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The advent of mobile electroencephalography (mEEG) has created a means for large
scale collection of neural data thus affording a deeper insight into cognitive phenomena
such as cognitive fatigue. Cognitive fatigue – a neural state that is associated with an
increased incidence of errorful performance – is responsible for accidents on a daily
basis which at times can cost human lives. To gain better insight into the neural signature
of cognitive fatigue in the present study we used mEEG to examine the relationship
between perceived cognitive fatigue and human-event related brain potentials (ERPs)
and electroencephalographic (EEG) oscillations in a sample of 1,000 people. As a
secondary goal, we wanted to further demonstrate the capability of mEEG to accurately
measure ERP and EEG data. To accomplish these goals, participants performed a
standard visual oddball task on an Apple iPad while EEG data were recorded from a
Muse EEG headband. Counter to traditional EEG studies, experimental setup and data
collection was completed in less than seven minutes on average. An analysis of our
EEG data revealed robust N200 and P300 ERP components and neural oscillations
in the delta, theta, alpha, and beta bands. In line with previous findings we observed
correlations between ERP components and EEG power and perceived cognitive fatigue.
Further, we demonstrate here that a linear combination of ERP and EEG features is a
significantly better predictor of perceived cognitive fatigue than any ERP or EEG feature
on its own. In sum, our results provide validation of mEEG as a viable tool for research
and provide further insight into the impact of cognitive fatigue on the human brain.

Keywords: EEG, ERP, fatigue, cognitive fatigue, performance, health, mobile EEG

INTRODUCTION

Over the past decade there has been a rapid increase in the use of mobile electroencephalography
(mEEG) to address a range of research questions that have not been possible to ask with more
tradition lab-based electroencephalographic (EEG) systems. For instance, Debener et al. (2012)
demonstrated that they could collect EEG data while participants were walking and more recently
Scanlon et al. (2020) were able to record event-related potentials (ERPs) while participants were
riding a bike. Since its advent, the scientific community has questioned the quality of mEEG data –
especially of measurements collected by the growing array of low-cost (less than $1,000) mEEG
systems. Countering this uncertainty, in prior work (Krigolson et al., 2017) we demonstrated that it
was possible to record mEEG data that was comparable to that acquired by a research grade system.
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Specifically, we demonstrated that we were able to measure
the N200 and P300 ERP components – neural responses
associated with the engagement of cognitive control and
perceptual processing, respectively – using a Muse EEG headband
(Krigolson et al., 2017). Importantly, the ERP results we recorded
with the Muse EEG headband that were comparable to the
ERPs we recorded with a “research grade” Brain Products
ActiChamp system. Validating our work, Fickling et al. (2020)
replicated our findings with the Muse EEG headband and also
demonstrated that they could measure ERPs with this device.
In addition, other research groups have demonstrated similar
findings with low-cost EEG systems such as the OpenBCI Cyton
(Qiu et al., 2019) and the Emotiv Epoc+ (Kotowski et al., 2019;
Mercado-Aguirre et al., 2019).

The capability provided by mEEG to rapidly measure neural
responses in situ provides a way to study factors that affect brain
performance on a large scale. For example, it is well established
that cognitive (or mental) fatigue has a negative impact on
brain performance (Dinges et al., 1997; Lal and Craig, 2002;
Borghini et al., 2014; Hopstaken et al., 2015; Trejo et al., 2015).
Indeed, increased cognitive fatigue results in increased errors
and accidents while driving (Fletcher et al., 2005), flying (Goode,
2003), operating heavy machinery (Tran et al., 2020), making
medical decisions (Cammu and Haentjens, 2012), and a wide
range of other areas impossible to list here. Increases in cognitive
fatigue are typically associated with extended periods of cognitive
effort (Trejo et al., 2005) and/or a lack of sleep (Stuster, 2010):
but what specifically causes cognitive fatigue to have a negative
impact on performance? The negative consequences of cognitive
fatigue have been attributed to reductions in action monitoring
(Kecklund and Åkerstedt, 1993; Campagne et al., 2004); attention
(Boksem et al., 2005), cognitive control (Mizuno et al., 2011),
decision-making (Gaba and Howard, 2002), and error-evaluation
(Lorist et al., 2005); all of which add up to and result in reductions
in performance. It is important to note that a general consensus
on the definition of cognitive fatigue is still not agreed upon
(Fonseca et al., 2018) but researchers for the most part agree that
cognitive fatigue does differ from sleepiness (Phipps-Nelson et al.,
2011). In any event, one of the biggest problems with cognitive
fatigue is that it is difficult to accurately assess with self-reporting
being particularly problematic (Belz et al., 2004; Baranski, 2007;
Schmidt et al., 2009; Aidman et al., 2015).

