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Abstract: Genistein is a naturally occurring phytoestrogen (soy or soybean products) that is classified
as an isoflavone, and its structure is similar to that of endogenous estrogens; therefore, genistein
can exert an estrogen-like effect via estrogen receptors. Additionally, genistein is a tyrosine kinase
inhibitor, which enables it to block abnormal cell growth and proliferation signals through the
inhibition of tyrosine kinase. Genistein is also an angiogenesis inhibitor and an antioxidant. Genistein
has effects on kidney cells, some of the kidney’s physiological functions, and a variety of kidney
diseases. First, genistein exerts a protective effect on normal cells by reducing the inflammatory
response, inhibiting apoptosis, inhibiting oxidative stress, inhibiting remodeling, etc., but after cell
injury, the protective effect of genistein decreases or even has the opposite effect. Second, genistein
can regulate renin intake to maintain blood pressure balance, regulate calcium uptake to regulate
Ca2+ and Pi balances, and reduce vasodilation to promote diuresis. Third, genistein has beneficial
effects on a variety of kidney diseases (including acute kidney disease, kidney cancer, and different
chronic kidney diseases), such as reducing symptoms, delaying disease progression, and improving
prognosis. Therefore, this paper reviews animal and human studies on the protective effects of
genistein on the kidney in vivo and in vitro to provide a reference for clinical research in the future.

Keywords: genistein; kidney; diseases; review

1. Introduction

Genistein, as a functional component existing in food, has received the attention of
researchers for attenuating many diseases. Particularly in recent years, its beneficial effects
on kidney diseases have constantly been proved in extensive research.

Genistein (4,5,7-Trihydrox-yisoflavone and 5,7-Dihydroxy-3-(4-hydroxyphenyl) chromen-
4-one) is a naturally occurring compound that has an isoflavone compound structure. In
1899, genistein was first isolated from dyer’s broom. Its structure was established in 1926.
It was chemically synthesized in 1928 [1]. Genistein is extensively distributed in edible
plants and medicinal plants, such as a variety of legumes [2,3], Flemingia vestita, and F
macrophylla [4–6]. It is also found in cell cultures of Maackia amurensis [7]. Additionally,
it is a primary secondary metabolite in Trifolium species and Glycine max L [8]. Gener-
ally speaking, there are several purification methods for genistein, including maceration
extraction, Soxhlet extraction, ultrasound-assisted extraction (UAE), microwave-assisted
extraction (MAE), supercritical fluid extraction (SFE), and accelerated solvent extraction
(ASE). The content of genistein in various foods is shown in Table 1.

It is well known that genistein is absorbed from plants in the form of glycoside, which is
hydrolyzed to genistein though the intestinal microbiota or by phlorizin hydrolase (a small
intestine brush-border lactase) [9,10]. Genistein is then absorbed by intestinal microflora
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in the form of aglycone; its oral bioavailability is approximately 10% [11]. The major
signaling pathways involved in genistein metabolism are sulfation and glucuronidation.
In addition, metabolites such as O-demethyldaidzein, dihydrogenistein, dihydrodaidzein,
dihydroequol, and 6-hydroxy-O-demethylflavin generated by the liver and intestines have
also been found in blood and urine [12]. Additionally, the kidneys, lungs, and heart can
also effectively metabolize genistein [13]. After metabolism, genistein and its metabolites
are completely excreted through the urethra and intestines within 24 h.

Genistein has many biological functions. First, genistein can exert an estrogen-like
effect. This is due to the structural similarities between genistein and estrogen, making
genistein an estrogen mimic in the body [14]. It mainly acts on estrogen receptors (ERs).
However, unlike estrogen, genistein has more potential to act on ER β than ER α. Genistein
is also used in treating postmenopausal symptoms, such as reductions in bone mass,
vaginitis, and hot flashes [15], based on this effect. Second, genistein is a tyrosine kinase
inhibitor. Therefore, genistein can be used to inhibit the development of many types
of cancers, including breast cancer [16–18], brain cancer [19], colon cancer [17], prostate
cancer [16,20], and cervical cancer [21], by blocking cell growth and proliferation signals
mediated by tyrosine kinase. In addition, genistein is an angiogenesis inhibitor, as well
as an antioxidant, etc. This means that genistein has other therapeutic effects besides
those on postmenopausal symptoms and cancers, including on cardiovascular disease [22],
obesity [23], and diabetes mellitus [24], as well as antidepressant and anxiolytic effects [25].
Recently, an increasing number of studies have shown that genistein has a variety of
protective effects on kidney cells and kidney diseases [26].

Table 1. The content of genistein in various foods.

Foods Content (µg/100 g Hydrated Portion) Reference

Soybean 26,800–102,500 [27]

Kidney bean 18.0–518.0 [27]

Chickpea 69.0–214.0 [27]

Pea 0–49.7 [27]

Lentil 7.0–19.0 [27]

Kudzu leaf 2520 [27]

Kudzu root 12600 [27]

Black gram 1900 [28]

Alfalfa 5.0 [28]

Peanut 8.0 [29]

Caraway seed 64.0 [28]

Sunflower seed 13.9 [30]

Barley 7.7 [28]

Broccoli 8.0 [28]

Cauliflower 9.0 [29]

The kidney is one of the most important organs: it is involved in the homeostasis of the
whole body, such as regulating the acid–base balance, electrolyte concentrations, osmotic
pressure, and blood pressure, eliminating toxins, etc. Additionally, the kidneys can also
produce and secrete a variety of endocrine hormones, including renin, erythropoietin, and
calcitriol. There are different kinds of kidney diseases treated in the clinic. When kidney
diseases occur, they can cause serious harm to the body’s functioning and even lead to
death. In the clinical setting, there are many methods for treating kidney diseases, but the
vast majority of kidney diseases are irreversible and difficult to cure, even with high-cost
treatment. Therefore, it is extremely necessary to develop new strategies to prevent the
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occurrence and development of kidney diseases. Therefore, it is urgent to summarize
these data (human and animal studies) to inspire future research and possible clinical
applications of genistein to attenuate kidney diseases.

2. The Role of Genistein on Pathologies of Kidney Cells
2.1. The Effects of Genistein on Mesangial Cells

Glomerular mesangial cells (MCs) lie between and around the glomerular capillaries,
creating a support structure for the tuft of capillaries, and are involved in the production
of inflammatory mediators, such as cytokines, macromolecules, and immune complexes.
Additionally, MCs have a contractile function, and under the influence of vasoconstrictors
and vasodilators, they affect filtration by changing the surface area of the filtration slits
through contraction and relaxation [31]. In the presence of pathological conditions (e.g.,
growth factors, inflammation, glomerular capillary hypertension, and glucose toxicity), the
mesangial cells are activated, resulting in a glomerular pathology [32].

