with possible involvement of the soft tissues of the maxillofacial district. Many studies reported conflicting data on the presence of bacteria of the genus Actinomyces in endodontic infections. The aim of this systematic review of the literature was to determine the real prevalence of such bacteria in primary and/or secondary endodontic infections and in cases of persistence with extraradicular involvement. This systematic review was performed according to the PRISMA protocol. A search was carried out through the Scopus and PubMed databases of potentially eligible articles through the use of appropriate keywords. The literature research resulted in preliminary 2240 records which, after the elimination of overlaps and the application of inclusion and exclusion criteria, led to the inclusion of 46 articles focusing on three outcomes (primary outcome: number of teeth with the presence of a persistent extraradicular infection in which the presence of Actinomyces was ascertained; secondary outcome: number of teeth with endodontic infection in which the presence of Actinomyces was assessed; tertiary outcome: difference in the prevalence of bacteria of the genus Actinomyces between primary endodontic infections and secondary endodontic infections). Results of the meta-analysis show how bacteria of the genus Actinomyces are present in primary and secondary intraradicular infections and in those with persistence with a prevalence (ratio between teeth with *actinomyces* and teeth with infection) ranging from 0.091 up to 0.130 depending on the subgroups analyzed.

Keywords: endodontic; infections; root canal therapy; actinomyces

1. Introduction

Endodontic lesions may represent a consequence of the invasion of the endodontic space by bacteria. Such micro-organisms may enter the canalicular spaces through carious lesions, traumatic lesions, and periodontal lesions (endo-perio lesions) and determine pathologies such as serous and purulent pulpitis, dental necrosis, and acute and chronic apical periodontitis.

Primary endodontic infection of a tooth can be resolved through endodontic treatment with canal disinfection and sealing of the endodontic system using thermoplastic materials such as gutta-percha [1] and with the aid of epoxy resins or zinc oxide-based eugenol cements [2].

Sometimes due to either incomplete cleaning and disinfection of the canals and the lack of an apical seal, the endodontic treatment can fail in its purposes, and the residual infection can lead to a persistent apical infection [3].

The bacteria *Enterococcus faecalis* is considered the main cause for intraradicular apical persistence infections and endodontic failures; nevertheless, often an endodontic retreatment can determine the remission of the disease [4].

Intraradicular infections sustained by *Enterococci* may be sustained by an important component of extraradicular infection [5]. This last one may be: dependent on an intraradicular infection (generally following endodontic retreatment), i.e., with the remission of the intraradicular infection, the extraradicular infection is eradicated; or independent, when the infection persists despite endodontic treatment, and the apical outer surface of the roots is covered with bacterial biofilms sometimes in filamentous aggregates. Bacteria such as *Actinomyces* and *Propionibacterium* are among those responsible for persistent extraradicular infections [6].

Extradicular infections represent one of the potential causes leading the loss of the dental elements following the failure of both endodontic treatment and retreatment. The abscess can also involve the submandibular and sublinguals lodges, as well as the maxillary sinuses, and can create cutaneous fistulous tracts [7].

Several studies identified bacteria of the genus *Actinomyces* and *Propionibacteium* in extraradicular infections. Ricucci et al. reported in different reports [8–11] seven cases of persistent infection in radiographically correctly endodontically treated teeth. The histological examination detected the presence of filamentous bacteria (compatible with histological diagnosis of actinomycosis), involving the extraradicular surface of the teeth in continuity with the intraradicular infection, also highlighting the presence of bacterial biofilm that from the external surface involves the endodontic space through the involvement of the lateral canals that can independently sustain the infection of the root.

Focusing on endodontic infections, Claesson et al. 2017 showed the presence of *Actnomyces* (*A. radiscents*) in 16 out of 926 radicular apexes, out of a total of 601 patients in 7 years. In addition, five of the 16 patients with *Actinomyces* had abscesses with fistula persistence, and the same authors reported the first case of persistent apical lesion from *A. haliotis* [12].

Sousa identified 20 extraradicular persistent lesions in 633 cases after endodontic treatment and retreatment; those 20 cases underwent apical surgery, and the subsequent SEM analysis revealed the presence of bacterial biofilm compatible with extraradicular infections without adding information on the presence of *Actinomyces* [13].

In 2012, Wang showed the presence of *Actinomyces* in 11 out of 13 apices, against eight involvements of *Propionibacterium* and five instances of *Streptococcus* [14].

This research provides data on the prevalence of *Actinomyces* in slightly different persistent endodontic lesions.

To our knowledge, no other systematic reviews have been, up today, conducted with cumulative meta-analysis on the presence of *Actinomyces* in persistent extraradicular infections. A previous review focusing on the prevalence of bacteria in endodontic failures identified *Enterococcus faecalis* among the main culprits of failures, highlighting the main bacteria that support endodontic primary infections [15].

The present review aims to provide data on the prevalence of bacteria of the *Actinomyces* genus, on persistent extraradicular lesions (primary outcome) and on endodontic lesion (secondary outcome), giving more information on endodontic infections that involve the external radicular surface (formation of filamentous bacterial aggregates). Moreover, an exact knowledge of the prevalence of cases of extraradicular infections independent of *Actinomyces*-supported intraradicular infection will alert the

dentist to the possibility that endodontic retreatment supported by antibiotic therapy is ineffective in resolving the pathology that instead requires surgical extraction therapy or apicectomy.

2. Materials and Methods

The following systematic review was conducted based on the indications of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [16]. After an initial screening phase performed on abstracts identified on the evaluated databases, the potentially eligible articles are qualitatively evaluated in order to investigate the role of bacteria of genus *Actinomyces* in endodontic infections and persistent extraradicular infections on endodontically treated teeth.

2.1. Eligibility Criteria and Research Methodology

The studies taken into consideration were in vitro and clinical studies, concerning the subject of infections and persistent endodontic lesions on teeth that already have an endodontic treatment object in particular. Articles dealing with the role of *Actinomyces* in the infection of the external root surface conducted in recent years and published in English were considered potentially eligible. In addition, bibliographies of previously published systematic reviews on similar topics were checked in order to find articles for potential inclusion in this study.

It was decided to focus on articles published in the last 40 years, since the techniques of disinfection, shaping, and sealing in endodontic treatments have radically changed, and data on the prevalence of studies prior to 1979 would already represent a bias for inclusion in the meta-analysis. Moreover, the identification systems of bacteria and of micro-organisms have recently improved, and new bacterial spaces are always identified.

Articles considered to be potentially eligible are those studies that talk about of the role of bacteria in endodontic infections with particular attention to selecting articles dealing with the role of *Actinomyces* in persistent extraradicular infections.

The potentially eligible articles were finally subjected to a full-text analysis to verify their eligibility for inclusion in both qualitative and quantitative analysis.

The inclusion and exclusion criteria applied in the full-text analysis are the following:

- Include all those studies that have identified *Actinomyces* on the external radiculatum surface of the dental roots in teeth with persistent lesions previously treated by means of endodontic therapy;
- Include all those articles that have identified bacteria in persistent endodontic lesions after retreatment with extraradicular involvement;
- Include all articles that have analyzed the presence of *Actinomyces* infections in endodontic lesions (secondary outcome);
- The exclusion criteria are to exclude all those studies and articles that deal only with case reports and reviews;
- Include articles performed on a population larger than twenty teeth;
- Exclude all those studies that did not search for the presence of *Actinomyces* in the endodontic setting and that do not report data on the prevalence or incidence of *Actinomyces*.

Studies have been identified through bibliographic research on electronic databases. The literature search was conducted on the search engines "PubMed" and "Scopus". The search on the providers was conducted between 1 November 2019 and 10 September 2019 and the last search for a partial update of the literature was conducted on 15 November 2019. Details about search terms and combination strategies used for the literature research are reported in Table 1.

Database-Provider	Keywords	Search Details	Number of Records	Number of Records) after Restriction by Year of Publication (Last 40 Years)	Number of Remaining Articles Related to the Topic of Bacteria in Endodontic Infections	Articles after Removing Overlapping Articles	Number of Articles Remaining after Applying the Inclusion and Exclusion Criteria for the Secondary Outcome	Number of Articles Included for Tertiary Outcome (Difference in the Prevalence of Bacteria of the Genus Actinomices Between Primary Endodontic Infections and Secondary Endodontic Infections)	Number of Remaining Articles Pertaining to the Topic of Persistent Extraradicular Infections	Number of Articles Focusing on the Role of Actinomycetes a on Extraradicular Persistent Lesions	for the Primary
Pub-med	persistent endodontic infections OR persistent infection OR persistent extraradicular infection	(persistent (All Fields) AND endodontic (All Fields) AND ("infection" (MeSH Terms) OR "infection" (All Fields) OR "infections" (All Fields))) OR (persistent (All Fields)) AND intraradicular (All Fields) AND (infection" (MeSH Terms) OR "infection" (All Fields))) OR (persistent (All Fields))) OR (persistent (All Fields))) OR (persistent (All Fields))) OR (meSH Terms) OR "infection" (All Fields)))	160	158	42						

Table 1. Complete overview of the search methodology. Records identified by databases: 2240.

Table 1. Cont.

Database-Provider	Keywords	Search Details	Number of Records	Number of Records) after Restriction by Year of Publication (Last 40 Years)	Number of Remaining Articles Related to the Topic of Bacteria in Endodontic Infections	Articles after Removing Overlapping Articles	Number of Articles Remaining after Applying the Inclusion and Exclusion Criteria for the Secondary Outcome	Number of Articles Included for Tertiary Outcome (Difference in the Prevalence of Bacteria of the Genus Actinomices Between Primary Endodontic Infections and Secondary Endodontic Infections)	Number of Remaining Articles Pertaining to the Topic of Persistent Extraradicular Infections	Number of Articles Focusing on the Role of Actinomycetes a on Extraradicular Persistent Lesions	Number of Articles Included for the Primary Outcome
Pub-med	Actinomyces AND endodontic OR actinomycetes AND endodontic OR Endodontic failure	("actinomyces" (MeSH Terms) OR "actinomyces" (All Fields)) AND endodontic (All Fields) OR ("actinobacteria" (MeSH Terms) OR "actinobacteria" (All Fields) OR "actinomycetes" (All Fields)) AND endodontic (All Fields) OR (Endodontic (All Fields) AND failure (All Fields))	1870	1814	111						
Pub-med	"Periapical actinomycosis"	"Periapical actinomycosis" (All Fields)	26	11							
Scopus	persistent intraradicular infection	TITLE-ABS-KEY (persistent AND intraradicular AND infection)	23	23	14						

Table 1. Cont.