Given the aforementioned issues with self-assessment
of cognitive fatigue, it stands to reason that alternate
countermeasure detection methodologies are important to
develop and validate. With this in mind, a growing body of
research has demonstrated that EEG can be used to detect
and measure cognitive fatigue and further that EEG provides
a viable way to establish a biomarker(s) for cognitive fatigue
(Santamaria and Chiappa, 1987; Wijesuriya et al., 2007; Borghini
et al., 2014; Clayton et al., 2015; Scammell et al., 2017; Tran
et al., 2020). For example, there seems to be a clear relationship
between cognitive fatigue and increased theta power (EEG
oscillations between 4 and 7 Hz: Torsvall and Åkerstedt, 1988;
Cajochen et al., 1996; Aeschbach et al., 1997; Dumont et al., 1997;
Caldwell et al., 2002; Lal and Craig, 2002; Macchi et al., 2002;
Strijkstra et al., 2003; Campagne et al., 2004; Lin et al., 2005, 2008;

Papadelis et al., 2006; Borghini et al., 2012; Craig et al., 2012; Picot
et al., 2012; Trejo et al., 2015; Arnau et al., 2017). Additionally,
researchers have also observed relationships between cognitive
fatigue and increased alpha power (EEG oscillations between
8 and 12 Hz: Torsvall and Åkerstedt, 1988; Åkerstedt et al.,
1991; Kecklund and Åkerstedt, 1993; Cajochen et al., 1995, 1996;
Dumont et al., 1997; Tanaka et al., 1997; Schier, 2000; Macchi
et al., 2002; Campagne et al., 2004; Eoh et al., 2005; Lin et al.,
2005, 2008; Papadelis et al., 2006; Pal et al., 2008; Borghini et al.,
2012; Picot et al., 2012; Cao et al., 2014; Gharagozlou et al., 2015).
A much smaller subset of studies has also shown relationships
between increased delta (EEG oscillations between 1 and 3 Hz:
Lal and Craig, 2002) and beta power (EEG oscillations between
13 and 30 Hz). Cognitive fatigue does not only impact the EEG
power spectra but has also been shown to impact cortical ERPs. In
particular, the amplitude and latency of the P300 ERP component
have been shown to be reduced and lengthened, respectively,
due to increased cognitive fatigue. Indeed, a number of studies
have indicated that cognitive fatigue results in diminished
P300 amplitudes (Uetake and Murata, 2000; Kato et al., 2009;
Schmidt et al., 2009; Zhao et al., 2012; Käthner et al., 2014; Lamti
et al., 2016) and increased P300 latencies (Kaseda et al., 1998;
Uetake and Murata, 2000).

Of particular interest here are recent accounts which have
used linear combinations of EEG and ERP features to improve
prediction of cognitive measures such as fatigue. Specifically,
while it is obvious from the above review that individual EEG
and ERP features correlate with cognitive fatigue, it stands to
reason that one might better be able to predict cognitive fatigue
(or other cognitive states) using linear combinations of EEG
and ERP features. Supporting this idea, Mathewson et al. (2012)
found that a regression model using a linear combination of
EEG and ERP features was better able to predict the learning
rate of participants playing a video game than when they solely
examined the relationship between the EEG and ERP features
and learning rate separately. In another study, Broadway et al.
(2015) paralleled Mathewson et al.’s finding and found that
reading comprehension was more accurately predicted by a
regression model that included multiple EEG and ERP features
(pre-stimulus alpha power, P1 ERP component asymmetry, and
a left-hemisphere N1 ERP component) than by any individual
EEG or ERP feature on its own. More recently, Ghosh-Hajra et al.
(2016) (see also Fickling et al., 2019) have proposed that ERP
amplitudes and latencies can be combined as “brain vital signs”
to predict the impact of conditions such as concussion on brain
function. In sum, these studies provide evidence that cognitive
states such as fatigue are better represented as a combination of
EEG and ERP features than by any individual feature in isolation.