Previous studies have shown that genistein can inhibit the abnormal activation of
mesangial cells in vitro, potentially preventing the occurrence of kidney injuries [26]. Inhibi-
tion of inflammation or proliferation by impeding the production and effect of proliferation
stimulators (e.g., EGF and PDGF) and inflammatory factors (e.g., TGF-β, IL-1β, and PGE2)
is considered to be involved in the effect of genistein, as summarized in a previous re-
view [26]. However, the related mechanisms were not further discussed, except for the
ability of genistein to inhibit tyrosine kinase. In recent years, a large number of studies
have further expanded the understanding of the effects of genistein on MCs, and the
relevant mechanisms have also been deeply explored (Figure 1). First, genistein is able
to inhibit inflammation in MCs via the suppression of interleukin-1 beta (IL-1β)/MCP-1,
NF-κB (nuclear factor-kappaB)/matrix metalloproteinase-9, and Gro chemokine transcrip-
tion, and increasing group II phospholipase A2 transcription (PLA2) [33–36] prevented
the activation of the glutamine:fructose-6-phosphate amidotransferase (GFAT) promoter
and disrupted AGE-RAGE binding [37,38]. Second, genistein can inhibit the abnormal
proliferation of MCs through multiple pathways, including by inhibiting the synthesis of
DNA [39,40] and calcium (Ca2+) accumulation, which impedes proliferation-stimulating
receptors (e.g., 5-HT2A receptors and erythropoietin) [41,42] or the formation of complexes
with other components (e.g., PLC-γ1 and PDGF-β receptor membrane complex; growth
factor receptor-binding protein 2, son of sevenless, and PDGF-β receptor complex) [43–45],
preventing the internalization of the angiotensin II receptor and its downstream responses
(e.g., PAI-1 mRNA; PLC-gamma 1/IP3 and Ca2+) [46–49]; attenuating vascular permeability
factor (VPF)/cGMP and reducing MAPK signals through the inhibition of ERK2/Elk/(AP-1
and Fos) [50,51], PTK/PKC-Ras–MAP kinase activity, and autophosphorylation of pp60c-
src [52–55]; and preventing the secretion and expression of TGF-β1 [56,57]. Third, genistein
can restrain the pathological apoptosis of MCs by reducing the activation of c-Jun phospho-
rylation (SAPK) [58,59] by angiotensin II/(ATP and UTP) and nitric oxide. The production
of nitric oxide can also be suppressed by genistein [60,61]. Moreover, genistein can inhibit
remodeling, which results from inhibited collagen gel contraction, reconstruction, and
degradation by impeding ERK and collagenase mRNA [62,63]. For collagen synthesis,
low-dose genistein mimics the effect of estrogen through estrogen receptors to inhibit the
synthesis of collagen in mesangial cells rather than by inhibiting tyrosine kinase, which is
effective for inhibiting remodeling [64]. High-dose genistein promotes collagen synthesis
mainly by inhibiting tyrosine kinase and collagen degradation, which is detrimental to
inhibiting remodeling [65]. Therefore, the dose relationship should be considered when
genistein is used to remodel MCs. Therefore, genistein can block the development of kidney
diseases by improving the function of mesangial cells.
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Figure 1. The effects of genistein on mesangial cells. NF-κB: nuclear factor NF-kappaB; PLA2: phos-
pholipase A2 transcription; IL-1β: interleukin-1 beta; MCP-1: monocyte chemoattractant protein-1; 
GFAT: glutamine:fructose-6-phosphate amidotransferase; AGE: advanced glycation end products; 
RAGE: receptor for advanced glycation end products; Ca2+: calcium; 5-HT2A: 5-hydroxytryptamine 
2A; PLC-γ1: phospholipase C-γ1; PDGF: platelet-derived growth factor; Ang II: angiotensin II; PAI-
1: plasminogen activator inhibitor-1; IP3: inositol triphosphate; ERK2: extracellular signal-regulated 
kinase 2; AP-1: activating protein-1; Fos: c-fos gene; VPF: vascular permeability factor; cGMP: cyclic 
guanosine monophosphate; PTK: phototherapeutic keratectomy; PKC: protein kinase C; Ras: renin–
angiotensin system; MAP: mitogen-activated protein; TGF-β1: transforming growth factor-β1; NO: 
nitric oxide; SAPK: c-Jun phosphorylation; ATP: adenosine-triphosphate; UTP: uridine triphosphate, 
↓: inhibit; ↑: upregulate. 

2.2. The Effects of Genistein on Endothelial Cells 
As is well known, the urinary function of the kidney is accomplished by the nephron 

and the collecting duct. Nephrons are tiny or microscopic structural and functional units 
of the kidneys. They consist of a kidney corpuscle and a kidney tubule. The kidney cor-
puscle consists of a cluster of capillaries called a glomerulus and a cup-shaped structure 
called Bowman’s capsule. The kidney tubules extend from the capsule. The capsule is con-
nected to the tubule and is composed of epithelial cells with a lumen. The function of the 
kidney corpuscle is to filter the original urine, while the kidney tubule is responsible for 
processing and removing the filtered fluid. The collecting duct system consists of a series 
of tubules and ducts that connect the nephron to the calyx or directly to the kidney pelvis. 
Collecting tubes participate in the balance of electrolytes and liquids through reabsorption 
and excretion. Studies have shown that genistein plays a role in nephrons and collecting 
ducts, including glomeruli, proximal tubule cells, distal tubule cells, and collecting duct 
cells (Figure 2). 

In glomerular endothelial cells, genistein can inhibit inflammation caused by GEC 
MCP-1 mRNA expression induced by LysoPC [66]. In the proximal tubule, genistein plays 
a more diverse role. Genistein can not only protect dopamine precursors, reduce insulin 
uptake, and increase insulin accumulation in proximal tubular cells but also protect do-
pamine receptors, prevent their serine phosphorylation, and inhibit their mediated NKA 
activity [67–70], thereby maintaining kidney function and reducing the occurrence of dis-
ease. Additionally, genistein can inhibit the Na+-glucose cotransporter (e.g., IL-6) and in-
duce the Na+-glucose cotransporter (e.g., Ang II and EGF); the former may be due to the 
inhibition of abnormal proliferation induced by inflammation [71–73]. Other mechanisms 
include suppressing the Na+/H+ exchanger (NHE, including NHE1/3), which can balance 
proliferation, differentiation, and cell forms [74–76]; restrain inflammation (↓MCP-1) and 
downstream signals (↓HIF-1) [77,78]; block DNA synthesis (e.g., thrombin and HGF) and 
DNA damage (hypoxia or chemical) [77,79]; prevent PAI-1 (induced by Ang II and 15d-

Figure 1. The effects of genistein on mesangial cells. NF-κB: nuclear factor NF-kappaB; PLA2:
phospholipase A2 transcription; IL-1β: interleukin-1 beta; MCP-1: monocyte chemoattractant protein-
1; GFAT: glutamine:fructose-6-phosphate amidotransferase; AGE: advanced glycation end products;
RAGE: receptor for advanced glycation end products; Ca2+: calcium; 5-HT2A: 5-hydroxytryptamine
2A; PLC-γ1: phospholipase C-γ1; PDGF: platelet-derived growth factor; Ang II: angiotensin II; PAI-1:
plasminogen activator inhibitor-1; IP3: inositol triphosphate; ERK2: extracellular signal-regulated
kinase 2; AP-1: activating protein-1; Fos: c-fos gene; VPF: vascular permeability factor; cGMP: cyclic
guanosine monophosphate; PTK: phototherapeutic keratectomy; PKC: protein kinase C; Ras: renin–
angiotensin system; MAP: mitogen-activated protein; TGF-β1: transforming growth factor-β1; NO:
nitric oxide; SAPK: c-Jun phosphorylation; ATP: adenosine-triphosphate; UTP: uridine triphosphate,
↓: inhibit; ↑: upregulate.

2.2. The Effects of Genistein on Endothelial Cells

As is well known, the urinary function of the kidney is accomplished by the nephron
and the collecting duct. Nephrons are tiny or microscopic structural and functional units
of the kidneys. They consist of a kidney corpuscle and a kidney tubule. The kidney
corpuscle consists of a cluster of capillaries called a glomerulus and a cup-shaped structure
called Bowman’s capsule. The kidney tubules extend from the capsule. The capsule is
connected to the tubule and is composed of epithelial cells with a lumen. The function of
the kidney corpuscle is to filter the original urine, while the kidney tubule is responsible for
processing and removing the filtered fluid. The collecting duct system consists of a series
of tubules and ducts that connect the nephron to the calyx or directly to the kidney pelvis.
Collecting tubes participate in the balance of electrolytes and liquids through reabsorption
and excretion. Studies have shown that genistein plays a role in nephrons and collecting
ducts, including glomeruli, proximal tubule cells, distal tubule cells, and collecting duct
cells (Figure 2).