Database-Provider	: Keywords	Search Details	Number of Records	Number of Records) after Restriction by Year of Publication (Last 40 Years)	Number of Remaining Articles Related to the Topic of Bacteria in Endodontic Infections	Articles after Removing Overlapping Articles	Number of Articles Remaining after Applying the Inclusion criteria for the Secondary Outcome	Number of Articles Included for Tertiary Outcome (Difference in the Prevalence of Bacteria of the Genus Actinomices Between Primary Endodontic Infections and Secondary Endodontic Infections)	Number of Remaining Articles Pertaining to the Topic of Persistent Extraradicular Infections	Number of Articles Focusing on the Role of Actinomycetes a on Extraradicular Persistent Lesions	Number of Articles Included for the Primary Outcome
Scopus	persistent extraradicular infection	TITLE-ABS-KEY (persistent AND extravascular AND infection)	18	18	15						
Scopus	<i>Actinomyces</i> AND endodontic	TITLE-ABS-KEY (actinomyces AND endodontic)	143	136	27						
Total records			2240	2160	209	165	46	7	33	19	6

2.2. Screening Methodology

The obtained search records were subsequently examined by two independent reviewers (M.D. and D.S.), and a third reviewer (G.T.) acted as a decision maker in case of disagreement between the two reviewers. The screening included the analysis of the title and the abstract to eliminate the records not related to the topics of the review. After the screening phase, the overlaps were removed and the complete texts of the articles were analyzed, from which the ones eligible for the qualitative analysis and the inclusion in the meta-analysis for the two outcomes were identified. Data sought by the two reviewers in the included studies were:

- (1) Primary outcome: number of teeth with the presence of a persistent extraradicular infection in which the presence of *Actinomyces* has been ascertained;
- (2) Secondary outcome: number of teeth with endodontic infection in which the presence of *Actinomyces* has been ascertained;
- (3) Tertiary outcome difference in the prevalence of bacteria of the genus *Actinomyces* between primary endodontic infections and secondary endodontic infections.

2.3. Risk of Bias Assessment and Planned Methods for Analysis

The Newcastle–Ottawa scale for case-control study was used to assess the risk of bias in the included studies. Meta-analysis for the primary and secondary outcomes was performed by random effects model with the DerSimonian–Liard method calculating the pooled proportion (PP) of the prevalence of endodontic infections using the software Open Meta-Analyst version 10 (Tufts University, Medford, MA, USA). Moreover, quantitative analysis for the tertiary outcome was performed with the software Reviewer Manager 5.3 (Cochrane collaboration, Copenhagen, Denmark) [17]. In particular, pooled odds ratios (OR) and its 95% confidence intervals were calculated, and the inverse of variance test was applied to test for differences in overall effects between groups. The presence of heterogeneity was assessed by calculating the Higgins Index (I^2); if such measure proved to be higher than 50%, the rate of heterogeneity was considered high. Pooled results of the meta-analysis were represented by forest plots for each of the analyzed outcomes.

3. Results

A total of 2240 records were identified on Pubmed and Scopus. After the initial screening phase, the elimination of overlaps and application of the inclusion and exclusion criteria, the following articles were obtained for the three outcomes:

- six articles for the primary outcome: Persoon et al. 2017 [18], Esteves et al. 2017 [19], Sunde et al. 2002 [20], Hirshberg et al. 2003 [21], Zhang et al. 2010 [22], Signoretti et al. 2013 [23];
- articles for the secondary outcome: Pourhajibagher et al. 2018 46 [24], Lysakowska et al. 2016 [25], Halbauer et al. 2013 [26], Signoretti et al. 2013 [23], Niazi et al. 2010 [27], Fujii et al. 2009 [28], Vianna et al. 2007 [29], Chavez de Paz et al. 2005 [30], Gomes et al. 2004 [31], Claesson et al. 2017 [12], Rolph et al. 2001 [32], Sundqvist et al. 1998 [33], Vigil et al. 1997 [34], Sjogren et al. 1997 [35], Gomes et al. 1996 [36], Debelian et al. 1995 [37], Fukushima et al. 1990 [38], Qi et al. 2016 [39], Fernandes et al. 2014 [40], Tennert et al. 2014 [41], Chugal et al. 2011 [42], Ledezma-Rasillo et al. 2010 [43], Zhang et al. 2010 [22], Mindere et al. 2010 [44], Cogulu et al. 2008 [45], Chu et al. 2005 [46], Chavez de Paz et al. 2004 [47], Siqueira et al. 2004 [48], Hirshberg et al. 2003 [21], Tang et al. 2003 [49], Xia et al. 2003 [50], Pinheiro et al. 2003 [51], Siqueira et al. 2002 [52], Peters et al. 2002 [53], Sunde et al. 2002 [20], Siqueira et al. 2002 [54], Ercan et al. 2006 [55], Molander et al. 1998 [56], Ruviere et al. 2008 [57], Sundqvist et al. 1992 [58], Brauner and Conrads 1995 [59], Assed et al. 1996 [60], Hancock et al. 2001 [61], Esteves et al. 2017 [19], Persoon et al. 2017 [18];

 seven articles for the tertiary outcome: Ercan et al. 2006 [55], Chugal et al. 2011 [42], Tennert et al. 2014 [41], Fernandes et al. 2014 [40], Rolph et al. 2001 [32], Gomes et al. 2004 [31], Lysakowska et al. 2016 [25].

K agreement between the two screening reviewers was 0.625 (Table 2). The K agreement was based on the formulas of the *Cochrane Handbook for Systematic Reviews* [62].

Table 2. K agreement calculation, Po = 0.848 (Proportion of agreement), Pe = 0.595 (Agreement expected), K agreement = 0.625 (<0 no agreement, 0.0-0.20 slight agreement, 0.21-0.40 fair agreement, 0.41-0.60 moderate agreement, 0.61-0.80 substantial agreement, 0.81-1.00 almost perfect agreement). The K agreement was calculated from the 33 articles to include six articles with the application of the inclusion and exclusion criteria for primary outcome.

		Reviewer 2	Reviewer 2	Reviewer 2	
		Include	Exclude	Unsure	Total
Reviewer 1	Include	6	0	0	6
Reviewer 1	Exclude	3	22	2	27
Reviewer 1	Reviewer 1 Unsure		0	0	0
	Total	9	22	2	33

The entire selection and screening procedures are described in the flow chart (Figure 1).

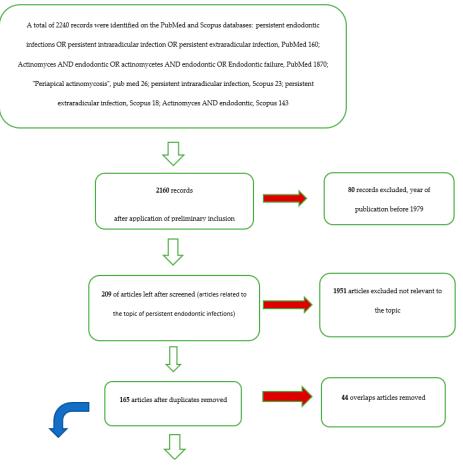


Figure 1. Cont.

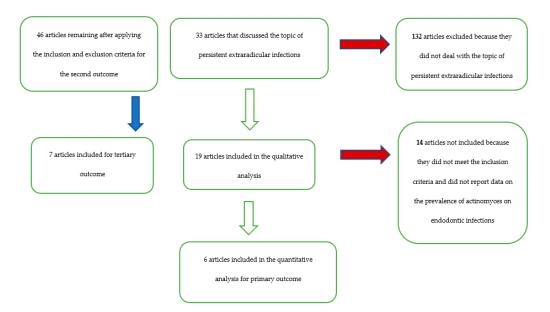


Figure 1. Flow chart of the different phases of the systematic review.

3.1. Study Characteristics and Data Extraction

The extracted data included the magazine (author, data, and journal), the bacterium species of the genus *Actinomyces* investigated (genus, species, and number of dental elements with the presence of the bacterium), the number of samples examined, type of sample (necrotic or vital tooth, endodontic canal, tooth in pulpitis or apical periodontitis, tooth previously treated endodontically, tooth with failure subject to extraction or endodontic surgery), the number of samples per pathology with the presence of *Actinomyces*, and the method used for bacterium identification (PCR or culture).

If data on the prevalence in single studies were reported only for the individual species of *Actinomyces* and the overall data were not present or it was not possible to obtain them, the data pertaining to the species were considered for the purpose of the meta-analysis, which in the single study presented the higher prevalence. If the data were reported as a percentage, the number was calculated through the use of proportions.

The data extracted for the tree outcomes are shown in Tables 3 and 4.

Author, Date, Journal	Actinomyces	Type of	Tooth or Root, of Dental Treatment, or Er	Number of Teeth or Channels or Periapical Tissue in Which the Presence of Actinomycetes Has Been Identified	Total Number of Teeth or Channels or Periapical Tissue in Which the Presence of Actinomycetes Was Investigated	Identification Method of Bacterial Species	
[24] Pourhajibagher et al. 2018 Photodiagnosis and photodynamic therapy	A. naeslundii	12	root canal samples	12/36	12	36	culture
	A. naeslundii _	0/19	primary endodontic infections 1/19				
[25] Lysakowska et al. 2016 International		2/28		_/ _/	— 4	47	culture
endodontic journal	A. meyeri	1/19	secondary treatment	3/28	Ŧ	-17	culture
	0	1/28	5	,			
[26] Halbauer et al.	A. meyeri	1/23	chronical apical periodontitis (<i>n</i> = 17 untreated teeth)	17	1	23	culture
2013 Coll Antropol		-/	chronical apical periodontitis (n = 6 retreatments)	6			culture
	A. naeslundii	2/13					
[23] Signoretti et al. 2013 Journal of		3/7	 persistent apical lesions associated with well-performed 	20	5	20	culture
endodontics	A. meyeri	1/13	endodontic retreatment ($n = 13$	20	5	20	culture
	_	1/7	— cyst $n = 7$ granuloma)				
	A. gerencseriae	1/20					
-	A. massiliensis	1/20	 20 refractory endodontic lesions 				
[27] Niazi et al. 2010 Journal of endodontics	A. meyeri	1/20	(5/9 with abscesses and 6/11	20	11	20	PCR
,	A. radicidentis	1/20	without abscesses)				
-	A. israelii	1/20					
-	Actinomyces sp.	7/20					

Table 3. The data on the prevalence of the various bacteria of the genus *Actinomyces* in the various studies included for the three outcomes are reported.