As we noted at the outset, mEEG affords an ability to rapidly
measure neural data thus it provides a way to directly measure
issues with brain performance such as cognitive fatigue. Further,
given the quick-setup time and measurement capability afforded
by the increasing array of low-cost EEG systems (less than 10 min:
see Krigolson et al., 2017 for more detail) it is also possible to
test large numbers of people in a short amount of time. Here, we
decided to take advantages of the capabilities afforded by mEEG
and conduct a large-scale study (n = 1,000) of the relationship
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between EEG/ERP features and perceived cognitive fatigue. In
our study participants first completed a quick assessment of
perceived cognitive fatigue and then completed a simple visual
oddball task on an Apple iPad while EEG data was recorded
from a Muse EEG headband. Given that self-reported measured
of cognitive have fatigue have been found to be unreliable (e.g.,
Aidman et al., 2015), we also recorded the amount of hours that
each participant had been awake as this also has been shown to be
a reliable proxy for cognitive fatigue (Buysse et al., 2003; Dorrian
et al., 2011; Vejvoda et al., 2014). As an important experimental
constraint to emphasize that EEG assessments can be done
quickly and almost anywhere, we ensured that testing sessions
took place in under 10 min and we collected data at a wide range
of venues (in a shopping mall, in cafeterias, in the work place, and
at our university). Our primary hypothesis was that we would
see relationships between various EEG (theta and alpha power)
and ERP (P300 amplitude and latency) features and behavioral
measures of cognitive fatigue in line with previous research
(e.g., Tanaka et al., 1997; Schmidt et al., 2009). Additionally,
we also sought to provide further evidence that linear multiple
regression can be used to combine EEG and ERP features to better
predict cognitive states such as fatigue relative to when these
relationships between EEG and ERP features and a cognitive state
are examined individually (Mathewson et al., 2012; Broadway
et al., 2015; Qin et al., 2016; Abiri et al., 2019; Jin et al., 2019).
Finally, as a final goal we sought to provide further evidence that
low-cost mEEG systems like the Muse are a viable and accurate
means for measuring EEG and ERP data.

MATERIALS AND METHODS

Participants
Participants from across the province of British Columbia,
Canada (n = 1,000; 521 females, age range: 18 to 62) participated
in the present experiment. It is important to note that participants
with more than 50% of their data discarded (see below) were
not included in our analysis and we kept testing until we
achieved our a priori set sample size of 1,000. Thus, we report
here that we included the first 1,000 participants that met
this criterion and we tested 1,065 participants to achieve this
sample size. Data were collected at the University of Victoria,
in two industrial locations1, and at the Bay Centre Mall in
Victoria, B.C., Canada. Our ethics protocol allowed participants
to provide full, partial, or no identification or demographic data;
as such, some participants chose to withhold this information.
All participants had normal or corrected-to-normal vision,
no known neurological impairments and provided informed
consent approved by the Human Research Ethics Board at the
University of Victoria (HREB: BC17-456). The study followed
ethical standards as prescribed in the 1964 Declaration of
Helsinki and subsequent revisions.

1The sites were a mine and a hospital. Our ethics protocol and the sites tested
prohibit us from disclosing identity or location but did allow us to use the data for
this manuscript.

Apparatus and Procedure
Participants at each testing site completed a standard visual
oddball task on an Apple iPad mini (Apple Inc., Cupertino,
CA, United States) while EEG data were recorded from a
2016 Muse EEG system (InterAxon Inc., Toronto, ON, Canada:
see Figure 1). The visual oddball task and data recording
were programed with custom code in the iOS programing
environment2. Prior to beginning EEG testing, participants self-
assessed their perceived level of cognitive fatigue with a modified
version of the Swedish Occupational Fatigue Inventory (SOFI-
C: Åhsberg et al., 1997) that resulted in a score between 0 (no
fatigue) and 5 (very fatigued). We additionally asked participants
how many hours they had been awake prior to testing as this has
shown to be a predictor of cognitive fatigue (e.g., Dorrian et al.,
2011). We also asked participants how many hours they had slept
the night before.