In glomerular endothelial cells, genistein can inhibit inflammation caused by GEC
MCP-1 mRNA expression induced by LysoPC [66]. In the proximal tubule, genistein
plays a more diverse role. Genistein can not only protect dopamine precursors, reduce
insulin uptake, and increase insulin accumulation in proximal tubular cells but also protect
dopamine receptors, prevent their serine phosphorylation, and inhibit their mediated
NKA activity [67–70], thereby maintaining kidney function and reducing the occurrence of
disease. Additionally, genistein can inhibit the Na+-glucose cotransporter (e.g., IL-6) and
induce the Na+-glucose cotransporter (e.g., Ang II and EGF); the former may be due to the
inhibition of abnormal proliferation induced by inflammation [71–73]. Other mechanisms
include suppressing the Na+/H+ exchanger (NHE, including NHE1/3), which can balance
proliferation, differentiation, and cell forms [74–76]; restrain inflammation (↓MCP-1) and
downstream signals (↓HIF-1) [77,78]; block DNA synthesis (e.g., thrombin and HGF) and
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DNA damage (hypoxia or chemical) [77,79]; prevent PAI-1 (induced by Ang II and 15d-
PGJ2) production to reduce the emergence of fibrosis [80,81]; inhibit HSP70 after heat shock
and prevent the disorder of normal protein formation caused by its excess [82]; inhibit
protein hyperphosphorylation (β-catenin and plakoglobin phosphorylation) to maintain
tight junctions [83]; restrain PAH, L-alanine transport (↑EGF), H(+)-ATPase (Ang II), and
Pi, acting as a tyrosinase inhibitor, indicating that they all need tyrosinase activation (but
with regard to PI uptake, genistein blocks the inhibition of EGF on its uptake, because EGF
inhibits Pi uptake by activating EGF receptors) [84–88]; block the decrease in Mg2+; and
prevent the production of nitric oxide [89]. In distal tubules, genistein mainly regulates ions
and maintains the acid–base balance, e.g., by decreasing Na+ transport (e.g., hyposmolality,
insulin, and aldosterone [90–92]) and HCO3- (NGF and hyposmolality [93,94]). In collecting
ducts, genistein can inhibit the excessive activity of H-K-ATPase induced by isoproterenol
and maintain the balance of H+-K+ exchange [92], impeding apoptosis in hypertonic
conditions (NaCl and urea) [95], suppressing the expression of COX-2 to maintain the
stability of blood volume [96], and increasing the activity of SMIT (sodium/myo-inositol
cotransporter) so as to increase the activity of cells [97]. Additionally, genistein can inhibit
IGF-I-induced (insulin-like growth factor-I) nitric oxide in endothelial cells of interlobular
vessels [98]. However, the effects of genistein on kidney tubules and collecting ducts are
not all favorable. For example, in proximal tubule cells, genistein blocks the stimulating
effect of Ang II on the expression of the Pax-2 gene, which plays an important role in
kidney repair (lack of expression leads to apoptosis in cells [99]). In the distal tubule,
genistein reduces the synthesis of sulfoglycolipid, which can protect cells from a hypertonic
environment [100]. This indicates that it is necessary to further study the effects of genistein
on kidney tubules and collecting ducts.
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Figure 2. The effects of genistein on endothelial cells. MCP-1: monocyte chemoattractant protein-1; L-
dopa: l-dihydroxyphenylalanine; DIR: D1 receptor; D2R: D1 receptor; EGF: epidermal growth factor;
NHE: Na+/H+ exchanger; HIF-1: hypoxia-inducible factor 1; HGF: hepatocyte growth factor; PAH:
phenylalanine hydroxylase; HSP70: heat shock protein 70; Pi: phosphate; Pax-2: paired homeobox-2
gene; COX-2: cyclooxygenase-2; SMIT: sodium/myo-inositol cotransporter, ↓: inhibit; ↑: upregulate.

2.3. The Effects of Genistein on Podocytes

Podocytes are cells that wrap around glomerular capillaries and are located in the
kidney’s Bowman’s capsule, forming the epithelium of Bowman’s capsule, which is the
third layer of blood filtration [101]. Studies have shown that the decrease in or depletion of
podocytes and their morphological changes play an important role in the development of
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progressive nephropathies, such as glomerulosclerosis and diabetic nephropathy [102–104].
A number of studies have shown that genistein has multiple favorable and unfavorable
effects on podocytes (Table 2). The beneficial effects include the inhibition of inflammation
(EVs and IL-1β) and the promotion of autophagy. The mechanism is the reduced activa-
tion of the inflammasome via the inhibition of TGβ1/FAK in normal podocytes and the
induction of autophagy through the inactivation of mTOR in HG (high-glucose)-treated
podocytes. The unfavorable effect is the promotion of the loss of podocytes under the effect
of fluid shear force and the apoptosis of podocytes in the presence of integrinα3β1, the
reorganization of the actin cytoskeleton, and circular ruffles. The mechanism of the latter
effect inhibits FAK/integrinα3β1–ECM interaction. The double-sided effect of genistein on
podocytes indicates that genistein should be used with caution; we can increase the use of
genistein in terms of its known beneficial effects and avoid unfavorable factors so as not to
cause greater damage to the kidneys.

Table 2. The effects of genistein on podocytes in animal models.

Cells Treatments Effects and Mechanisms Ref.

Mouse podocyte cells 20 µM, 30 min prior to
treatment for 24 h

Decreasing D-ribose-induced ceramide
accumulation, EV release and IL-1β secretion,

and NLRP3 inflammasome
[105]

Rat podocytes 200 µM for 4 d
Decreasing the expression of a-SMA protein
and the percentage of a-SMA-positive cells

stimulated by TGF-β1

[106]

Mouse podocyte cell line,
H-2Kb-tsA58, with

high D-glucose
20 µM for 6 h

Maintaining the level of autophagy by
inactivating mTOR signaling and the level of

MyD88 siRNA
[107]

Rat primary podocytes 200 µM for 4 h Causing apoptosis of podocytes [108]

Mouse podocyte cell line 60 µM for 20 h Increasing cell loss under fluid flow stress [109]

3. The Effects of Genistein on Kidney Physiology (Figure 3)
3.1. The Effects of Genistein on Renin

Renin, which is secreted by granule cells of the paracellular apparatus in the kidney,
participates in the activation of the renin–angiotensin–aldosterone system and regulates the
mean arterial blood pressure. Studies have shown that genistein may be able to maintain
the balance of blood pressure by affecting the secretion of renin. In a previous study [110],
researchers found that genistein treatment suppressed the IL-1β-mediated attenuation
of renin gene transcription in vitro. In another in vitro study on the effect of epidermal
growth factor (EGF) on the secretion of renin, the researchers observed that genistein
treatment eliminated the inhibitory effect of EGF on renin secretion [111]. Therefore,
genistein may be used to maintain normal blood pressure by restoring renin release, which
is suppressed in some conditions, such as inflammation (the former study), and endogenous
vasoconstrictors (e.g., EGF). However, more studies are needed to explore the mechanism.

3.2. The Effects of Genistein on Regulating Calcium and Phosphate

Ca2+ and phosphate (Pi) are two key factors in maintaining the balance of bone for-
mation and bone loss as well as other physiological functions (muscle contraction, blood
coagulation, and neurotransmitter release [112]). When the balance of calcium is disrupted,
bone pathologies or other dysfunctions in the body will occur. Two studies explored the
protective effect and potential mechanism of genistein on the dynamic balance of calcium
in male animals. A study showed that genistein treatment (30 mg/kg b.m/day) decreased
Ca2+ content in urine and increased 25 (OH) vitamin D content in serum. Additionally,
increased expression of the Klotho gene and protein also contributes to calcium reabsorp-
tion, possibly activating the TRPV5 Ca2+ channel in the kidneys of orchidectomized rats
(an andropause model) [113]. Additionally, the downregulated expression of FGFR and
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PTH1R reduces Pi reabsorption via the inhibition of the activity of the NaPi 2a cotrans-
porter. However, in another study, genistein treatment (10−6 M) eliminated the effect
of testosterone-enhancing kidney Ca2+ reabsorption in the distal luminal membrane of
rabbit kidneys [114]. Therefore, the dual effects of genistein in regulating Ca2+ and Pi
balances depend on the endocrine hormone (e.g., testosterone). Thus, genistein may be
used carefully in regulating Ca2+ under different conditions.