Total Number

Table 3.	Cont.
----------	-------

Author, Date, Journal	Actinomyces	Type of '	Tooth or Root, of Dental Treatment, or	Endodontic Pathology	Number of Teeth or Channels or Periapical Tissue in Which the Presence of Actinomycetes Has Been Identified	Total Number of Teeth or Channels or Periapical Tissue in Which the Presence of Actinomycetes Was Investigated	Identification Method of Bacterial Species
[28] Fujii et al. 2009	A. israelii —	2/16	infection lesions with apical	2/20	2	20	PCR
Oral microbiology and immunology		0/5	 periodontitis 20 (16 without sinus tract, 5 with sinus tract) 	-, - *	-		
[29] Vianna et al. 2007 Oral microbiology and immunology	A. naeslundii	6/24	human necrotic root canals	6/24	6	24	PCR
[30] Chavez de Paz et	A. israelii	1/100					
al. 2005 Oral surgery,	A. meyerii	2/100					
oral medicine, oral	A. naeslundii	2/100	teeth with apical periodontitis	4/100	4	100	PCR
athology, oral radiology, [–] and endodontics	A. odontolyticus	4/100	_				
	Actinomyces spp	1/100					
[31] Gomes et al. 2004	Actinomyces meyerii	3/0	41 primary infection	3/60	3	60	PCR
Oral microbiology and immunology	<i>v v</i> <u></u>	0/19	19 endodontic failure	,	-		
[12] Claesson et al. 2017	A. radicidentis	16/926	root canal sar	nples	17	926	PCR
Anaerobe	A. haliotis	1/926			17	20	i en
	A. naeslundii	2/15					
[32] Rolph et al. 2001		0/26	 2/15 primary endodor 	ntic infections			
Journal of clinical	A. viscosus	1/15	_		3	41	culture
microbiology		0/26					
	A. israelii	0/15	 1/26 refractory cases of end 	lodontic infections			
	21. <i>Wittetti</i>	1/26					
[33] Sundqvist et al. 1998 Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics	A. israelii	3/54	54 teeth with failed endo	dontic treatment	3	54	culture

Table	3.	Cont.
-------	----	-------

Author, Date, Journal	Actinomyces Type of Toot		Footh or Root, of Dental Treatment, or Endodontic Pathology	Number of Teeth or Channels or Periapical Tissue in Which the Presence of Actinomycetes Has Been Identified	Total Number of Teeth or Channels or Periapical Tissue in Which the Presence of Actinomycetes Was Investigated	Identification Method of Bacterial Species
[34] Vigil et al. 1997 Journal of endodontics	A. odontolyticus	1/28	28 refractory endodontic cases requiring surgical intervention	1	28	culture
[35] Sjogren et al. 1997 _	A. naeslundii	1/20				
International endodontic	A. odontolyticus	1/20	20 apical periodontitis	2	20	culture
journal	A. israelii	2/20	_			
	A. naeslundii	2/70				
[36] Gomes et al. 1996 J dental —	A. viscosus	3/70	necrotic pulp	5	70	culture
	A. israelii	4/70	_			
	A. meyeri	5/70	_			
	A. israelii	5/26				
[37] Debelian et al. 1995 – Endodontics & dental	A. meyeri	1/26	26 teeth with asymptomatic apical periodontitis	5	26	culture
traumatology	A. naeslundii	2/26	_			
-	A. odontolyticus	1/26	_			
[38] Fukushima et al	A. israelii	2/21				
1990 Journal of	A. viscosus	2/21	21 untreated cases	4	21	culture
endodontics	A. meyeri	1/21	_			
_	A. naeslundii	1/21	_			
[39] Qi et al. 2016 Int	A. naeslundii	14/90				
Endod J	A. israelii	2/90	primary endodontic infections	14	90	PCR
	A. viscosus	0/90				
[40] Fernandes et al. 2014 <i>Microb Pathog</i>	Actinomyces spp		pulpitis (0–27) pulp necrotic teeth with apical periodontitis (4–33) al periodontitis associated with a root-filled tooth (10–21)	<u>4/60</u> 14 10/21	81	PCR

Table 3. Cont.			
	Number of Teeth or Channels or Periapical Tissue in Which	Total Number of Teeth or Channels or Periapical Tissue in	Identificatio Method of
reatment, or Endodontic Pathology	the Presence of Actinomycetes Has Been Identified	Which the Presence of Actinomycetes	Bacterial Species

Author, Date, Journal	Actinomyces	Type of	Tooth or Root, of Dental Treatment, or Endodontic Pathology	or Periapical Ti the Presence of	Number of Teeth or Channels or Periapical Tissue in Which the Presence of Actinomycetes Has Been Identified		Identification Method of Bacterial Species
	A. viscosus _	1/11	primary infection	2/11			PCR
Tennert et al. 2014 [41]		0/11	1 7		2	22	
	A. naeslundii _	1/11	secondary/persistent infection	0/11			
		0/11	2.1	•			
[42] Chugal et al. 2011 J	Actinomyces spp	11/19	primary endodontic infections	11/19	16	29	PCR
Endod		5/10	secondary infections	5/10	10		i en
[43] Ledezma-Rasillo et	A. israelii	4/21	primary teeth with necrotic pulps	6		21	culture
al. 2010 J Clin Pediatr Dent	A. naeslundii	2/21			, ,	-1	culture
[22] Zhang et al. 2010	A. israelii (21%)		persistent apical periodontitis	14	1	33	PCR
Chin J Dent Res	A. viscosus (42%)		r	1	I	00	rek
[44] Mindere et al. 2010	A. odontolyticus	1/33				33	
Stomatologija	A. israelii	1/33	root-filled teeth with asymptomatic persisting periapical lesions	4	4		culture
	A. viscosus	2/33					
[45] Cogulu et al. 2008			acute apical periodontitis (deciduous 20, permanent 22)				
Oral Surg Oral Med Oral Pathol Oral Radiol Endod	A. israelii –	c	hronic apical periodontitis (deciduous 35, permanent 28)	- 0)	145	PCR
	-	exa	cerbated apical periodontitis (deciduous 24, permanent 16)	-			
	A. israelii (7%)	3/45					
[46] Chu et al. 2005 [(14%) -	6/43	primary endodontic infections with exposed 45;				
Endod	A. meyeri (13%)	6/45	primary endodontic infections with unexposed 43	14	14		culture
	(19%) -	8/43	_				
	A. odontolyticus	5/45	_				
	(11%) (19%) –	8/43	—				

Author, Date, Journal	Actinomyces	Type of Too	th or Root, of Dental Treatment, or Endodontic Pathology	Number of Teeth or Channels or Periapical Tissue in Which the Presence of Actinomycetes Has Been Identified	Total Number of Teeth or Channels or Periapical Tissue in Which the Presence of Actinomycetes Was Investigated	Identification Method of Bacterial Species
	A. israelli	2/23				
	A. meyeri	7/23				
[47] Chavez de Paz et al. 2004 Int Endod J	A. naeslundii	3/23	apical periodontitis	23	139	PCR
ai. 2004 ini Enuou j	A. odontolyticus	6/23				
	A. radicidentis	0/23				
	A. viscosus	0/23				
	Actinomyces spp.	1/23				
[48] Siqueira et al. 2004	A. israelii	0/22	root-filled teeth with persistent periradicular lesions	1	22	PCR
Oral Surg Oral Med Oral Pathol Oral Radiol Endod	A. radicidentis	1/22	····· · · · · · · · · · · · · · · · ·	1		ren
[21] Hirshberg et al. 2003 Oral Surg Oral Med Oral Pathol Oral Radiol Endod	Actinomyces spp		persistent periapical lesions	17	963	histology
	odontolyticus (31.3%)	10/32				
[49] Tang et al. 2003 J	A. meyeri (9.4%)	3/32	primary root canal infections	16	32	PCR
Dent	A. naeslundii (9.4%)	3/32				
	A. israelii (6.3%)	2/32				
	A. gerencseriae (3.1%)	1/32				

Table 3. Cont.

Author, Date, Journal	Actinomyces	Type of To	oth or Root, of Dental Treatment, or Endodontic Pathology	Number of Teeth or Channels or Periapical Tissue in Which the Presence of Actinomycetes Has Been Identified	Total Number of Teeth or Channels or Periapical Tissue in Which the Presence of Actinomycetes Was Investigated	Identification Method of Bacterial Species
[50] Xia et al. 2003 J	A. israelii (23.7%)	31/129	primary root canal infections (41/51)			
Endod	A. naeslundii (8.5%)	11/129	abscesses (22/48)	72	129	PCR
	A. viscosus (32.1%)	41/129	cellulitis (9/31)			
[51] Pinheiro et al. 2003	A. naeslundii	2/30				
Oral Microbiol Immunol	003	teeth with endodontic failure	4	30	PCR	
	A. viscosus	1/30				
[52] Siqueira et al. 2002 Int Endod J	A. israelii		root canal infections, necrotic pulps	2	40	PCR
[53] Peters et al. 2002	Actinomyces spp.	3/58				
Int Endod J	A. odontolyticus	11/58	primary endodontic infections	11	58	culture
[53] Peters et al. 2002 Int Endod J	A. meyeri	6/58				
	A. israelii	6/36				
[20] Sunde et al. 2002 J	A. meyeri	3/36	periapical lesions refractory to endodontic therapy	9	36	culture
Endod	A. viscosus	7/36	penapical colors relationly to endousline alongy	2	50	culture
	Actinomyces species	1/36				
	A. naeslundii	5/36				
	A. gerencseriae	4/53				
[54] Siqueira et al. 2002 [Endod	A. israelli	2/53	primary root; canal infections	7	53	PCR
ј Епиои	A. naeslundii	0/53	canal milections			
	A. odontolyticus	1/53				

Table 3. Cont.