During performance of the oddball task participants saw
a series of blue (RGB value = [0, 0, 255]) and green (RGB
value = [0, 255, 0]) colored circles that appeared for 800 ms in
the center of a dark gray background (RGB value = [108, 108,
108]) on the iPad screen. Prior to the onset of the first circle
and in between the presentation of subsequent circles a black
(RGB value = [0, 0, 0]) fixation cross was presented for 200 to
500 ms, thus, to reduce overall testing time the presentation of the
fixation cross also served as the inter-trial interval. Participants
were not told that the frequency of the blue and green circles
differed: blue circles appeared less frequently (oddball: 30%: mean
30.1 [29.2, 31.0]) than green circles (control: 70%: mean 70.0
[69.1, 70.9]) in a random sequence order. Note, the presentation
order of circles was truly random and drawn with replacement;
however, the stimulus presentation software did ensure that
no more than two infrequent target circles appeared in a row.
Participants were instructed to quickly press the bottom left
or right corner of the iPad screen with their thumb whenever
they saw one of the infrequent target blue circles (henceforth
termed: oddball) and to not respond when they saw one of the
frequent green circles (henceforth termed: control). The circles
were presented for 1,000 ms and the trial ended automatically
on oddball trials if participants did not respond. As noted
above, there was no inter-trial interval, the next experimental
trial began with a fixation cross as soon as the oddball/control
circle disappeared. Participants completed four blocks of 50 trials
during performance of the oddball task. The total task duration
including a signal quality check was seven minutes on average
(428 s [344, 512]).

Data Acquisition
Electroencephalographic data were recorded from a Muse EEG
headband (Muse Version: 2016) sampling at 256 Hz (see
www.choosemuse.com for full technical specifications). The
Muse EEG system has electrodes located analogous to Fpz, AF7,
AF8, TP9, and TP10 with electrode Fpz utilized as the reference
electrode during recording. Using the Muse SDK, we streamed
EEG data via Bluetooth from the Muse EEG system directly to

2iOS source code is available upon request. A MATLAB version of this code is
provided here (https://www.krigolsonlab.com/working-with-muse.html).
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FIGURE 1 | The 2016 Muse EEG system made by InterAxon Inc.

custom iOS software that also presented the experimental stimuli.
We did not time synchronize the experimental stimuli with event
markers as per a traditional ERP study (Luck, 2014) but instead
read the EEG data in with known Bluetooth lag and jitter –
which we have already demonstrated still results in a reliable
albeit diminished ERP response (Krigolson et al., 2017: see this
paper for full details on Bluetooth timing issues and delay/jitter
data). Specifically, we “marked” the EEG data at the exact onset
time the circles were drawn but because of the Bluetooth lag the
EEG samples corresponding to this point in time did not arrive
for 40 ms (∼10 samples; ±5 sample of jitter) on average (see
Krigolson et al., 2017). It is important to note that this jitter only
impacted the initial signal locking between the Muse EEG system
and our software and did not change or grow over time. As such,
the signal did not vary trial to trial but participant to participant.
Signal quality was inferred by examining the variance per second
on each EEG channel and data collection began when all channels
had a variance per second less than 200 (see Krigolson et al.,
2017) for more detail. Finally, our custom software computed
the number of trials lost per experimental block in real-time. If
a block had more than 50% lost trials, the Muse was adjusted to
improve signal quality and the block was repeated. In order to
keep testing times within our 10 minute criterion, at most we only
repeated one block of trials per participant (if necessary).

Data Processing and Analysis
Data were processed offline in MATLAB using EEGLAB
(Delorme and Makeig, 2004) and custom code3. We did not

3https://github.com/Neuro-Tools

re-reference the continuous EEG data offline as our ERP analysis
was focused on the two posterior Muse electrodes (TP9 and
TP10) that were referenced appropriately at the time of recording
to electrode FPz. Continuous EEG data were filtered with a dual
pass Butterworth filter with a passband of 0.1 to 30 Hz then
with a 60 Hz notch filter. A preliminary analysis of the data
revealed no lateralized effects; further, we wanted to improve the
signal-to-noise ratio of the ERP measures (Oken and Chiappa,
1986) so we created a pooled frontal and a pooled posterior
virtual electrode by averaging across the frontal (AF7 and AF8)
and the posterior (TP9 and TP10) electrodes, respectively. Based
on our previous work (Krigolson et al., 2017) our ERP analysis
only focused on the new average posterior virtual electrode
whereas our EEG analysis via fast Fourier transform (FFT) did
examine both the averaged frontal and posterior electrodes. We
note that we also chose to not analyze the ERP effects for
the frontal ERP channels as re-refencing of the EEG data just
mirrors the components given the high correlation between the
Muse EEG channels – see https://www.krigolsonlab.com/muse-
research.html for exploratory analyses examining this issue that
provided the rational for the choices we made here.