3.3. The Diuretic Effect of Genistein

Recent studies have shown that genistein has a diuretic effect by decreasing vasodilata-
tion instead of decreasing the glomerular filtration rate. A study [115] showed that there
is a diuretic effect of genistein (15 mg/kg) in rats, which is similar to that of furosemide.
However, the effective dose was 3–5 times lower than that of furosemide (a diuretic). How-
ever, genistein had no significant effect on the glomerular filtration rate, despite decreasing
kidney vascular resistance. While the diuretic mechanism of genistein has not been further
explained, another study showed that the diuretic effect of genistein is due to the reduction
in the membrane Na-K-Cl cotransporter concentration [116]. Accordingly, genistein may
be used as a new diuretic in future treatment, and more in-depth clinical research is needed
in the future.

3.4. The Effects of Genistein on Nephron Barrier

It is well known that the filtration function of the kidney depends on the normal kidney
permeability barrier. However, when the permeability is pathologically damaged, patholog-
ical filtration dysfunctions occur, e.g., increased or decreased filtration. Studies have shown
that genistein protects the permeability barrier of the kidney. In one study [117], genistein
treatment (100 µM, 1 h) significantly inhibited the increase in Pa (albumin permeability) in
acute glomerular inflammatory injury induced by SNAP (s-nitroso-N-acetyl-penicillamine)
in rats in a dose-dependent manner. This effect may be achieved by inhibiting tyrosine
kinases. However, another study found the opposite results that genistein (50 or 100 µM:
6 h) was not conducive to the repair (the relocalization of ZO-1 and occludin to the tight
junction) of kidney tubular tight junction damage caused by oxidative stress and decreased
ATP [118]. The differences in the effect of genistein may be due to the fact that genistein can
protect the kidney from the acute kidney injury barrier when it is not seriously damaged,
but it is not conducive to weakening the silent junction damage that has already occurred.
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4. The Effects of Genistein on Common Kidney Diseases
4.1. The Effects of Genistein on Acute Kidney Injuries
4.1.1. LPS

Lipopolysaccharide (LPS), which is a component of the outer membrane of Gram-
negative bacteria, can stimulate the innate immune response. Additionally, LPS, as a
special antigen [119], is able to induce endotoxemia [120], sepsis [121], and even DIC [122].
Therefore, LPS is usually used to induce different animal models, such as neuroinflamma-
tion [123], endometritis [124], memory impairment [125], and acute kidney injuries [126].
LPS is co-sensed by the CD14 protein and TLR4-MD2 complex at the plasma mem-
brane [127]. Ligated TLR4 then activates the transcription of immune factors (e.g., cy-
tokines and chemokines) mediated by NF-κB and IRF3 through MYD88 and TRIF. This
subsequently upregulates the expression of various inflammatory mediators, such as tumor
necrosis factor α (TNF-α), interleukin-6 (IL-6), and IL-1β.

Several studies have shown that genistein treatments can significantly improve acute
kidney injuries caused by LPS in vitro and in vivo. For example, an animal experiment
showed that genistein pretreatment (10 mg/kg) dramatically suppressed fractalkine expres-
sion through LPS-mediated TNF-α in the arterial endothelial cells of rat kidneys [128]. In
addition, in another animal experiment [129], genistein (10, 30, and 90 mg/kg injected i.p.
0.5 h before the LPS injection and 2 h and 8 h after the LPS injection) significantly improved
the morphological structure, fiber protein deposition, function indicators (inhibition of
blood urea nitrogen, BUN), and inflammation reaction (↓NF-κB, IL-6, and IL-1) in kidneys.

Additionally, in a clinical study [130] of hemodialysis patients with end-stage kidney
disease, genistein treatment (25 µM for 24 h) inhibited LPS-induced inflammation activation
(downregulated TNF-α levels) in whole blood and monocytes in vitro. Therefore, genistein
may be used to attenuate acute kidney injury induced by LPS. Further clinical experiments
need to be carried out.

4.1.2. The Effects of Genistein on Kidney Ischemia/Reperfusion Injury

Ischemia refers to the partial or complete occlusion of blood perfusion in tissues or
organs. It can lead to a lack of oxygen and other nutrients as well as the accumulation
of metabolic wastes. If perfusion is not restored in time, ischemia can quickly lead to
tissue necrosis [131]. Early reperfusion is the preferred intervention to prevent pathological
processes. However, reperfusion after ischemia often causes inflammation and apoptosis
through oxidative stress [132]. Kidney I/R injury usually occurs due to shock [133], sep-
sis [134], low perfusion [135], and kidney transplantation [136]. Kidney I/R injury will
cause direct damage to tubules and blood vessels. Then, glomeruli acute kidney injury
will occur as a result of oxidative stress, inflammation, and mitochondrial dysfunction,
leading to a sharp decrease in kidney function and even an increase in mortality [137]. As
the kidneys maintain the water balance of the human body, its I/R process can also cause
severe damage to other organs [138,139].

Several studies have shown that under normal circumstances, genistein can inhibit
the contraction of kidney blood vessels, including glomerular arterioles, afferent arteries,
or vascular beds [140–142]. In addition, genistein can inhibit norepinephrine-induced
vasoconstriction, but this effect is not completely dependent on extracellular Ca2+ [143]. It
may be partly related to the inhibition of the large-conductance K+ channel, according to
another study [144]. Therefore, genistein may attenuate kidney ischemic injury by inhibiting
the contraction of kidney blood vessels. For instance, in one study [145], genistein treatment
(3 µ for 45 min) significantly inhibited kidney vasoconstriction induced by G1 (a G protein-
coupled estrogen receptor1 agonist) in isolated perfused (perfusion immediately after
separation) rats. The effect of genistein is exerted through the blocking of the estrogenic
effect. However, in another study [146], genistein (10 mg/kg, 30 min before hemorrhagic
shock) reduced kidney injury during ischemic shock in rats by inhibiting inflammation.
However, the effect of genistein on vasoconstriction was not studied.
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Encouragingly, some studies have shown that genistein pretreatments at a shorter
time before I/R can attenuate kidney I/R injury in animal models. One study showed
that genistein treatment (5, 10, or 15 mg/kg, 30 min before ischemia) significantly reduced
kidney cell death through the stimulation of kidney cell proliferation mediated by the
up-regulation of SIRT1 expression (exerting cytoprotective effects) in kidney I/R mice
(45 min/24 h) [147]. In another study, genistein (15 mg/kg body weight, i.p.), administered
30 min before ischemia and 1 h after ischemia, reduced kidney injuries in kidney I/R
(45 min/24 h) rats by reducing the inflammation response (decreasing TLR-4 and TNF-α
expression) and oxidative stress (intensifying antioxidant ability) [148]. However, in a
previous study [149] exploring the effects of EPO on kidney ischemic injury in ischemic
shock mice, genistein treatment (10 mg/kg, 2 h before ischemia) alone increased kidney
ischemic injury in model mice, and treatment could also reverse the beneficial effects of
EPO in attenuating the kidney injury of model mice. The adverse effect in the latter study
may be due to the time point of genistein administration; that is, genistein administration
before ischemia may be the reason behind this. The exact mechanism still requires further
investigation in the future.