Author, Date, Journal	Actinomyces	Type of	Footh or Root, of Dental Treatment, or Endodontic Pathology	Number of Teeth or Channels or Periapical Tissue in Which the Presence of Actinomycetes Has Been Identified	Total Number of Teeth or Channels or Periapical Tissue in Which the Presence of Actinomycetes Was Investigated	Identification Method of Bacterial Species
	A. odontolyticus	4/61	— (1 had manufic multi tissues (mintermintertion) (/(1			
[55] Ercan et al. 2006		4/39	 61 had necrotic pulp tissues (primary infection) 6/61 		100	
Biotechnol. & Biotechnol. Eq.	A. meyeri	2/61			100	culture
,	-	0/39	39 had a history failed endodontic treatment			
	A. naeslundii	0/61	(secondary infection) 8/39			
		4/39				
[56] Molander et al.	Actinomyces spp.	100 root-fill	ed teeth with radiographically verified apical period ontitis ($n =$	2) 2	120	culture
1998 Int Endod J		2	0 root-filled teeth without signs of apical periodontitis			
	A. viscosus	0/55	_			
		0/51	55 root canals of primary teeth with irreversible pulpitis	3		
	A. naeslundii	0/55				
[57] Ruviere et al. 2008 [Dent Child (Chic)	genospecies 1	2/51	_	16	106	PCR
) Doni Chini (Chin)	A. odontolyticus	3/55				
		10/51	_			
	A. israelii	0/55	51 root canals of primary teeth with necrotic pulp and apie	cal		
		10/51	periodontitis			
	A. gerencseriae	2/55	_			
	0	10/51				
	Actinomyces sp., '1	1/65				
[58] Sundqvist et al.	A. israelii	7/65				
1992 Oral Microbiol Immunol	A. meyeri	1/65	nonvital teeth with periapical lesions	7	65	culture
1111111111111	A. naeslundii	3/65				
	A. odonlotyticus	1/65				
	A. viscosus	1/65	_			

[63] Sundqvist et al. 1989 J Endod

2/72

1/72 1/72

A. meyerii

A. viscosus

A. odontolyticus

Author, Date, Journal	Actinomyces	Type of Toot	n or Root, of Dental Treatment, or Endodontic Pathology	Number of Teeth or Channels or Periapical Tissue in Which the Presence of Actinomycetes Has Been Identified	Total Number of Teeth or Channels or Periapical Tissue in Which the Presence of Actinomycetes Was Investigated	Identification Method of Bacterial Species
[59] Brauner and	Actiuomyccs spp	5/19	19 root canal $(n = 6)$	8	43	culture PCR
Conrads 1995 Int Endod _ J	A. israelii	1/19	24 periapical granuloma ($n = 2$)		10	culture r cik
		0/24				
[60] Assed et al. 1996 Endod Dent Traumatol	A. viscosiis		chronic apical periodontitis	14	25	immunofluorescence
[61] Hancock et al. 2001 Oral Surg Oral Med Oral Pathol Oral Radiol Endod	Actinomyces spp.	chronic	apical periodontitis in teeth with endodontic failure	9	54	culture
[19] Esteves et al. 2017 Braz Dent J	Actinomyces	persist	ent periapical lesions (cysts, granulomas or abscess)	7	218	histology
[18] Persoon et al. 2017 Clin Oral Investig	Actinomyces	apical po	riodontitis and refrained from endodontic treatment	2	23	PCR
	A. israelii	1/72				

necrotic pulps and apical periodontitis

Table 3. Cont.

72

5

culture

Author, Date, Journal	Species	Primary Endod	ontic Infections	Secondary/Pers	istent Infection
		event	total	event	total
[42] Chugal et al.	Actinomyces spp.	11	19	5	10
2011 J Endod	tot	11	19	5	10
[55] Ercan et al. 2006	A. odontolyticus	4	61	4	39
Biotechnol. &	A. naeslundii	0	61	4	39
Biotechnol. Eq.	A. meyeri	2	61	0	39
-	tot	6	61	8	39
[41] Tennert et al.	A. viscosus	1	11	0	11
2014 J Endod	A. naeslundii	1	11	0	11
-	tot	2	11	0	11
[40] Fernandes et al.	Actinomyces spp.	4	60	10	21
2014 Microb Pathog	tot	4	60	10	21
[32] Rolph et al. 2001	A. naeslundii	2	15	0	26
Journal of clinical	A. israelii	0	15	1	26
microbiology	A. viscosus	1	15	0	26
-	tot	2	15	1	26
[31] Gomes et al. 2004	Actinomyces meyerii	3	41	0	19
Oral microbiology and - immunology	tot	3	41	0	19
[25] Lysakowska et al.	A. naeslundii	0	19	2	28
2016 International endodontic journal	A. meyeri	1	19	1	28
ennouonne journui	tot	1	19	3	28

Table 4. Tertiary outcome (difference in the prevalence of bacteria of the genus *Actinomyces* between primary endodontic infections and secondary endodontic infections).

3.2. Risk of Bias

The risk of bias was assessed through the Newcastle–Ottawa case-control scale, modified for the cumulative meta-analysis. The results are reported in detail in Table 5. For each category, a value of one to three was assigned (one = low and three = high).

Studies presenting a high risk of bias were not included in the meta-analyses. Articles with high Bias risk were excluded from the scale and eliminated during the inclusion phase. Other articles were excluded because they presented the same data and samples for the outcomes investigated. The risk of bias assessment for the 46 articles included was conducted by the first reviewer (M.D.).

Table 5. Assessment of risk of bias within the studies (Newcastle–Ottawa scale) with scores 7 to 12 = low quality, 13 to 20 = intermediate quality, and 21 to 24 = high quality.

		Selection			Comparability		Exposure		Score
Reference	Definition of Cases	Representativeness of Cases	Selection of Controls	Definition of Controls	Comparability of Cases and Controls on the Basis of the Design or Analysis	Ascertainment of Exposure	Same Method of Ascertainment for Cases and Controls	Non-Response Rate	
[24] Pourhajibagher et al. 2018 Photodiagnosis and photodynamic therapy	3	3	0	0	0	3	3	0	12
[12] Claesson et al. 2017 Anaerobe	2	3	0	0	0	3	3	0	11
[19] Esteves et al. 2017 Braz Dent J	3	3	0	0	3	0	0	0	9
[18] Persoon et al. 2017 Clin Oral Investig	3	3	0	0	1	3	1	0	11
[25] Lysakowska et al. 2016 International endodontic journal	3	3	3	3	2	2	3	0	19
[39] Qi et al. 2016 Int Endod J	3	3	0	0	0	3	3	0	12
[40] Fernandes et al. 2014 <i>Microb Pathog</i>	3	3	2	3	2	3	3	0	19
[41] Tennert et al. 2014 Journal of endodontics	2	3	3	2	2	3	3	0	18
[26] Halbauer et al. 2013 Coll Antropol	1	3	3	1	2	3	3	0	16
[23] Signoretti et al. 2013 Journal of endodontics	2	1	2	2	2	3	3	0	15
[42] Chugal et al. 2011 Journal of endodontics	2	2	1	2	2	3	3	0	15
[22] Zhang et al. 2010 Chin J Dent Res	2	2	2	2	2	2	2	0	14

Table 5. Cont.

		Selection			Comparability		Exposure		Score
Reference	Definition of Cases	Representativeness of Cases	Selection of Controls	Definition of Controls	Comparability of Cases and Controls on the Basis of the Design or Analysis	Ascertainment of Exposure	Same Method of Ascertainment for Cases and Controls	Non-Response Rate	
[43] Ledezma-Rasillo et al. 2010 The Journal of clinical pediatric dentistry	3	1	2	2	2	2	3	0	15
[44] Mindere et al. 2010 Stomatologija	2	2	0	0	0	2	2	0	8
[45] Cogulu et al. 2008 Oral Surg Oral Med Oral Pathol Oral Radiol Endod	3	3	0	0	0	3	3	0	12
[27] Niazi et al. 2010 Journal of endodontics	3	1	3	3	2	1	3	0	16
[28] Fujii et al. 2009 Oral microbiology and immunology	2	2	0	0	0	2	2	0	8
[57] Ruviere et al. 2008 J Dent Child (Chic)	3	3	2	2	2	3	3	0	18
[29] Vianna et al. 2007 Oral microbiology and immunology	3	2	3	2	2	2	3	0	17
[55] Ercan et al. 2006 Biotechnol. & Biotechnol. Eq.	3	2	3	3	3	3	3	0	20
[46] Chu et al. 2005 Journal of endodontics	3	2	3	3	3	2	3	0	19
[30] Chavez de Paz et al. 2005 Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics	3	3	3	3	2	3	3	0	20

Comparability		Exposure		Score
Comparability of Cases and Controls on the Basis of	Ascertainment of Exposure	Same Method of Ascertainment for Cases and	Non-Response Rate	

Table 5. Cont.

		Selection			Comparability		Exposure		Score
Reference	Definition of Cases	Representativeness of Cases	Selection of Controls	Definition of Controls	Comparability of Cases and Controls on the Basis of the Design or Analysis	Ascertainment of Exposure	Same Method of Ascertainment for Cases and Controls	Non-Response Rate	
[31] Gomes et al. 2004 Oral microbiology and immunology	2	2	2	3	3	3	3	0	21
[47] Chavez de Paz et al. 2004 International endodontic journal	3	3	3	3	3	2	3	0	20
[48] Siqueira et al. 2004 Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics	3	1	0	0	0	3	2	0	9
[21] Hirshberg et al. 2003 Oral Surg Oral Med Oral Pathol Oral Radiol Endod	3	2	0	0	0	2	2	0	9
[49] Tang et al. 2003 J Dent	3	3	0	0	0	3	1	0	10
[50] Xia et al. 2003 J Endod	3	3	0	0	0	3	0	0	9
[51] Pinheiro et al. 2003 Oral Microbiol Immunol	3	3	0	0	0	3	0	0	9
[52] Siqueira et al. 2002 Int Endod J	2	3	0	0	0	3	0	0	8
[53] Peters et al. 2002 Int Endod J	2	3	0	0	0	3	0	0	8
[20] Sunde et al. 2002 Journal of endodontics	2	2	2	2	3	2	3	0	16
[54] Siqueira et al. 2002 J Endod	3	3	1	0	0	0	3	0	10

journal

		Selection			Comparability		Exposure		Score
Reference	Definition of Cases	Representativeness of Cases	Selection of Controls	Definition of Controls	Comparability of Cases and Controls on the Basis of the Design or Analysis	Ascertainment of Exposure	Same Method of Ascertainment for Cases and Controls	Non-Response Rate	
[61] Hancock et al. 2001 Oral Surg Oral Med Oral Pathol Oral Radiol Endod	3	3	2	0	0	0	3	0	11
[32] Rolph et al. 2001 Journal of clinical microbiology	3	3	3	3	3	2	3	0	20
[33] Sundqvist et al. 1998 Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics	2	2	2	2	2	2	3	0	15
[56] Molander et al. 1998 International endodontic journal	3	3	0	0	0	2	3	0	11
[34] Vigil et al. 1997 Journal of endodontics	3	2	0	0	0	3	2	0	10
[35] Sjogren et al. 1997 International endodontic journal	2	2	2	2	3	2	3	0	16
[36] Gomes et al. 1996 J dental	3	2	0	0	0	2	2	0	9
[60] Assed et al. 1996 Endod Dent Traumatol	2	3	0	0	0	3	0	0	8
[59] Brauner et al. 1995 International endodontic	3	2	0	0	0	2	2	0	9

Table 5. Cont.