ERP Analysis
Subsequent to filtering, epochs of data from 200 ms before to
600 ms after stimulus onset (oddball, control) were extracted
from the continuous EEG data and were baseline corrected
using the 200 ms preceding stimulus onset. An artifact rejection
algorithm was then implemented; as a result of this procedure
segments that had an absolute difference of more than 60 uV were
discarded (on average: 35% [33.5%, 37.5%]). Segments were then

Frontiers in Neuroscience | www.frontiersin.org 4 January 2021 | Volume 15 | Article 634147

https://github.com/Neuro-Tools
https://www.krigolsonlab.com/muse-research.html
https://www.krigolsonlab.com/muse-research.html
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-634147 January 24, 2021 Time: 15:30 # 5

Krigolson et al. Using Muse

averaged for the oddball and control trials for each participant
and a difference waveform was constructed by subtracting
the average control from the average oddball ERP waveform.
Grand average ERPs were generated by averaging all conditional
(oddball, control) and difference waveforms for each participant
and the peak component latencies were identified (N200: 270 ms;
P300: 408 ms). At the participant level, N200 and P300 ERP
component amplitudes and latencies were quantified by finding
the local minimal (N200: 160 to 380 ms) and local maximal (P300:
215 to 600 ms) voltage amplitudes and latencies with windows
around the grand average component peaks.

FFT Analysis
Starting again with the raw continuous EEG data for the task,
following the filtering process, we divided the entire continuous
data into 2,000 ms segments with 1,000 ms overlap. Note, these
segments were not separated by condition but instead were
representative of the EEG data throughout performance of the
oddball task. We then used the same artifact rejection as above to
remove segments with an absolute difference of more than 60 uV
(on average: 33% [31%, 35%]). We then conducted a FFT using
the standard MATLAB function similar to Cohen (Cohen et al.,
2008; Cohen, 2014). The FFT was not tapered and the output was
normalized. FFT results were standardized and then averaged and
power was calculated for the front and back electrodes for the

delta (1 to 3 Hz), theta (4 to 7 Hz), alpha (8 to 12 Hz), and beta
(13 to 30 Hz) bands for each participant.

Statistical Analysis
As we only had a solitary experimental condition and a visual
inspection of the confidence intervals on the grand average
waveform revealed a distinct ERP response, we did not do any
inferential statistics on the ERP components (amplitude and
latency) nor EEG power directly. Pearson r correlation values
were used to explore to explore the relationship between the
ERP and EEG features and the reported behavioral measures
(perceived cognitive fatigue, hours awake, and hours asleep).
Additionally, stepwise linear regression was used to assess
which combination of features was most predictive of perceived
cognitive fatigue. The pertinent statistical assumptions for this
analysis were tested by examining the distribution of the residuals
and also Q–Q plots and all assumptions were met (Tabachnick
and Fidell, 2018). An alpha value of 0.05 was assumed for all
statistical tests. All descriptive statistics are reported with the
mean and the 95% confidence interval.

RESULTS

Participants completed a shortened version of the Perceived
Fatigue Scale (mean = 2.6 [2.5 2.7]: see Figure 2) and we

FIGURE 2 | Grand average conditional (left; A) and difference (right; B) ERP waveforms for the pooled posterior virtual electrode. The 95% confidence interval is
plotted on the difference waveform.

FIGURE 3 | Distribution of perceived cognitive fatigue scores (left; A), ERP component amplitudes (middle; B), and ERP component latencies (right; C).
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additionally recorded self-reported numbers for how long
participants were awake before they took part in the experiment
(mean = 4.4 h [4.3, 4.6]) and how many hours they had
slept the night before (mean = 7.0 [6.9, 7.1]). As noted
above, participants also completed a standard visual oddball
task on an Apple iPad with EEG data recorded from a
Muse EEG headband. An analysis of our EEG data revealed
a standard visual ERP response with identifiable N200 and
P300 ERP components (see Figure 3). The amplitude (N200:
mean = −2.9 uV [−2.8, −3.0]; P300: mean = 3.2 uV
[3.1, 3.3]) and latency (N200: mean = 265 ms [260, 270];
P300: mean = 420 ms [409, 431]) were in line with
previous work done by our laboratory (see Figure 1; also see
Krigolson et al., 2017).