4.2. The Effects of Genistein on Kidney Cancer Cells

Renal cancer affects nearly 300,000 people worldwide each year, causing more than
100,000 deaths annually [150]. However, owing to the lack of obvious symptoms in the
early stage, only 30% of patients are diagnosed according to clinical symptoms in the
advanced stage, including local symptoms (acute or chronic flank pain, gross hematuria,
and palpable abdominal mass and varicocele) and paraneoplastic disorders (e.g., hematuria,
high blood pressure, anemia, cachexia, weight loss, hypercalcemia, etc.) [151]. Increasing
5-year survival rates after diagnosis required the development of new drugs for systemic
treatment. In recent years, research on the effect of genistein on renal cell carcinoma has
mainly been focused on human kidney cancer cells. A few studies have conducted animal
experiments. The main effects of genistein on kidney cell carcinoma are the decrease in the
proliferation and migration of cancer cells, the inhibition of the neovascularization of solid
tumors, the retardation of the growth of RCC cells, the induction of cell apoptosis, and the
induction of tumor growth. These effects are achieved through the following mechanisms
(Table 3): inhibiting cancer cell proliferation by 1© increasing the expression of CDKN2a and
CDKN2a methylation, 2© suppressing EED (embryonic ectoderm development) levels in
PRC2, 3© inhibiting HOTAIR (HOX transcript antisense RNA)/PRC2 (polycomb repressive
complex 2) interaction, 4© suppressing HOTAIR/PRC2 recruitment to the ZO-1 promoter
and enhanced ZO-1 transcription, and 5© inhibiting SNAIL transcription by reducing
HOTAIR/SMARCB1 (subfamily B member 1) interaction and decreasing EGF; impeding
angiogenesis by decreasing the expression of the angiogenic factors vascular endothelial
growth factor (VEGF) and basic fibroblast growth factor (FGF); suppressing miR-1260b
expression (in A-498 cells, inhibiting Wnt signaling), which is highly expressed in kidney
cancers; reducing the basal activity of sulfotransferase; and inducing cell apoptosis.

Table 3. The effects of genistein attenuating kidney cancer cells.

Kidney Cancer
Cell Lines Treatments (Genistein) Effects and Mechanisms Ref.

SMKT-R3 (human) 50 g/mL for 15 min Inhibiting tyrosine kinases and
glycolipid sulfotransferase [152]

GRC-1 (human) 20 and 40 mM/L for 72 h
Inhibiting the proliferation of kidney cell

carcinoma cells; causing cell cycle arrest at
the G1/M and G2/S phases

[153]

kidney carcinoma cells
SMKT-R-1,3 (human)

4, 40, and 100 µg/mL under
hypoxic conditions for 12 h

Suppressing the expression of the angiogenic
factors vascular endothelial growth factor

and basic FGF
[154]
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Table 3. Cont.

Kidney Cancer
Cell Lines Treatments (Genistein) Effects and Mechanisms Ref.

A498, ACHN, and
HEK-293 (human) 10, 25, and 50 µ mol/L for 3 d

Inhibiting proliferation by decreasing DNA
Methyltransferase and methyl-CpG-binding

domain 2 activity and increasing HAT
activity and induction of cell cycle arrest

[155]

SMKT R-1, 2, 3, 4 lines (human) 50 and 100 mg/mL for 48 h
Inhibiting cell proliferation, inducing

apoptosis, and suppressing
in vivo angiogenesis

[156]

A-498; ATCC numbers: HTB44,
HTB-47, 786-O, CRL-1932, and

Caki-2 (human)
25 µM for 4 d Inhibiting Wnt signaling by regulating

miR-1260b expression [157]

Human clear cell kidney
carcinoma cell lines
(ccRCC) (human)

25 µM for 96 h

Reducing cell proliferation and migration by
suppressing EED levels in PRC2

HOTAIR/PRC2 interaction, HOTAIR /PRC2
recruitment to the ZO-1 promoter, and

enhancing ZO-1 transcription; inhibiting
SNAIL transcription by reducing
HOTAIR/SMARCB1 interaction

[158]

HEK293, HK-2, 786-O, CAKI-1,
769-P, and CAKI-2 cell

lines (human)
25, 50, and 100 µM for 5 d

Inducing cell apoptosis and inhibiting cell
proliferation of kidney cancer cells by

increasing the expression of CDKN2a and
decreasing CDKN2a methylation

[159]

A-498 cells in nude mice (mouse) 25 µM for 4 d Inhibiting the expression of miR-21 in A-498
cells and in the tumors [160]

Kidney carcinoma cell (mouse) 0.2 mL, 80 mg/kg/day,
injected once a day for 14 d

Suppressing tumor growth and decreasing
MVD and VEGF levels [161]

4.3. The Effects of Genistein on Diabetic Nephropathy

Diabetic nephropathy is one of the most common and serious complications of diabetes,
which is related to an increase in morbidity and mortality in patients with diabetes [162].
It is considered to be one of the leading causes of chronic kidney disease (CKD) and end-
stage renal disease (ESRD) worldwide. Therefore, diabetic nephropathy has become a
global health problem [163,164]. The etiology of diabetic kidney injury is complex and has
multiple factors, including hyperglycemia, hypertension, dyslipidemia, the production
of inflammatory cytokines, and oxidative stress [165]. Some studies have suggested that
genistein may be a good protective agent against diabetic nephropathy in type 1 and
2 diabetes models (Table 4). The mechanism of genistein to improve diabetic nephropathy
mainly includes the following aspects: inhibiting AGE (advanced glycation end product)
formation by trapping MGO to form adducts and upregulating the expression of glyoxalase
I and II and aldose reductase (AR); improving levels of fasting blood glucose (FBG) levels;
reducing kidney inflammation (decreasing levels of interleukin-6, TNF-α, and C-reactive
protein; attenuating kidney oxidative stress (nuclear-related factor E2, heme oxygenase-
1/HO-1, glutathione peroxidase, and superoxide dismutase isoforms); inhibiting fibrosis-
related markers (protein kinase C, protein kinase C-beta II, and transforming growth factor-
beta I); and reducing apoptosis and normalizing vasoconstriction induced by agonists
(norepinephrine, endothelin-1, and Ang II).

Additionally, a recent in vitro study [166] showed that genistein can block the process
of decoy receptor 2 interacting with peroxiredoxin 1, which may be related to the amelio-
ration of kidney fibrosis in diabetic nephropathy progression. Another study [167] found
that genistein had an inhibitory effect on AR purified from sheep kidneys, which plays
a vital role in the development of diabetic nephropathy. Genistein also had synergistic
antioxidant effects, alongside other substances (e.g., resveratrol), on high-glucose-incubated
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Madin-Darby canine kidney (MDCK) epithelial cells [168]. The mechanism was the reduc-
tion in ROS via the inhibition of nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase expression and increased γ-glutamylcysteine synthetase expression. The genistein–
chromium (III) complex can also improve pathological injuries in the kidneys of diabetic
mice, which provides a new way to apply genistein treatment [169]. Therefore, the com-
bined use of genistein may have better prospects.

In addition, excessive sugar intake can induce multiple metabolic syndromes, such
as insulin resistance, hyperglycemia, hypertriglyceridemia, hypertension, and also kidney
damage associated with oxidative stress. Genistein treatment (1 mg/kg/day, i.p., for
60 days) significantly improved insulin sensitivity, glomerular function (increased clearance
rates), and kidney parenchymal injury, as confirmed histologically, in a rat model of kidney
injury induced by a high-glucose diet [170]. Additionally, genistein treatment can also
impede the occurrence of nephropathy through a high-fructose diet. However, genistein
treatment (2, 6, and 20 mg/kg for 90–180 days) had little effect on the diabetic nephropathy
of females, according to a previous study [171]. Although a genistein-containing diet could
protect female mice from developing type 1 diabetes, only kidney weights were increased,
and the histopathology of kidneys was not ameliorated. This may be because the female
rats used in this study with a certain amount of estrogen in their bodies altered the effect
of genistein.

Table 4. The effects of genistein attenuating diabetic nephropathy.

Animal Diabetes Models Treatments
(Genistein) Effects and Mechanisms Ref.