		Selection			Comparability		Exposure		Score
Reference [37] Debelian et al. 1995	Definition of Cases	Representativeness of Cases	Selection of Controls	Definition of Controls	Comparability of Cases and Controls on the Basis of the Design or Analysis	Ascertainment of Exposure	Same Method of Ascertainment for Cases and Controls	Non-Response Rate	
[37] Debelian et al. 1995 Endodontics & dental traumatology	2	2	2	2	3	2	2	0	15
[58] Sundqvist et al.1992 Oral microbiology and immunology	2	2	2	0	0	0	2	0	8
[38] Fukushima et al. 1990 Journal of endodontics	2	1	2	0	0	0	2	0	7
[63] Sundqvist et al. 1989 Journal of endodontics	3	3	3	0	0	0	2	0	11

The risk of bias between the studies is considered very high for the primary and secondary outcome; in fact, the heterogeneity that emerges from the meta-analysis shows an I^2 equal to 88.09% for the primary outcome and 90.96% for the secondary outcome. For the tertiary outcome, the risk of bias between the studies was assessed through the funnel plot for the seven articles included (Figure 2).

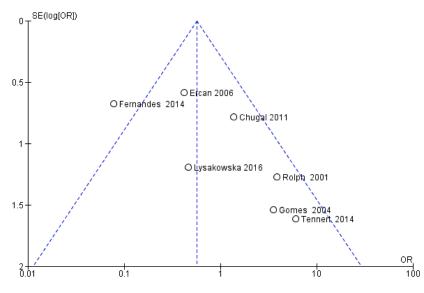


Figure 2. Funnel plot of the evaluation of heterogeneity of tertiary outcomes.

3.3. Meta-Analysis

The heterogeneity of the primary outcome (number of teeth with the presence of a persistent extraradicular infection in which the presence of *Actinomyces* has been ascertained) was high with an I^2 equal to 88.09%. For this reason, a random effects model was used. The cumulative meta-analysis presents an overall pooled proportion ($I^2 = 88.09\%$, *p* value < 0.001) of 0.108 (0.051, 0.165) with a ratio between events and samples examined equal to 55/1294 (Figure 3).

For the secondary outcome, the heterogeneity was very high with an I^2 equal to 90.96%. For that reason, a random effects model was used. The cumulative meta-analysis presents a pooled proportion ($I^2 = 90.96\%$, *p* value < 0.001) of 0.130 (0.108, 0.151) with a ratio between events and samples examined equal to 418/4406 (Figure 4).

In consideration of the high heterogeneity of the studies, an analysis of the subgroups for the secondary outcome was also conducted. Studies were divided into primary, secondary, and primary/secondary, based on whether they investigated the presence of bacteria of the genus *Actinomyces* in teeth with primary or secondary infection or in both. The results are reported in Figure 5.

J. Clin. Med. 2020, 9, 457

Cumulative Forest Plot

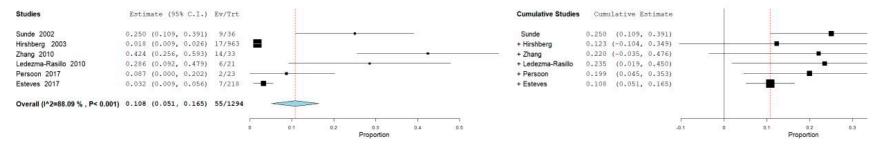


Figure 3. Forest plot of the random effects model of the cumulative meta-analysis of the primary outcome.

tudies	Estimate (95% C.I.)	Ev/Trt			Cumulative Studies	Cumulati	ve Estimate			
undqvist (2) 1989	0.069 (0.011, 0.128)	5/72			Sundqvist (2)	0.069 (0.	011, 0.128)			
ukushima 1990	0.190 (0.023, 0.358)	4/21			+ Fukushima	0.103 (-0.	003, 0.210) -			
undqvist 1992	0.108 (0.032, 0.183)	7/65 —			+ Sundqvist		046, 0.138)			
ebelian 1995	0.192 (0.041, 0.344)	5/26			+ Debelian	0.105 (0.	055, 0.156)		_	
rauner and Conrads 1995	0.186 (0.070, 0.302)	8/43			+ Brauner and Conrads	0.121 (0.	069, 0.172)		_	
omes (2) 1996	0.071 (0.011, 0.132)	5/70			+ Gomes (2)	0.105 (0.	064, 0.146)		_	_
sed 1996	0.560 (0.365, 0.755)	14/25			+ Assed	0.166 (0.	086, 0.245)			
jiletal. 1997 1997	0.036 (0.000, 0.104)	1/28 —			+ Vigil et al. 1997	0.143 (0.	074, 0.213)			-
ogren 1997	0.100 (0.000, 0.231)	2/20			+ Sjogren	0.137 (0.	074, 0.201)	-		I
ndqvist 1998	0.056 (0.000, 0.117)	3/54 —			+ Sundqvist	0.124 (0.	069, 0.178)		_	
blander 1998	0.017 (0.000, 0.040)	2/120 -			+ Molander	0.109 (0.	059, 0.159)			
olph 2001	0.073 (0.000, 0.153)	3/41	_		+ Rolph	0.104 (0.	058, 0.149)			
ncock 2001	0.167 (0.067, 0.266)	9/54			+ Hancock	0.109 (0.	064, 0.154)			
ueira 2002	0.050 (0.000, 0.118)	2/40			+ Sigueira	0.102 (0.	061, 0.143)		_	-
ters 2002	0.190 (0.089, 0.291)	11/58			+ Peters	0.109 (0.	068, 0.150)			
nde 2002	0.250 (0.109, 0.391)	9/36 -			+ Sunde		075, 0.158)	-	_	
queira (2) 2002	0.132 (0.041, 0.223)	7/53			+ Sigueira (2)		077, 0.157)	-		
shberg 2003	0.018 (0.009, 0.026)	17/963			+ Hirshberg		069, 0.134)			
ng 2003	0.500 (0.327, 0.673)	16/32		e	+ Tang		082, 0.152)			
2003	0.558 (0.472, 0.644)	72/129		e	+ Xia		107, 0.201)			
heiro 2003	0.133 (0.012, 0.255)	4/30			+ Pinheiro		108, 0.199)			
mes 2004	0.050 (0.000, 0.105)	3/60			+ Gomes		103, 0.190)			
avez de Paz 2004	0.165 (0.104, 0.227)	23/139			+ Chavez de Paz		105, 0.190)			
ueira et al 2004 2004	0.045 (0.000, 0.132)	1/22	-		+ Siqueira et al 2004		102, 0.184)			_
avez de Paz 2005	0.040 (0.002, 0.078)	4/100			+ Chavez de Paz		098, 0.175)			
et 2005	0.159 (0.083, 0.236)	14/88			+ Chu et		100, 0.175)			•
an 2006	0.140 (0.072, 0.208)	14/100			+ Ercan		100, 0.173)			
nna 2007	0.250 (0.077, 0.423)	6/24			+ Vianna		101, 0.174)			
aulu 2008	0.003 (0.000, 0.013)	0/145	-		+ Cogulu		097, 0.153)		_	-
viere 2008	0.151 (0.083, 0.219)	16/106	-		+ Coguiu + Ruviere		097, 0.153)			
ii 2009		2/20	-		+ Ruviere + Fuiii					
	0.100 (0.000, 0.231)						098, 0.153) 104, 0.160)			
zi 2010	0.550 (0.332, 0.768)	11/20		•	+ Niazi					
lezma-Rasillo 2010	0.286 (0.092, 0.479)	6/21	•		+ Ledezma-Rasillo		107, 0.162)			
ang 2010	0.424 (0.256, 0.593)	14/33			+ Zhang		112, 0.168)			
ndere 2010	0.121 (0.010, 0.233)	4/33			+ Mindere		112, 0.167)			-
ugal 2011	0.552 (0.371, 0.733)	16/29		•	+ Chugal		119, 0.176)			
bauer 2013	0.043 (0.000, 0.127)	1/23			+ Halbauer		116, 0.172)			-
noretti 2013	0.250 (0.060, 0.440)	5/20		_	+ Signoretti		118, 0.173)			
mandes et al. 2014 2014	0.173 (0.090, 0.255)	14/81			+ Fernandes et al. 2014		119, 0.174)			-
nnert 2014	0.091 (0.000, 0.211)	2/22			+ Tennert		118, 0.173)			
akowska 2016	0.085 (0.005, 0.165)	4/47			+ Lysakowska		117, 0.170)			-
2016	0.156 (0.081, 0.230)	14/90	•		+ Qi		118, 0.171)			-
esson 2017	0.018 (0.010, 0.027)	17/926			+ Claesson		110, 0.154)			
eves 2017	0.032 (0.009, 0.056)	7/218 —			+ Esteves		106, 0.149)			_
rsoon 2017	0.087 (0.000, 0.202)	2/23			+ Persoon		105, 0.148)			—
ourhajibagher 2018	0.333 (0.179, 0.487)	12/36			+ Pourhajibagher	0.130 (0.	108, 0.151)			
verall (I^2=90.96 % . P< 0.00 [.]	1) 0.130 (0.108, 0.151)	418/4406 <	>							

Figure 4. Forest plot of the random effects model of the cumulative meta-analysis of the secondary outcome.