Pearson r correlations were computed between the ERP
(amplitude and latency) and EEG (power in the delta,
theta, alpha, and beta bands for frontal and posterior
electrodes) features and behavioral measures (Table 1).
Absolute significant correlations ranged from −0.17 to
0.30 representing small to medium strength relationships
between ERP/EEG features and behavioral measures (Cohen,
1988); see Figure 4 for the correlation matrix and a sample
representation of one of the relationships that we observed.
To examine how linear combinations of our ERP and
EEG features predicted perceived cognitive fatigue we used
stepwise multiple regression. The results of this analysis
revealed a model that predicted perceived cognitive fatigue,
F(7,992) = 33.1, p < 0.001 (r = 0.50, r2 = 0.25, Table 2) that
included Frontal Delta, N200 Latency, P300 Latency, Posterior
Alpha, N200 Amplitude, Posterior Delta, Posterior Theta,
and Frontal Beta.

DISCUSSION

In the present study we found that we could measure robust ERP
components and EEG power in a large sample (n = 1,000) using
a mEEG system and an Apple iPad. To validate the usefulness
of mEEG for “real world” data collection we collected the data
presented here in a range on environments and in under 7 min
per participant on average. In line with the principle aim of
this study, we found that the majority of our ERP and EEG
measurements were correlated with perceived cognitive fatigue
(see Table 1). Also in line with the secondary aim of this
study, we also found that a regression model that used a linear
combination of ERP and EEG features was a better predictor
of perceived cognitive fatigue than any of the individual feature
measurements in on its own. In sum, our results demonstrate
that mEEG can be used to quickly obtain EEG data from a large
number of people providing a viable methodology for potential
clinical applications such as concussion assessment (e.g., Fickling
et al., 2019) and/or the assessment of mild cognitive impairment
(Jackson and Snyder, 2008).

The relationships we found between ERP and EEG
measurements and cognitive fatigue parallel previous work. For
example, the correlations we observed between P300 amplitude
and latency and perceived cognitive fatigue mirror previous

TABLE 1 | Pearson r correlations between perceived fatigue, hours awake, and
hours slept and ERP and EEG features.

Perceived fatigue Hours awake Hours slept

N200 Amplitude r = −0.17*** r = −0.14** r = 0.00

p < 0.001 p < 0.001 p = 0.960

N200 Latency r = 0.25*** r = 0.16*** r = −0.07*

p < 0.001 p < 0.001 p = 0.029

P300 Amplitude r = −0.11*** r = −0.07* r = 0.07*

p < 0.001 p = 0.041 p = 0.039

P300 Latency r = 0.24*** r = 0.16*** r = −0.03

p < 0.001 p < 0.001 p = 0.309

Frontal Delta r = 0.30*** r = 0.17*** r = −0.05

p < 0.001 p < 0.001 p = 0.099

Frontal Theta r = 0.16** r = 0.15*** r = −0.01

p < 0.001 p < 0.001 p = 0.884

Frontal Alpha r = 0.04 r = 0.10** r = 0.03

p = 0.266 p = 0.003 p = 0.283

Frontal Beta r = −0.11** r = −0.05 r = 0.01

p = 0.001 p = 0.091 p = 0.727

Posterior Delta r = 0.22*** r = 0.17*** r = −0.11**

p < 0.001 p < 0.001 p = 0.001

Posterior Theta r = −0.02 r = 0.07** r = 0.08**

p = 0.557 p = 0.020 p = 0.015

Posterior Alpha r = −0.11** r = 0.00 r = 0.18***

p = 0.001 p = 0.996 p = 0.000

Posterior Beta r = 0.00 r = 0.07* r = 0.01

p = 0.990 p = 0.014 p = 0.823

*Indicates p is between 0.05 and 0.01.
**Indicates p is between 0.001 and 0.01.
***Indicates p is less than 0.001.