C57BL/6J mice High-fat diet 0.25% genistein in diet
for 18 weeks

Inhibiting AGE formation by trapping
MGO to form adducts and

upregulating the expression of
glyoxalase I and II and aldose

reductase in kidney to detoxify MGO

[172]

Albino rats Alloxan-induceddiabetes 20 mg/kg/day for 30 d

Normalizing kidney function
(biomarkers: creatinine and BUN) by

downregulating inflammatory
responses (↓IL-6, TNF-α, and
C-reactive protein in serum)

[173]

Mice Streptozotocin-induced
diabetes

10 mg/kg, i.p. three
times a week for

10 weeks

Reducing kidney inflammation,
oxidative stress, and apoptosis [174]

ICR mice Alloxan-induced diabetes 0.25 and 1 mg/g in diet
for 2 weeks

Improving levels of FBG and
attenuated kidney oxidative stress;

decreasing inflammatory and
fibrosis-related markers

[175]

Wistar rats STZ-induced diabetes 4 mg/kg b.w/day, i.p.
for 7 d

Protecting against kidney dysfunction,
lowering blood glucose levels, and

protecting against kidney dysfunction
[176]

KKAy mouse Type 2 diabetes 12 mg /kg, oral gavage,
once a day for 3 months

Inhibiting inflammatory responses,
repressing HGA-induced activator

protein 1 activation and oxidase stress
generation, and reducing NADPH

oxidase (NOX) gene expression

[177]

Wistar rats STZ-induced diabetes 1.5 mg/kg/alt diem for
4 weeks

Normalizing vasoconstriction induced
by agonist (norepinephrine,
endothelin-1, and Ang II)

[178]
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4.4. The Effects of Genistein on Hypertensive Kidney Disease

At present, hypertension affects approximately 30% of the general population and
causes damage to multiple organs [179]. It is worth noting that hypertension is a risk
factor for the progression of kidney damage (hypertensive kidney disease) [180]. Hyperten-
sive kidney disease is considered to be one of the consequences of long-term and poorly
controlled hypertension. In turn, kidney disease can cause or aggravate hypertension.
Hypertensive kidney disease is a leading cause of end-stage kidney failure, second only to
diabetic kidney disease [179]. Many studies focus on how to reduce hypertension. There-
fore, several studies have shown that genistein treatment is able to improve hypertension
and kidney injuries in hypertensive animal models (Table 5), which is mainly through the
reduction in blood pressure and kidney vascular tension. The mechanisms are as follows:
lowering BP (restored ACE, PKC-βII and eNOS/NO, and cGMP); blunting the dose-related
increase in arterial pressure; and reducing kidney vascular resistance relative to vehicle in
isolated perfused kidneys. Therefore, genistein can protect the kidney by reducing kidney
hypertension and maintaining the ultrastructural integrity of the kidney. It may provide a
therapeutic option for the treatment of kidney hypertension in the future.

Table 5. The effects of genistein attenuating hypertensive kidney disease.

Animal Model Treatments
(Genistein) Effects and Mechanisms Ref.

Wistar rats Fructose-fed
hypertensive

1 mg/kg/day in diet
for 60 d

Lowering BP by restoring ACE,
PKC-βII, and eNOS expression

and preserving kidney
ultrastructural integrity

[181]

Sprague-Dawley rats 2-kidney 1-clip kidney
hypertensive

5.0 mg/kg/day for
8 weeks

Restoring nitric oxide, NOS
activity, phosphorylated eNOS

expression, and cGMP
[182]

SHR-SPs Dietary NaCl with
hypertension

0.6 mg/g diet for 9
weeks

Blunting a dose-related increase in
arterial pressure [183]

Wistar rats Isolated perfused rat
kidney 15 mg/kg for 24 h

Reducing kidney vascular
resistance relative to vehicle in

isolated perfused kidney
[115]

4.5. The Effects of Genistein on Kidney Injury by Medications and Irradiation (Table 6)

Medications are a relatively common cause of kidney injury [184–186]. At present,
the epidemiology of drug-induced nephrotoxicity is mainly based on the AKI (acute kid-
ney injury)-related literature. Drug-induced nephrotoxicity in adults was approximately
14–26%, while in the pediatric population, 16% of AKI hospitalizations were caused by
drugs [185,186]. Common nephrotoxic drugs include cisplatin, cephaloridine, and gen-
tamicin. Cephaloridine can produce dose-related nephrotoxicity when administered in
high doses [187]. Its nephrotoxicity can be distinguished by the degree of acute proximal
tubular necrosis in laboratory animals and humans [188]. A study showed that genistein
(25 µg/mL, 2 h) inhibited increases in LDH leakage (an index of cellular injury) and lipid
peroxidation in LLC-PK1 cells exposed to cephaloridine [189]. Gentamicin, an aminogly-
coside antibiotic, is highly effective in the treatment of severe Gram-negative infections.
However, it has nephrotoxic effects on the epithelial cells of the proximal tubules. Genistein
treatment (10 mg/kg/day i.p.) produced reno-protective effects (decreased serum levels
of Kim-1, cystatin C, LDH, and GGT) in gentamicin-induced acute kidney injury [190].
Cisplatin is one of the most effective and active cancer chemotherapy drugs for the treat-
ment of various malignancies [191], inducing nephrotoxicity mainly through the reaction
of platinum and thiol protein groups [192]. Genistein treatment (10 mg/kg/day orally for
3 days) inhibited oxidative stress (reduced reactive oxygen species production) and the
inflammation response by decreasing the expression of intercellular adhesion molecule-1
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(ICAM) and monocyte chemoattractant protein-1 (MCP-1) proteins and the translocation
of the p65 subunit of NF-κB [193]. Genistein also decreased cisplatin-induced apoptosis
(regulating p53 induction in the kidney). Therefore, genistein may protect the kidney from
drug-induced nephrotoxicity.

Radiation therapy (RT) is one of the most common and important cancer treatment
techniques [194]. As a radiosensitive organ, the kidney is inevitably exposed to radiation in
the abdominal cancer treatment room. High-dose radiation can cause kidney damage (even
radiation nephropathy), including increased vascular permeability, perfusion disorders,
inflammation, and fibrosis [195,196]. In a previous study, genistein treatment 24 h before
RT decreased the incidence of kidney tubular atrophy and the level of malondialdehyde
(MDA) in mouse kidneys. Therefore, genistein supplementation prior to irradiation can be
used to protect mice against radiation-induced nephrotoxicity.

Table 6. The effects of genistein attenuating injury caused by medications and irradiation.

Animal Model Treatments
(Genistein) Effects and Mechanisms Ref.

LLC-PK1 Cephaloridine-induced
kidney injury

25 µg/mL
preincubated for 2 h

Inhibiting increases in LDH
leakage and lipid peroxidation in

LLC-PK1 cells exposed
to cephaloridine

[189]

Sprague-Dawley rats
p-Nonylphenol-

induced polycystic
kidneys

0.005 µM/10 µL for
35 d

Modulating the development of
PKD induced by dietary NP in rats [197]

Mice

Cisplatin-induced
kidney injury and
cisplatin-treated

normal human kidney
HK-2 cells

10 mg/kg orally once a
day for 3 d

Decreasing oxidative stress
(reactive oxygen species),

inflammation (ICAM, MCP-1, and
NF-κB), and apoptosis (regulating

p53 induction)

[193]

Wistar albino rats Gentamicin-induced
acute kidney injury rats

10 mg/kg/day, i.p, one
week before gentamicin

treatment, for 17 d

Decreasing serum levels of Kim-1,
cystatin C, LDH, and GGT [190]

Swiss albino mice A single dose of 6 Gy
γ-radiation (Co60)

200 mg/kg,
subcutaneous injection,

for 24 weeks

Decreasing the incidence of kidney
tubular atrophy and the level

of MDA
[198]

4.6. The Effects of Genistein on Kidney Fibrosis

Kidney fibrosis, an inevitable consequence of chronic kidney disease [199], is caused by
multiple diseases, such as diabetes, obstructive urinary tract, glomerulonephritis, glomeru-
losclerosis, kidney hypertrophy, and mutation [200]. In the process of kidney fibrosis, many
events in kidney cells occur, including inflammation, oxidative stress, fibroblast activation
and the expression of fibrosis-related cytokines, vascular remodeling and hypertension,
kidney tubular apoptosis, and autophagy [201]. Ultimately, this leads to the loss of kidney
function and the replacement of kidney parenchyma by scar tissue [202].