Studies	Esti	imate (95	% C.I.)	Ev/Trt	
Pourhajibagher	0.333	(0.179,	0.487)	12/36	
Claesson	0.018	(0.010,	0.027)	17/926	
Qi	0.156	(0.081,	0.230)	14/90	
Ledezma-Rasillo	0.286	(0.092,	0.479)	6/21	
Cogulu	0.003	(-0.006,		0/145	
Ruviere	0.151	(0.083,		16/106	
Vianna	0.250	(0.077,	0.423)	6/24	
Chavez de Paz	0.040	(0.002,	0.078)	4/100	
Chu	0.159	(0.083,	0.236)	14/88	
Chavez de Paz	0.165	(0.104,	0.227)	23/139	
Tang	0.500	(0.327,	0.673)	16/32	
Xia	0.558	(0.472,	0.644)	72/129	
Peters	0.190	(0.089,	0.291)	11/58	
Siqueira	0.050	(-0.018,	0.118)	2/40	
Siqueira (2)	0.132	(0.041,	0.223)	7/53	
Sjogren	0.100	(-0.031,	0.231)	2/20	
Assed	0.560	(0.365,	0.755)	14/25	
Gomes (2)	0.071	(0.011,	0.132)	5/70	
Brauner and Conrads	0.186	(0.070,	0.302)	8/43	
Debelian	0.192	(0.041,	0.344)	5/26	
Sundqvist	0.108	(0.032,	0.183)	7/65	
Fukushima	0.190	(0.023,	0.358)	4/21	
Sundqvist (2)	0.069	(0.011,	0.128)	5/72	_
Subgroup primary (I^2=93.83 % , P=0.000)	0.162	(0.126,	0.198)	270/2329	
Esteves	0.032	(0.009,		7/218	
Persoon		(-0.028,		2/23	
Signoretti	0.250	(0.060,		5/20	
Mindere	0.121	(0.010,		4/33	
Niazi	0.550	(0.332,		11/20	
Zhang	0.424	(0.256,		14/33	
Fujii		(-0.031,		2/20	
Siqueira 2004		(-0.042,		1/22	
Hirshberg	0.018	(0.009,		17/963	
Pinheiro	0.133	(0.012,		4/30	
Sunde	0.250	(0.109,		9/36	
Hancock	0.167	(0.067,		9/54	
Molander		(-0.006,		2/120 3/54	
Sundqvist Vigil et al. 1997		(-0.006, (-0.033,		3/54	
Vigit et al. 1997 Subgroup secondary (I^2=82.52 % , P=0.000)	0.030	(0.058,		91/1674	
Subgroup secondary (1"2=62.52 % , P=0.000)	0.091	(0.058,	0.124)	51/10/4	
Lysakowska	0.085	(0.005,		4/47	_
Fernandes et al. 2014	0.173	(0.090,	0.255)	14/81	
Tennert		(-0.029,		2/22	
Halbauer		(-0.040,		1/23	
Chugal	0.552	(0.371,		16/29	
Ercan	0.140	(0.072,		14/100	
Gomes		(-0.005,		3/60	⊢ ∎
Rolph	0.073	(-0.007,		3/41	
Subgroup primary, secondary (I^2=79.27 % , P=0.000)	0.127	(0.062,	0.192)	57/403	
Overall (I^2=90.96 % , P=0.000)	0.130	(0.108,	0.151)	418/4406	
					0 0.2 0.4 0.6
					Proportion

Figure 5. Forest plot of the random effects model of the meta-analysis of the secondary outcome (subgroups primary, secondary, and primary/secondary).

For the tertiary outcome—difference in the prevalence of bacteria of the genus *Actinomyces* between primary endodontic infections and secondary endodontic infections—the comparison showed average heterogeneity among the studies, with an I^2 equal to 62%. Results reported in Figure 6 show that the rate of *Actinomyces* infection was higher in secondary than in primary endodontic infection (OR = 0.57, 95%CI: (0.32, 1.02)).

	Primary infection		Secondary infection			Odds Ratio	Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl		
Chugal 2011	11	19	5	10	9.4%	1.38 [0.30, 6.40]			
Ercan 2006	6	61	8	39	30.0%	0.42 [0.13, 1.33]			
Fernandes 2014	4	60	10	21	47.1%	0.08 [0.02, 0.30]		⊢	
Gomes 2004	3	41	0	19	2.1%	3.55 [0.17, 72.13]			
Lysakowska 2016	1	19	3	28	7.8%	0.46 [0.04, 4.82]			
Rolph 2001	2	15	1	26	2.2%	3.85 [0.32, 46.49]			
Tennert 2014	2	11	0	11	1.3%	6.05 [0.26, 142.04]			
Total (95% CI)		226		154	100.0%	0.57 [0.32, 1.02]		•	
Total events	29		27						
Heterogeneity: Chi ² =	: 15.93, df = 6	(P = 0.01); I² = 62%				L	<u>t </u>	10 100
Test for overall effect	: Z = 1.89 (P =	0.06)					0.01	D.1 1 secondary primary	10 100

Figure 6. Forest plot of the fixed effects model of the meta-analysis of the tertiary outcome.

4. Discussion

Bacteria of the genus *Actinomyces* (optional anaerobic Gram-positive, rods) are very often identified in both primary and secondary endodontic infections. In addition, the literature places such microorganisms among the main causes of persistent extra-root infections together with the bacteria of the genus *Propionibacterium*. Both genera belong to the order of *Actinomycetes* and can colonize the external root surface, subsequently giving persistence of the lesion independently of the endodontic infection [4].

The path of penetration of *Actinomyces* within the root canal system is not entirely clear. *Actinomyces* is a normal commensal of the oral bacterial flora, and its penetration inside the endodontum may depend on the loss of the coronal seal. The most important cases of actinomycosis are associated with histories of complicated root canal treatments, but *Actinomyces* can, however, also be found in periapical lesions in which a root canal treatment has never been performed.

Actinomyces destroy local tissue and replace it with inflammatory and abscess tissue. The granules are generally yellowish in color but can be white-green or green-brown and are formed by masses of filamentous microorganisms that extend in a radiant way and sometimes appear calcified [64].

The purpose of these aggregations is to resist the action of the immune system, the microorganisms in these formations are resistant to phagocytosis creating a microenvironment favorable to their growth and acting as a barrier to the action of antibiotics [65].

Teeth subjected to a radiographically correct endodontic retreatment [66], but with the presence of radiographic radiolucent lesion, fistula with drainage of purulent material, are suspected of persistent extraradicular infection that can evolve into a cervical facial form, characterized clinically by skin lesions with hardened area with multiple abscesses containing grainy tissue, which tend to form cavities and drain onto the skin with purulent material containing granules described as "sulfurous" (the name sulfurous derives from the yellowish coloring of the yellow bacterial filamentous aggregates) [67].

There is also the possibility that the extraradicular infection may affect the maxillary sinuses, and that the infection may continue even after the extraction of the dental element if the patient is immune deficient, giving a picture of sinusitis [68].

In the last years, some reviews of the literature focusing on the microbiological aspects of endodontic infections have been performed. A narrative review performed by Yoo et al. in 2019 identified four types of biofilm (intracanal, extraradicular, periapical, and biomaterial-centered biofilms), indicating *Actinomices* and *Propionibacterium* as the main culprits of the extraradicular biofilms, and they can also colonize filling materials [69].

In 2016, Sakko et al. investigated the presence of bacteria in various endodontic lesions analyzing the associations most found in the literature and the probable path of penetration, suggesting possible ways of treatment [70].

Foaud, in 2019, focused on the microbiological aspects of teeth subjected to traumatic injuries, identifying *Actinomyces* among the bacteria mainly involved and also focusing on the use of antibiotics in the case of traumatized teeth [71].

Prada et al. reported in 2019 how most authors identified *E. faecalis* as the main microorganism associated with endodontic failures, noting, however, that recent studies isolate, to a greater extent, other bacteria such as *Fusobacterium nucleatum* and *Propionibacterium* [15].

Previously, Zhang et al. included in 2015 10 studies on *E. faecalis*, analyzing a total of 927 teeth and concluded that such bacteria are more highly correlated with persistent intraradicular infections compared with untreated chronic periapical periodontitis [72]. Very recently, Manoli et al. published a systematic review including 26 studies that used new sequencing technologies aiming at redesigning a new map of the bacterial taxa associated with endodontic infections. Such review identified bacteria with a higher prevalence in infections but found no significant difference in the three groups analyzed (primary apical periodontitis, secondary apical periodontitis, and apical abscess) [73]. Such literature reviews, conducted over the past five years, have only marginally investigated the role of *Actinomyces* in persistent extraradicular infections. Only few of them focused on extraradicular bacterial biofilms, and

only a few of these report data on the prevalence of *Actinomyces* in endodontic infections. This review differs from the previous ones because it focuses on the prevalence of bacteria of the genus *Actinomyces* in endodontic infections.

Results of the present review showed that bacteria of the genus *Actinomyces* most frequently found in endodontic infections are: *A. naeslundii*, *A. israelii*, *A. viscosus*, A. *odontolyticus*, *A meyeri*, *A. gerencseriae*, *A. radicidentis*, and *A. halioti*; the latter three bacteria have been identified and researched with a much lower frequency (Table 3). In addition, the prevalence of bacteria of the genus *Actinomyces* in the teeth with endodontic failures subject to surgical treatment is 55 out of 1294 teeth examined with a ratio of 0.108 (Figure 2). In some studies, the presence of *Actinomyces* on teeth with endodontic failures refractory to non-surgical therapy reached a ratio of 14 out of 33 teeth in a study by Zhang et al. 2010 [22] and 6 out of 36 in a study by Sunde et al. 2002 [20].

Estevens, on the other hand, reported slightly different data, on a total of 218 peri-apical lesions. The presence of bacterial colonies was identified only in 64 biopsies and only 7 showed the presence of actinomycosis. Furthermore, women resulted to be the most affected gender, while the site most affected was the jaw. All cases had peri-apical lesions persisting to root canal treatment and were therefore subject to surgical therapy (extraction or apicectomy) [19]. Hirshberg identified 17 typical colonies of actinomycosis out of 963 apical biopsies with a higher incidence in males and maxilla [21].

The second half of the analysis reported a prevalence of *Actinomyces* in all the included studies of 418 presences on 4406 teeth with an overall ratio of 0.130. Given the high heterogeneity of the studies, subgroups were also investigated. In the subgroups of studies investigating both primary and secondary infections, heterogeneity decreased with $I^2 = 79.27\%$ and an overall prevalence of 14.1% with a ratio of 57/403. The data are in partial agreement with the cumulative meta-analysis for the secondary outcome.

The meta-analysis for the tertiary outcome relates to the prevalence of *Actinomyces* between primary and secondary infections in studies that investigated both conditions. The forest plot reports statistically significant data with fewer events (presence of *Actinomyces*) in teeth prone to primary infections. All studies intersect the non-effect line except for Fernandes et al. 2014 [40]. Studies in favor of a lower presence of *Actinomyces* bacteria in primary infections were Ercan et al. 2006 [55], Lysakowska et al. 2016 [25], and Fernandes et al. 2014 [40].