findings that showed the same relationships – a decrease in P300
amplitude (Zhao et al., 2012) and an increase in P300 latency
(Uetake and Murata, 2000) with increased cognitive fatigue.
Supporting this relationship, we observed a parallel relationship
(decrease in P300 amplitude, increase in P300 latency) with the
hours participants were awake – another proxy for cognitive
fatigue (Buysse et al., 2003; Dorrian et al., 2011; Vejvoda et al.,
2014). Interestingly, we also observed the same relationship -
decreased component amplitude, increased component latency –
between the N200 ERP component and perceived cognitive
fatigue – a finding that to best of our knowledge is novel. As with
the P300, the relationships between N200 amplitude and latency
with hours participants had been awake were also present. As
such, the N200 amplitude and latency also appear to be potential
markers for measuring cognitive fatigue. As to why we observed
this effect whereas other have not, we can only speculate that
the power of the current study allowed us to detect an effect
that was previously masked by relatively lower powered studies
(n on average < 30, e.g., Zhao et al., 2012). The relationships
we observed between cognitive fatigue (and hours awake) and
EEG power for the most part were in line with previous findings.
Specifically, in line with findings by Lal and Craig (2002) and
others we observed an increase in frontal delta and frontal theta
EEG power with increased cognitive fatigue. However, counter
to previous findings, we observed a decrease (as opposed to
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FIGURE 4 | The correlation matrix between all ERP, EEG features, perceived cognitive fatigue scores, hours awake, and hours asleep (left; A). Note, all correlations
greater than –0.1 and less than 0.1 are not shown. A sample scatter plot for one of the observed relationships – N200 amplitude and perceived cognitive fatigue
(right, B).

TABLE 2 | Regression coefficients for the stepwise regression model that predicts
self-reported cognitive fatigue.

B SE B β

(Constant) 0.363 0.223

Frontal Delta 0.075 0.013 0.188***

N200 Latency 0.005 0.001 0.194***

P300 Latency 0.001 0.000 0.135***

Posterior Alpha −0.083 0.043 −0.069*

N200 Amplitude −0.087 0.019 −0.132***

Posterior Delta 0.068 0.015 0.181***

Posterior Theta −0.159 0.054 −0.126***

Frontal Beta −0.129 0.060 −0.062*

*Indicates p is between 0.05 and 0.01.
**Indicates p is between 0.001 and 0.01.
***Indicates p is less than 0.001.

an increase) in posterior alpha power with increased cognitive
fatigue. We speculate here that this result is related to how
we measured EEG power in the present study. In the majority
of previous studies, EEG power is measured during a resting
state whereas here we measured EEG power during actual task
performance. Extending from this, it is well established that
alpha power is reduced during task performance, most likely due
to an increased focus of visuospatial attention (Sauseng et al.,
2005; Foxe and Snyder, 2011; Klimesch, 2012). With this in mind,
we suggest that the reduction in alpha power that we observed
with increased cognitive fatigue reflects a greater demand on
attentional resources to achieve successful task performance
when one is tired.

When considered together, it is important to note the
overlap between the ERP and EEG features in the present
study. More specifically, the ERP components investigated
here (N200 and P300) have a spectral representation in the
delta and theta range (Güntekin and Başar, 2010) and thus

might be expected to a common correlated outcome such
as perceived cognitive fatigue. With that said, our results
show independent contributions of the stimulus locked ERP
components and the cross experiment spectral power measures
that we computed thus suggesting that there is additional
information in stimulus generated non-phase locked elements
and thus the ERP and EEG signals do not necessarily reflect the
same underlying processes, at least in our experiment (see also
Sauseng et al., 2007).