In order to reduce kidney fibrosis, it is important to find novel and reliable therapeutic
methods. Several experiments have shown that genistein can improve kidney fibrosis
in vivo and in vitro. In vivo, genistein treatment can significantly alleviate fibrosis in
several animal models of kidney interstitial fibrosis, streptozotocin-induced type 1 diabetes,
and fibrosis induced by a standard pellet diet with high fructose and UUO. The mechanism
includes decreasing the proliferation of connective tissue collagen (Table 7); inhibiting
oxidative stress by activating the Nrf2-HO-1/NQO1 pathway; inhibiting kidney fibrosis
by suppressing TGF-β1/Smad3; increasing kidney ALKBH5 expression; reducing RNA
m6A levels; restoring Klotho; and decreasing α-SMA expression. In vitro, genistein blocks
kidney transdifferentiation and epithelial-to-mesenchymal transition (inhibits α-SMA and
CTGF expression and restores E-cadherin expression) in human kidney tubular epithelial
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cells. Therefore, it is suggested that genistein has potential anti-kidney fibrosis effects, and
further clinical research is needed.

Table 7. The effects of genistein attenuating kidney fibrosis.

Animal Model Treatments (Genistein) Effects and Mechanisms Ref.

C57BL mice UUO-induced kidney
interstitial fibrosis

10 mg/kg/body weight i.p.
24 h prior to the UUO for

7 d

Increasing kidney ALKBH5
expression, reducing RNA m6A

levels, and ameliorating
kidney damage.

[203]

Sprague-Dawley rats
Streptozotocin-

induced
diabetic

5 and 25 mg/kg, daily
gavage for 8 weeks

Inhibiting oxidative stress by
activating the Nrf2-HO-1/NQO1
pathway and alleviating kidney

fibrosis by inhibiting the
TGF-β1/Smad3 pathway

[204]

C57BL/6 mice Kidney fibrosis,
UUO-induced

10 mg/kg, intraperitoneal
injection daily

administered 1 day
before UUO

Restoring Klotho via epigenetic
histone acetylation and

DNA demethylation
[205]

Wistar rats Standard pelletdiet
(fructose-fed) 1 mg/kg/day for 45 d

Decreasing α-SMA expression
and mitigating proliferation of

connective tissue collagen
deposition in perivascular and

intraglomerular regions

[206]

Human kidney tubular
epithelial HK-2 cells

PTH-induced kidney
interstitial fibrosis

1, 25, 50, and 100 µM for
30 min

Inhibiting PTH-induced α-SMA
expression, restoring E-cadherin
expression, decreasing mRNA,
protein expression, and activity

of CTGF

[207]

4.7. The Effects of Genistein on Nephrotic Syndrome

Nephrotic syndrome is characterized by a series of symptoms, such as edema, pro-
teinuria, hypoalbuminemia, and hyperlipidemia, and is common in children and adoles-
cents [208]. However, when nephrotic syndrome is serious, it can cause harm to other
organs of the body and even endanger life. Therefore, it is necessary to propose a new
method for the treatment of nephrotic syndrome. A previous study [209] showed that
genistein significantly increased the scores of pathological examinations by increasing
the total antioxidant capacity and catalase activity and decreasing the contents of protein
carbonyl and MDA in the kidneys of nephrotic model rats. In addition, the proliferation of
the WEHI-164 kidney fibrosarcoma cell line in vitro was also inhibited by genistein in the
study. Therefore, the result suggests that genistein may be used to reduce the symptoms of
nephrotic syndrome in the future.

4.8. The Effects of Genistein on Menopausal Kidney Injury

Menopause is the period when a woman’s menstruation stops permanently, resulting
in infertility. It usually occurs between the ages of 48 and 52. For those who have their
uterus removed but their ovaries retained, hormone (e.g., estrogen) levels drop sharply,
followed by menopause symptoms, usually including obesity; a metabolic imbalance in
some tissues, such as the liver, bones, nervous system, and skeletal muscle [210]; and
damage to the kidney tissue (e.g., glomerular and tubulointerstitial damage, even leading
to diabetic nephropathy) [211]. Since genistein can exert estrogen-like effects, a previous
study [212] found that genistein treatment (0.1% in the diet for 4 weeks) reduced insulin
resistance and fat accumulation, promoted lipid metabolism, and improved abnormal
protein expression induced by oxidative stress in ovariectomized rats fed a high-fat diet.
Therefore, genistein can be considered to attenuate the kidney injury of climacteric women.
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4.9. The Effects of Genistein on Aging-Induced Kidney Injury

Aging is a natural process that represents the cumulative changes in a person’s state
over time, including a decline in physical functions, as well as disorders in psychological
and social states, which eventually lead to the emergence of disease and death [213].
Previous studies have shown that genistein can improve aging-related diseases (e.g., bone
loss [214] and Alzheimer’s disease [215]). According to a previous study [216], genistein
treatment (2 and 4 mg/kg/day for 10 days) can also improve aging-induced kidney injury
in male rats by decreasing age-related NF-κB activity (activated by angiotensin II during
senescence) and the expression of downstream pro-inflammatory genes, which indicated
that genistein had an obvious anti-inflammatory effect by inhibiting the activation of NF-κB
induced by angiotensin II during aging. However, there is no relevant research on the effect
of genistein on female aging (except for menopausal kidney injury), so it may be further
discussed in the future.

5. The Mechanism of Genistein Actions in Kidney

Kidney diseases are very harmful to the human body, and there is no specific treatment,
so it is necessary to find better functional components to delay the occurrence and develop-
ment of kidney disease. As a phytoestrogen and isoflavone found in soybeans, genistein
treatment can attenuate many kidney diseases (e.g., acute kidney injuries, kidney cancer,
diabetic nephropathy, hypertensive kidney disease, kidney fibrosis, nephrotic syndrome,
menopausal kidney damage, and aging-induced kidney injury).

The beneficial effects of genistein are mainly exerted through the following mecha-
nisms: 1© It reduces the inflammatory response by downregulating a variety of inflamma-
tory factors (including IL-1, IL-6, NF-κB, TNF-α, TLR-4, and C-reactive protein). 2© It in-
hibits oxidative stress (protein carbonyl, MDA, and Nrf2-HO-1/NQO1) that causes the oxi-
dation of DNA, proteins, and lipids, thus affecting their structure and function. 3© Genistein
can decrease arterial pressure through the inhibition of ACE, PKC-βII, NO/NOS, and vaso-
constriction. 4©AGEs are formed through the non-enzymatic glycosylation of amino groups
on proteins by reducing sugars or dicarbonyl [217], which is related to the pathogenesis of
complications (e.g., kidney) of type 2 diabetes mellitus [218], and can be inhibited by genis-
tein via the upregulation of glyoxalase I/II, AR, and FBG. 5© It reduces fibrosis by increasing
ALKBH5 and Klotho and decreasing α-SMA and CTGF. 6© It inhibits apoptosis and pro-
motes cell apoptosis through the inhibition of SIRT1 expression in common kidney diseases.
7© It inhibits proliferation and promotes apoptosis by depressing EED, HOTAIR/PRC2,

SNAIL, and EGF and increasing CDKN2a in cancer. 8© It inhibits angiogenesis through the
inhibition of VEGF and FGF in kidney cancer (Figure 4).
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Figure 4. The mechanism of genistein actions in kidney. TLR-4: Toll-like-receptor-4, TNF-α: tumor
necrosis factor α; IL-1β: interleukin-1 beta; IL-6: interleukin-6; NF-κB: nuclear factor NF-kappaB;
MDA: malondialdehyde; Nrf2: nuclear factor erythroid 2-related factor 2; HO-1: heme oxygenase-1
(HO-1); NQO1: NAD(P) H:Quinone Oxidoreductase 1; ACE: angiotensin-converting enzyme; PKC:
protein kinase C beta II; NO: nitric oxide; NOS: nitric oxide synthesis; AR: aldose reductase; FBG:
fasting blood glucose; AGE: advanced glycation end products; CTGF: connective tissue growth factor;
CDKN2a: cyclin-dependent kinase inhibitor 2a; EED: embryonic ectoderm development; HOTAIR:
HOX transcript antisense RNA; PRC2: polycomb repressive complex 2; EGF: epidermal growth factor;
VEGF: vascular endothelial growth factor; FGF: fibroblast growth factor, ↓: inhibit; ↑: upregulate.