5. Conclusions

In conclusion, we can affirm that the bacteria of the genus *Actinomyces* are present in both primary and secondary intraradicular infections with a prevalence (ratio between teeth with *Actinomyces* and teeth with infection) ranging from 0.091 to 0.130, depending on the subgroups analyzed. Furthermore, they are responsible for many of the cases of extra-root infections with persistence of the lesions even following correct endodontic reprocessing.

In cases of persistence of intraradicular and extraradicular infections, many authors agree on establishing that the only solution is surgical, with operations of apicectomy or extraction of the dental element, to avoid complications such as facial cervical actinomycosis and facial imperfections.

Author Contributions: Conceptualization, M.D., M.A., V.C., D.S., L.L., and G.T.; Methodology, M.D.; Software, M.D.; Data Analysis, M.D. and D.S.; Visualization, M.D.; Supervision and Project Administration, L.L.M.; Writing, M.D. and D.S.; Reviewing and Editing, M.D. All authors have read and agreed to the published version of the manuscript.

Funding: For the development of this study no funds have been received.

Acknowledgments: The authors acknowledge Lorenzo Lo Muzio, the director of the Department of Clinical and Experimental Medicine of the University of Foggia, whose help in writing this article has been fundamental.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Vishwanath, V.; Rao, H.M. Gutta-percha in endodontics—A comprehensive review of material science. *J. Conserv. Dent.* **2019**, *22*, 216–222. [CrossRef] [PubMed]
- Troiano, G.; Perrone, D.; Dioguardi, M.; Buonavoglia, A.; Ardito, F.; Lo Muzio, L. In vitro evaluation of the cytotoxic activity of three epoxy resin-based endodontic sealers. *Dent. Mater. J.* 2018, 37, 374–378. [CrossRef] [PubMed]
- 3. Dioguardi, M.; Gioia, G.D.; Illuzzi, G.; Laneve, E.; Cocco, A.; Troiano, G. Endodontic irrigants: Different methods to improve efficacy and related problems. *Eur. J. Dent.* **2018**, *12*, 459–466. [CrossRef] [PubMed]
- 4. Dioguardi, M.; Di Gioia, G.; Illuzzi, G.; Arena, C.; Caponio, V.C.A.; Caloro, G.A.; Zhurakivska, K.; Adipietro, I.; Troiano, G.; Lo Muzio, L. Inspection of the Microbiota in Endodontic Lesions. *Dent. J.* **2019**, *7*, 47. [CrossRef] [PubMed]
- Pereira, R.S.; Rodrigues, V.A.A.; Furtado, W.T.; Gueiros, S.; Pereira, G.S.; Avila-Campos, M.J. Microbial analysis of root canal and periradicular lesion associated to teeth with endodontic failure. *Anaerobe* 2017, *48*, 12–18. [CrossRef] [PubMed]
- 6. Siqueira, J.F., Jr.; Rocas, I.N. Polymerase chain reaction detection of Propionibacterium propionicus and Actinomyces radicidentis in primary and persistent endodontic infections. *Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.* **2003**, *96*, 215–222. [CrossRef]
- 7. Urs, A.B.; Singh, H.; Nunia, K.; Mohanty, S.; Gupta, S. Post endodontic Aspergillosis in an immunocompetent individual. *J. Clin. Exp. Dent.* **2015**, *7*, e535–e539. [CrossRef]
- 8. Ricucci, D.; Lopes, W.S.P.; Loghin, S.; Rocas, I.N.; Siqueira, J.F., Jr. Large Bacterial Floc Causing an Independent Extraradicular Infection and Posttreatment Apical Periodontitis: A Case Report. *J. Endod.* **2018**, *44*, 1308–1316. [CrossRef]
- 9. Ricucci, D.; Siqueira, J.F., Jr.; Lopes, W.S.; Vieira, A.R.; Rocas, I.N. Extraradicular infection as the cause of persistent symptoms: A case series. *J. Endod.* **2015**, *41*, 265–273. [CrossRef]
- 10. Ricucci, D.; Candeiro, G.T.; Bugea, C.; Siqueira, J.F., Jr. Complex Apical Intraradicular Infection and Extraradicular Mineralized Biofilms as the Cause of Wet Canals and Treatment Failure: Report of 2 Cases. *J. Endod.* **2016**, *42*, 509–515. [CrossRef]
- 11. Ricucci, D.; Siqueira, J.F., Jr. Apical actinomycosis as a continuum of intraradicular and extraradicular infection: Case report and critical review on its involvement with treatment failure. *J. Endod.* **2008**, *34*, 1124–1129. [CrossRef] [PubMed]
- 12. Claesson, R.; Sjogren, U.; Esberg, A.; Brundin, M.; Granlund, M. Actinomyces radicidentis and Actinomyces haliotis, coccoid Actinomyces species isolated from the human oral cavity. *Anaerobe* **2017**, *48*, 19–26. [CrossRef] [PubMed]
- 13. Sousa, B.C.; Gomes, F.A.; Ferreira, C.M.; Rocha, M.; Barros, E.B.; Albuquerque, D.S. Persistent extra-radicular bacterial biofilm in endodontically treated human teeth: Scanning electron microscopy analysis after apical surgery. *Microsc. Res. Tech.* **2017**, *80*, 662–667. [CrossRef]
- 14. Wang, J.; Chen, W.; Jiang, Y.; Liang, J. Imaging of extraradicular biofilm using combined scanning electron microscopy and stereomicroscopy. *Microsc. Res. Tech.* **2013**, *76*, 979–983. [CrossRef] [PubMed]
- Prada, I.; Mico-Munoz, P.; Giner-Lluesma, T.; Mico-Martinez, P.; Collado-Castellano, N.; Manzano-Saiz, A. Influence of microbiology on endodontic failure. Literature review. *Med. OralPatol. Oral Y Cir. Bucal* 2019, 24, e364–e372. [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. *J. Clin. Epidemiol.* 2009, 62, e1–e34. [CrossRef]
- 17. Lo, C.K.; Mertz, D.; Loeb, M. Newcastle-Ottawa Scale: Comparing reviewers' to authors' assessments. *BMC Med. Res. Methodol.* **2014**, *14*, 45. [CrossRef]
- 18. Persoon, I.F.; Buijs, M.J.; Ozok, A.R.; Crielaard, W.; Krom, B.P.; Zaura, E.; Brandt, B.W. The mycobiome of root canal infections is correlated to the bacteriome. *Clin. Oral Investig.* **2017**, *21*, 1871–1881. [CrossRef]
- 19. Esteves, L.S.; Henriques, A.C.G.; Silva, C.; Cangussu, M.C.T.; Ramos, E.A.G.; Estrela, C.; Santos, J.N.D. Actinomycosis is not Frequent in the Periapex But is a Persistent Lesion. *Braz. Dent. J.* **2017**, *28*, 688–693. [CrossRef]

- 20. Sunde, P.T.; Olsen, I.; Debelian, G.J.; Tronstad, L. Microbiota of periapical lesions refractory to endodontic therapy. *J. Endod.* **2002**, *28*, 304–310. [CrossRef]
- 21. Hirshberg, A.; Tsesis, I.; Metzger, Z.; Kaplan, I. Periapical actinomycosis: A clinicopathologic study. *Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.* **2003**, *95*, 614–620. [CrossRef] [PubMed]
- 22. Zhang, S.; Wang, Q.Q.; Zhang, C.F.; Soo, I. Identification of dominant pathogens in periapical lesions associated with persistent apical periodontitis. *Chin. J. Dent. Res.* **2010**, *13*, 115–121. [PubMed]
- Signoretti, F.G.; Gomes, B.P.; Montagner, F.; Jacinto, R.C. Investigation of cultivable bacteria isolated from longstanding retreatment-resistant lesions of teeth with apical periodontitis. *J. Endod.* 2013, 39, 1240–1244. [CrossRef] [PubMed]
- 24. Pourhajibagher, M.; Bahador, A. An in vivo evaluation of microbial diversity before and after the photo-activated disinfection in primary endodontic infections: Traditional phenotypic and molecular approaches. *Photodiagnosis Photodyn. Ther.* **2018**, *22*, 19–25. [CrossRef] [PubMed]
- 25. Lysakowska, M.E.; Ciebiada-Adamiec, A.; Sienkiewicz, M.; Sokolowski, J.; Banaszek, K. The cultivable microbiota of primary and secondary infected root canals, their susceptibility to antibiotics and association with the signs and symptoms of infection. *Int. Endod. J.* **2016**, *49*, 422–430. [CrossRef] [PubMed]
- 26. Halbauer, K.; Prskalo, K.; Jankovic, B.; Tarle, Z.; Panduric, V.; Kalenic, S. Efficacy of ozone on microorganisms in the tooth root canal. *Coll. Antropol.* **2013**, *37*, 101–107.
- Niazi, S.A.; Clarke, D.; Do, T.; Gilbert, S.C.; Mannocci, F.; Beighton, D. Propionibacterium acnes and Staphylococcus epidermidis isolated from refractory endodontic lesions are opportunistic pathogens. *J. Clin. Microbiol.* 2010, 48, 3859–3869. [CrossRef]
- 28. Fujii, R.; Saito, Y.; Tokura, Y.; Nakagawa, K.I.; Okuda, K.; Ishihara, K. Characterization of bacterial flora in persistent apical periodontitis lesions. *Oral Microbiol. Immunol.* **2009**, *24*, 502–505. [CrossRef]
- 29. Vianna, M.E.; Horz, H.P.; Conrads, G.; Zaia, A.A.; Souza-Filho, F.J.; Gomes, B.P. Effect of root canal procedures on endotoxins and endodontic pathogens. *Oral Microbiol. Immunol.* **2007**, *22*, 411–418. [CrossRef]
- Chavez de Paz, L.; Svensater, G.; Dahlen, G.; Bergenholtz, G. Streptococci from root canals in teeth with apical periodontitis receiving endodontic treatment. *Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.* 2005, 100, 232–241. [CrossRef]
- Gomes, B.P.; Pinheiro, E.T.; Gade-Neto, C.R.; Sousa, E.L.; Ferraz, C.C.; Zaia, A.A.; Teixeira, F.B.; Souza-Filho, F.J. Microbiological examination of infected dental root canals. *Oral Microbiol. Immunol.* 2004, 19, 71–76. [CrossRef] [PubMed]
- Rolph, H.J.; Lennon, A.; Riggio, M.P.; Saunders, W.P.; MacKenzie, D.; Coldero, L.; Bagg, J. Molecular identification of microorganisms from endodontic infections. *J. Clin. Microbiol.* 2001, 39, 3282–3289. [CrossRef] [PubMed]
- Sundqvist, G.; Figdor, D.; Persson, S.; Sjogren, U. Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. *Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.* 1998, *85*, 86–93. [CrossRef]
- 34. Vigil, G.V.; Wayman, B.E.; Dazey, S.E.; Fowler, C.B.; Bradley, D.V., Jr. Identification and antibiotic sensitivity of bacteria isolated from periapical lesions. *J. Endod.* **1997**, *23*, 110–114. [CrossRef]
- Sjogren, U.; Figdor, D.; Persson, S.; Sundqvist, G. Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. *Int. Endod. J.* 1997, *30*, 297–306. [CrossRef] [PubMed]
- 36. Gomes, B.P.; Lilley, J.D.; Drucker, D.B. Clinical significance of dental root canal microflora. *J. Dent.* **1996**, 24, 47–55. [CrossRef]
- 37. Debelian, G.J.; Olsen, I.; Tronstad, L. Bacteremia in conjunction with endodontic therapy. *Endod. Dent. Traumatol.* **1995**, *11*, 142–149. [CrossRef]
- Fukushima, H.; Yamamoto, K.; Hirohata, K.; Sagawa, H.; Leung, K.P.; Walker, C.B. Localization and identification of root canal bacteria in clinically asymptomatic periapical pathosis. *J. Endod.* 1990, *16*, 534–538. [CrossRef]
- 39. Qi, Z.; Cao, H.; Jiang, H.; Zhao, J.; Tang, Z. Combinations of bacterial species associated with symptomatic endodontic infections in a Chinese population. *Int. Endod. J.* **2016**, *49*, 17–25. [CrossRef]
- 40. Fernandes Cdo, C.; Rechenberg, D.K.; Zehnder, M.; Belibasakis, G.N. Identification of Synergistetes in endodontic infections. *Microb. Pathog.* **2014**, *73*, 1–6. [CrossRef]