Here we also demonstrated that a linear combination of ERP
and EEG features was a better predictor of perceived cognitive
fatigue than any individual feature on its own. Indeed, this
result is in line with previous work (Mathewson et al., 2012;
Broadway et al., 2015; Qin et al., 2016; Abiri et al., 2019;
Jin et al., 2019) and highlights that the relationship between
complex cognitive constructs such as perceived cognitive fatigue
and neural measures such as EEG and ERP responses is better
explained using a combination of neural features. For instance,
Wang et al. (2012) found that a linear combination of ERP
components resulted in better classification of categories of
visual objects. In a similar vein, Mathewson et al. (2012) found
that a combination of EEG and ERP features was a better
predictor of individual learning rate than any of these features
in isolation. Indeed, it makes sense that adding additional
neural features to a regression model would improve prediction
as logically complex phenomena such as cognitive fatigue
would impact the entire time course of an ERP waveform
or multiple oscillatory frequencies. Further, given that ERP
components and EEG frequencies are thought to originate from
different regions of the cortex it makes sense that the ERP/EEG
measures (and neural regions) are individually differentially
impacted by cognitive fatigue and thus combining ERP/EEG
features improves prediction. Of course, it is important to use
proper statistical methods to ensure overfitting does not occur
(Bartlett et al., 2020).
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Perhaps the most important point made with the current data
is that the advent of mEEG and its validation (see Krigolson et al.,
2017) provides a capability to quickly collect EEG data from a
number of people. Given recent claims that ERP components can
be used potentially for clinical diagnosis of concussion and other
clinical conditions (Ghosh-Hajra et al., 2016; Fickling et al., 2019),
mass testing with mEEG will allow for the actual computation
of population norms for EEG data such as those that already
exist for heart rate and blood pressure thus making condition
diagnosis and tracking via EEG a viable possibility. Further, given
the rapid testing time that is possible with mEEG – less than
seven minutes in the present study – and the ease of use of
this technology, medical screening via EEG could be done by
technicians in a manner akin to how blood samples are presently
taken thus alleviating burden on the healthcare system. Finally,
mEEG allows data collection in almost any environment –
Debener et al. (2012) were able to collect mEEG data outside
while someone was walking as an example.

It is important to note than mEEG is not without its problems.
Data quality for one, is not as good as a research grade EEG
system (Radüntz, 2018). Further, electrodes tend to be placed in
non-standard positions for observing “classic” ERP components
and EEG oscillations (Krigolson et al., 2017). Perhaps the greatest
problem with the approach we used here to collect event-
locked EEG data, and also with the use of EEG systems that
rely on Bluetooth technology in general, is the known lag and
jitter associated with Bluetooth data transmission. The collection
of stimulus locked EEG data (i.e., event-related potentials) is
typically done with precise event-marking with a goal of less
than one millisecond of lag and a very small amount of jitter
between a given event and when the EEG data is “marked”
for the onset of that event (Luck, 2014). We were unable to
use a traditional method to insert EEG event-markers (e.g.,
a voltage sent on a USB or parallel cable from a stimulus
computer) into the Muse EEG data stream with our current
experimental setup. The data presented here suffers from both
lag and jitter due to Bluetooth transmission. As a result, our
stimulus locked ERPs are shifted temporally due to lag and
reduced in amplitude due to jitter. Importantly, this is a key
issue that is problematic with mEEG technology reliant upon
Bluetooth (and to some extent wireless) data transmission – the
attenuation of event-locked responses due to temporally jittered
event markers. There are other issues regarding Bluetooth data
transmission in mEEG experiments that need to be considered.
For instance, Bluetooth interference between other Bluetooth
devices and/or interference from wireless transmitters at a testing
sight might disrupt the transmission of EEG data (Tshiluna et al.,
2016). There are potential technological developments that might
reduce or remove the impact of Bluetooth data transmission on
the EEG signal. For example, Cognionics mobile EEG systems
use radio pulses to provide accurate temporal marking of event-
locked EEG responses4. Another potential solution would be
to implement a software solution to assess Bluetooth lag (and
temporal jitter) by sending a ping to a mEEG device and
measuring the signal return time. Then, in principle, the lag could

4www.cgxsystems.com

be accounted for and “correctly timed” EEG event-markers could
be sent to the device to compensate for Bluetooth lag and jitter.
With that said, it is worth pointing out that even with attenuation,
we were still able to see clearly defined ERP responses in the
present experiment. Thus, in spite of the issues associated with
Bluetooth data transmission, our data demonstrate that mEEG
has the capability to expand the use of EEG as a tool in both
clinical and research settings.

CONCLUSION

In the present experiment we demonstrated in a large sample
(n = 1,000) that we could quickly and accurately measure ERP
and EEG data. Further, we replicated previous work showing
relationships between ERP and ERP features and perceived
cognitive fatigue and also demonstrated that a linear combination
of ERP and EEG features was a better predictor of perceived
cognitive fatigue than any one ERP or EEG feature on its
own. Finally, our work here affirms the validity of mEEG as
a means for measuring brain health and performance in real
world environments.
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