6. Conclusions

Genistein has many effects. For example, it can inhibit fibrosis; mesangial dilation;
oxidative stress; and inflammatory cytokines, inhibiting mesangial dilation, inflammatory
cytokines, oxidative stress, fibrosis, apoptosis, etc. In addition, genistein also has beneficial
effects (prevents structural changes and antioxidation, improves activity, and reduces
pathological damage) on a variety of cells in the kidney (e.g., mesangial cells, endothelial
cells, and podocytes).

Genistein also plays an important role in the treatment of kidney disease. The effects
include the modulation of renin release, calcium and phosphorus balance, excessive LPS,
and kidney damage caused by a variety of acute and chronic diseases. In animal model
experiments for many diseases, genistein reduced kidney damage caused by ischemia,
reduced drug- and radiation-induced kidney injury, reduced kidney fibrosis, improved
nephrotic syndrome, reduced postmenopausal kidney damage, reduced old-age-induced
kidney damage, and reduced kidney barrier dysfunction by improving the glucose balance,
reducing inflammation, increasing antioxidant activity and kidney function, reducing
vascular resistance, and improving kidney blood pressure. Meanwhile, in cancer cells,
genistein can prevent the abnormal proliferation of cancer cells, induce cancer cell apoptosis,
and inhibit tumor growth. Genistein has a wide range of health benefits, which make it the
first choice for the treatment of kidney disease. However, the effect of genistein on kidney
cancer requires more studies in humans and animals.

In addition, there are a large number of cellular and animal experiments in this review,
which may be used to predict whether genistein can prevent human kidney disease.

(1) However, at present, there is a lack of research exploring the relationship between
the content and concentration of genistein in blood and kidney diseases. (2) Although many
foods contain genistein (as mentioned earlier), the exact amount of genistein consumed in
the same area and the concentration of genistein in the blood of different people may be
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different. (3) We can carry out more experiments using human pathological cell models
to provide a more valuable reference for the application of genistein. Additionally, the
following aspects need to be further studied and clarified: (i) the dose and bioavailability
of genistein in different kidney diseases, (ii) genistein metabolism and biological effects,
and (iii) the signaling mechanisms involved. (4) At present, only a limited number of
studies have examined the role of genistein in human kidneys. Because there are no current
ongoing clinical trials in humans, and the side effects and dosage of genistein in human
kidneys, the most effective stages of kidney diseases, and the magnitude of the benefits
are unknown. Therefore, more human trials are needed to address the above problems in
the future.
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AP-1 Activating protein-1
Ang II Angiotensin II
ATP Adenosine-triphosphate
AR Aldose reductase
ACE Angiotensin-converting enzyme
AKI Acute kidney injury
ACE Angiotensin-converting enzyme
α-SMA α-Smooth muscle actin
BP Blood pressure
BUN Blood urea nitrogen
Ca2+ Calcium
cGMP Cyclic guanosine monophosphate
COX-2 Cyclooxygenase-2
CDKN2a Cyclin-dependent kinase inhibitor 2a
CKD Chronic kidney disease
CTGF Connective tissue growth factor
DIR D1 receptor
D2R D1 receptor
DIC Disseminated intravascular coagulation
ER Estrogen receptor
EGF Epidermal growth factor
ERK2 Extracellular signal-regulated kinase 2
Evs Extracellular vesicles
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ECM Extracellular matrix
EPO Erythropoietin
EED Embryonic ectoderm development
ESRD End-stage renal disease
eNOS Endothelial NO synthase
Fos c-Fos gene
FAK Focal adhesion kinase
FGF Fibroblast growth factor
FBG Fasting blood glucose
GFAT Glutamine:fructose-6-phosphate amidotransferase
GGT Gamma-glutamyl transferase
HIF-1 Hypoxia-inducible factor 1
HGF Hepatocyte growth factor
HSP70 Heat shock protein 70
HG High glucose
HOTAIR HOX transcript antisense RNA
HO-1 Heme oxygenase-1
IL-1β Interleukin-1 beta
IP3 Inositol triphosphate
IGF-I Insulin-like growth factor-I
IRF3 Interferon regulatory factor 3
IL-6 Interleukin-6
I/R Ischemia/reperfusion
ICAM Intercellular adhesion molecule-1
L-dopa l-Dihydroxyphenylalanine
LysoPC Lysophosphatidylcholine
LPS Lipopolysaccharide
LDH Lactate dehydrogenase
MC Glomerular mesangial cells
MCP-1 Monocyte chemoattractant protein-1
MAPK Mitogen-activated protein kinases
MAP Mitogen-activated protein
mTOR Mammalian target of rapamycin
MyD88 Myeloid differentiation primary response 88
MVD Microvessel density
MGO Methylglyoxal
MDCK Madin-Darby canine kidney
MDA Malondialdehyde
NF-κB Nuclear factor NF-kappaB
NO Nitric oxide
NOS Nitric oxide synthesis
NKA Na (+), K (+)-ATPase
NHE Na+/H+ exchanger
NGF Nerve growth factor
NADPH Nicotinamide adenine dinucleotide phosphate
NP p-Nonylphenol
Nrf2 Nuclear factor erythroid 2-related factor 2
NQO1 NAD(P)H:Quinone Oxidoreductase 1
PDGF Platelet-derived growth factor
PGE2 Prostaglandin E2
PLA2 Phospholipase A2 transcription
PLC-γ1 Phospholipase C-γ1
PAI-1 Plasminogen activator inhibitor-1
PTK Phototherapeutic keratectomy
PKC Protein kinase C
PAH Phenylalanine hydroxylase
Pax-2 Paired homeobox-2 gene
Pi Phosphate
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PTH1R Parathyroid hormone 1 receptor
Pa Albumin permeability
PRC2 Polycomb repressive complex 2
PKC-βII Protein kinase C-βII
PTH Parathyroid hormone
RAGE Receptor for advanced glycation end products
Ras Renin–angiotensin system
RCC Renal cell carcinoma
ROS Reactive oxygen species
RT Radiation therapy
SAPK c-Jun phosphorylation
SMIT Sodium/myo-inositol cotransporter
SNAP s-Nitroso-N-acetyl-penicillamine
SMARCB1 Subfamily B member 1
SHR-SPs Stroke-prone spontaneously hypertensive rats
TGF-β Transforming growth factor-β
TRPV5 Transient receptor potential vanilloid 5
TLR4-MD2 Toll-like receptor 4- myeloid differentiation 2
TRIF TIR domain-containing adapter-inducing interferon-beta
TNF-α Tumor necrosis factor α
TLR-4 Toll-like-receptor-4
UTP Uridine triphosphate
UUO Unilateral ureteral obstruction
VPF Vascular permeability factor
VEGF Vascular endothelial growth factor
5-HT2A 5-Hydroxytryptamine 2A
15d-PGJ2 15-Deoxy-delta12,14-prostaglandin J2
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