- 41. Tennert, C.; Fuhrmann, M.; Wittmer, A.; Karygianni, L.; Altenburger, M.J.; Pelz, K.; Hellwig, E.; Al-Ahmad, A. New bacterial composition in primary and persistent/secondary endodontic infections with respect to clinical and radiographic findings. *J. Endod.* **2014**, *40*, 670–677. [CrossRef] [PubMed]
- 42. Chugal, N.; Wang, J.K.; Wang, R.; He, X.; Kang, M.; Li, J.; Zhou, X.; Shi, W.; Lux, R. Molecular characterization of the microbial flora residing at the apical portion of infected root canals of human teeth. *J. Endod.* **2011**, *37*, 1359–1364. [CrossRef] [PubMed]
- 43. Ledezma-Rasillo, G.; Flores-Reyes, H.; Gonzalez-Amaro, A.M.; Garrocho-Rangel, A.; Ruiz-Rodriguez Mdel, S.; Pozos-Guillen, A.J. Identification of cultivable microorganisms from primary teeth with necrotic pulps. *J. Clin. Pediatr. Dent.* **2010**, *34*, 329–333. [CrossRef] [PubMed]
- 44. Mindere, A.; Kundzina, R.; Nikolajeva, V.; Eze, D.; Petrina, Z. Microflora of root filled teeth with apical periodontitis in Latvian patients. *Stomatologija* **2010**, *12*, 116–121.
- 45. Cogulu, D.; Uzel, A.; Oncag, O.; Eronat, C. PCR-based identification of selected pathogens associated with endodontic infections in deciduous and permanent teeth. *Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.* **2008**, *106*, 443–449. [CrossRef]
- Chu, F.C.; Tsang, C.S.; Chow, T.W.; Samaranayake, L.P. Identification of cultivable microorganisms from primary endodontic infections with exposed and unexposed pulp space. *J. Endod.* 2005, 31, 424–429. [CrossRef]
- 47. Chavez de Paz, L.E.; Molander, A.; Dahlen, G. Gram-positive rods prevailing in teeth with apical periodontitis undergoing root canal treatment. *Int. Endod. J.* **2004**, *37*, 579–587. [CrossRef]
- 48. Siqueira, J.F., Jr.; Rocas, I.N. Polymerase chain reaction-based analysis of microorganisms associated with failed endodontic treatment. *Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.* 2004, 97, 85–94. [CrossRef]
- Tang, G.; Samaranayake, L.P.; Yip, H.K.; Chu, F.C.; Tsang, P.C.; Cheung, B.P. Direct detection of Actinomyces spp. from infected root canals in a Chinese population: A study using PCR-based, oligonucleotide-DNA hybridization technique. *J. Dent.* 2003, *31*, 559–568. [CrossRef]
- 50. Xia, T.; Baumgartner, J.C. Occurrence of Actinomyces in infections of endodontic origin. *J. Endod.* **2003**, *29*, 549–552. [CrossRef]
- Pinheiro, E.T.; Gomes, B.P.; Ferraz, C.C.; Teixeira, F.B.; Zaia, A.A.; Souza Filho, F.J. Evaluation of root canal microorganisms isolated from teeth with endodontic failure and their antimicrobial susceptibility. *Oral Microbiol. Immunol.* 2003, *18*, 100–103. [CrossRef] [PubMed]
- Siqueira, J.F.; Rocas, I.N.; Moraes, S.R.; Santos, K.R. Direct amplification of rRNA gene sequences for identification of selected oral pathogens in root canal infections. *Int. Endod. J.* 2002, *35*, 345–351. [CrossRef] [PubMed]
- 53. Peters, L.B.; Wesselink, P.R.; van Winkelhoff, A.J. Combinations of bacterial species in endodontic infections. *Int. Endod. J.* **2002**, *35*, 698–702. [CrossRef] [PubMed]
- 54. Siqueira, J.F., Jr.; Rocas, I.N.; Souto, R.; de Uzeda, M.; Colombo, A.P. Actinomyces species, streptococci, and Enterococcus faecalis in primary root canal infections. *J. Endod.* **2002**, *28*, 168–172. [CrossRef] [PubMed]
- 55. Ercan, E.; Dalli, M.; Yavuz, İ.; Özekinci, T. Investigation of Microorganisms in Infected Dental Root Canals. *Biotechnol. Biotechnol. Equip.* **2014**, *20*, 166–172. [CrossRef]
- 56. Molander, A.; Reit, C.; Dahlen, G.; Kvist, T. Microbiological status of root-filled teeth with apical periodontitis. *Int. Endod. J.* **1998**, *31*, 1–7. [CrossRef]
- 57. Ruviere, D.B.; Leonardo, M.R.; da Silva, L.A.; Ito, I.Y.; Nelson-Filho, P. Assessment of the microbiota in root canals of human primary teeth by checkerboard DNA-DNA hybridization. *J. Dent. Child.* 2007, 74, 118–123.
- Sundqvist, G. Associations between microbial species in dental root canal infections. *Oral Microbiol. Immunol.* 1992, 7, 257–262. [CrossRef]
- 59. Brauner, A.W.; Conrads, G. Studies into the microbial spectrum of apical periodontitis. *Int. Endod. J.* **1995**, *28*, 244–248. [CrossRef]
- 60. Assed, S.; Ito, I.Y.; Leonardo, M.R.; Silva, L.A.; Lopatin, D.E. Anaerobic microorganisms in root canals of human teeth with chronic apical periodontitis detected by indirect immunofluorescence. *Endod. Dent. Traumatol.* **1996**, *12*, 66–69. [CrossRef]
- Hancock, H.H.; Sigurdsson, A.; Trope, M.; Moiseiwitsch, J. Bacteria isolated after unsuccessful endodontic treatment in a North American population. *Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.* 2001, 91, 579–586. [CrossRef] [PubMed]

- 62. Higgins, J.P.T.; Green, S. Cochrane Collaboration. In *Cochrane Handbook for Systematic Reviews of Interventions*; Wiley-Blackwell: Hoboken, NJ, USA, 2008.
- 63. Sundqvist, G.; Johansson, E.; Sjogren, U. Prevalence of black-pigmented bacteroides species in root canal infections. *J. Endod.* **1989**, *15*, 13–19. [CrossRef]
- 64. Henry, N.R.; Hinze, J.D. Broncholithiasis secondary to pulmonary actinomycosis. *Respir. Care* 2014, 59, e27–e30. [CrossRef] [PubMed]
- Venkatesan, N.; Perumal, G.; Doble, M. Bacterial resistance in biofilm-associated bacteria. *Future Microbiol.* 2015, 10, 1743–1750. [CrossRef] [PubMed]
- Dioguardi, M.; Troiano, G.; Laino, L.; Lo Russo, L.; Giannatempo, G.; Lauritano, F.; Cicciu, M.; Lo Muzio, L. ProTaper and WaveOne systems three-dimensional comparison of device parameters after the shaping technique. A micro-CT study on simulated root canals. *Int. J. Clin. Exp. Med.* 2015, *8*, 17830–17834. [PubMed]
- 67. Lubomski, M.; Dalgliesh, J.; Lee, K.; Damodaran, O.; McKew, G.; Reddel, S. Actinomyces cavernous sinus infection: A case and systematic literature review. *Pr. Neurol* **2018**, *18*, 373–377. [CrossRef]
- 68. Boyanova, L.; Kolarov, R.; Mateva, L.; Markovska, R.; Mitov, I. Actinomycosis: A frequently forgotten disease. *Future Microbiol.* **2015**, *10*, 613–628. [CrossRef]
- 69. Yoo, Y.J.; Perinpanayagam, H.; Oh, S.; Kim, A.R.; Han, S.H.; Kum, K.Y. Endodontic biofilms: Contemporary and future treatment options. *Restor. Dent. Endod.* **2019**, *44*, e7. [CrossRef]
- Sakko, M.; Tjaderhane, L.; Rautemaa-Richardson, R. Microbiology of Root Canal Infections. *Prim. Dent. J.* 2016, 5, 84–89. [CrossRef]
- 71. Fouad, A.F. Microbiological Aspects of Traumatic Injuries. J. Endod. 2019, 45, S39–S48. [CrossRef]
- Zhang, C.; Du, J.; Peng, Z. Correlation between Enterococcus faecalis and Persistent Intraradicular Infection Compared with Primary Intraradicular Infection: A Systematic Review. *J. Endod.* 2015, 41, 1207–1213. [CrossRef]
- 73. Manoil, D.; Al-Manei, K.; Belibasakis, G.N. A Systematic Review of the Root Canal Microbiota Associated with Apical Periodontitis: Lessons from Next-Generation Sequencing. *Proteom. Clin. Appl.* **2020**. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).