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Mutational signature SBS8 predominantly arises
due to late replication errors in cancer
Vinod Kumar Singh1,2, Arnav Rastogi1,2, Xiaoju Hu1, Yaqun Wang1 & Subhajyoti De 1✉

Although a majority of somatic mutations in cancer are passengers, their mutational sig-

natures provide mechanistic insights into mutagenesis and DNA repair processes. Mutational

signature SBS8 is common in most cancers, but its etiology is debated. Incorporating

genomic, epigenomic, and cellular process features for multiple cell-types we develop

genome-wide composite epigenomic context-maps relevant for mutagenesis and DNA repair.

Analyzing somatic mutation data from multiple cancer types in their epigenomic contexts, we

show that SBS8 preferentially occurs in gene-poor, lamina-proximal, late replicating hetero-

chromatin domains. While SBS8 is uncommon among mutations in non-malignant tissues, in

tumor genomes its proportions increase with replication timing and speed, and checkpoint

defects further promote this signature - suggesting that SBS8 probably arises due to

uncorrected late replication errors during cancer progression. Our observations offer a

potential reconciliation among different perspectives in the debate about the etiology of SBS8

and its relationship with other mutational signatures.
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During development and aging, DNA damage and repair
defects result in accumulation of somatic genomic altera-
tions, including point mutations, genomic rearrangements,

and ploidy changes that contribute to aging, cancer initiation and
progression1,2. Even though a majority of the somatic mutations are
not disease-drivers, mutational signatures, i.e., their patterns of
genetic changes provide insights into past exposure to mutagens,
mechanism of DNA damage, DNA repair defects, and extent of
genomic instability2–7. Nonnegative matrix factorization-guided
deconvolution of somatic mutations in their sequence contexts
across all major cancer types has identified a number of mutational
signatures8,9. Mutational signature 8 (SBS8; Fig. 1a) is widely present
in multiple cancer types8, but its etiology is not well understood.
SBS8 has a broad trinucleotide context preference, although C >A,
C > T and T >A substitutions are proportionally over-represented. It
is not associated with any known exogenous mutagen exposure, and
does not show major transcriptional strand bias. Emerging reports
suggested that SBS8 might be associated with genomic instability,
perhaps concurrently with SBS3—signature of deficiency of double
strand break repair via homologous recombination (HRD)10 and
that nucleotide-excision repair deficient tumors have elevated bur-
den of SBS811, but SBS8 is also detected in tumors with no overt
NER pathway defects or HRD-related genomic instability8,9,12.
Therefore, mechanistic basis of SBS8 is still debated.

Here, we develop an epigenomic composite context-map of the
genome incorporating genomic, epigenomic, and cellular process

features that are relevant for mutagenesis and DNA repair, and
examine whether SBS8 preferentially occur in specific epigenomic
context that could provide etiological insights. We also assess
potential crosstalk between SBS8 and selected other signatures
within and across epigenomic contexts. Our context-guided
analysis provides a rational roadmap for investigating etiologies
of the emerging mutational signatures.

Results
SBS8 is depleted in exons and enriched in heterochromatin.
We analyzed mutational signatures associated with somatic point
mutations identified from whole-genome sequencing data for 18
cancer cohorts from the International Cancer Genome Con-
sortium (ICGC)13 (Fig. 1b; Supplementary Data 1); the selected
cancer types have diverse tissue-of-origin, and different exposures
to endo- and exogenous mutagenic processes, which allow us to
decouple tissue-dependent and context-dependent effects. SBS8
was present with sufficient footprints in most of the cohorts.

Since the mechanisms of endo- and exogenous DNA damage
and repair preferences depend on local sequence, chromatin, and
nuclear contexts14, we segmented the genome based on (i) genomic
contexts: exons, whole genes (including exons and introns), repeats,
and telomere, (ii) epigenomic contexts: strong heterochromatin,
weak heterochromatin, intermediate chromatin, weak euchromatin,
and strong euchromatin, and (iii) nuclear localization contexts:

Fig. 1 Genomic and epigenomic context-preference for SBS8 in different cancer cohorts. a Relative frequencies of single base substitutions at 96
trinucleotide contexts for mutational signature SBS8. b Boxplots showing distributions of weights of SBS8 (w) in multiple cancer cohorts. c–k Boxplots
showing distributions of weights of SBS8 (w) in different genomic, epigenomic, and nuclear localization contexts in multiple cancer types listed above.
Acronyms of the cancer cohorts are listed at the top left corner. See Supplementary Data 1 for description of the cancer cohorts including the number of
samples.
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lamina-proximal regions in the nuclear periphery and inter-lamina
regions in the nuclear interior—and estimated the proportions of
different mutational signatures including SBS8 within and across
various genomic and epigenomic contexts. Although not exhaus-
tive, these contexts are associated with major classes of mutagenesis
processes, overall genome maintenance, and DNA repair pathway
choices2,8,15–17—which can aid to per exclusionem, i.e., exclude
unlikely possibilities while generating testable hypotheses about
plausible etiology of mutational signature of interest and guide
downstream analyses.

Among different genomic contexts, SBS8 was depleted in
the telomere and exonic regions in nearly all cancer types analyzed
(Fig. 1c–k). At the level of whole genes, presence of SBS8 was
detected, but that contribution primarily came from the intronic
regions. We observed consistent results in most cancer types,
including those that were represented by multiple independent
cohorts. It was relatively over-represented in repeats compared to
exons (Wilcoxon rank sum test; combined p value across all cancer
types <1e−05), although the SBS8 mutational signature did not
indicate any specific preference for homopolymeric tracks or
specific repeat motifs (Fig. 1a).

We next focused on chromatin and nuclear localization contexts,
which unlike the genomic contexts, are tissue dependent. Since the
cell of origin is not known for many cancer types and/or relevant
tissue-specific epigenetic data is available for limited tissue types, we
first used tissue-invariant chromatin and nuclear localization data18

for the initial epigenomic analysis. Subsequently we also repeated
the analyses using tissue-specific data for selected cancer types and
obtained consistent results, as discussed later. In all cancer types
analyzed, the SBS8 was significantly more enriched in hetero-
chromatin than euchromatin regions (Fig. 1c–k; Spearman correla-
tion; combined p value across all cancer types <1e−05). Similarly, it
was significantly more over-represented in lamina-proximal regions
in the nuclear periphery than inter-lamina regions in the nuclear
interior (Fig. 1c–k; Wilcoxon rank sum test; combined p value
across all cancer types <1e−05). We did not observe any specific
enrichment for SBS8 in fragile sites (Supplementary Fig. 1). The
results were consistent across the cancer cohorts, including those
representing similar cancer types.

We considered the possibility that the number of mutations
attributed to a mutational signature (signature weight × number of
mutations/Mb) could be actually higher in a given context, even
when there is an apparent decrease in relative proportion of that
signature due to an excess of other signatures. We found no
evidence supporting that possibility confounding our conclusions
about the observed difference in preference of SBS8 for hetero-
chromatin over euchromatin. In fact, somatic mutation rate in gene
rich euchromatin is lower than that in the heterochromatin
regions18–20. Taken together, SBS8 is depleted in exonic regions,
euchromatin, and nuclear interior, and proportionally more
common in repeat regions, heterochromatin and nuclear periphery.

Composite epigenomic context preference of SBS8. The
nucleotide, genomic, and epigenomic features are not independent,
and combinatorically influence DNA damage and repair14. There-
fore, feature-by-feature analysis may be inadequate to appreciate
complex patterns of context-dependent mutagenic processes. At
this end, we developed an epigenomic composite context-map of
the genome using a Hidden Markov Model, incorporating genomic
features as well as tissue-dependent epigenomic and cellular process
features that are relevant for mutagenesis and DNA repair (Fig. 2a).
The HMM approach allowed us to describe combinatorial patterns
of relevant epigenomic features using a small number of composite
contexts that are prevalent in the genome, and flexibly determine
the resolution of the context-map by adjusting the number of such

contexts. This offered a distinct advantage over considering
exhaustive combinations of features, because the number of possible
combinations increases exponentially with an increase in the
number of features considered, and some combinatorial contexts
are rarely observed in mammalian genomes.

We jointly annotated mutagenesis-related epigenomic (MRE)
states for multiple cell types from the ENCODE project21 (see
“Methods” for details) and for downstream analyses used a 20-
state model which was computationally robust and biologically
interpretable. For instance, E6 and E16–20 contexts are marked
by late replicating heterochromatin, but they differ in terms of
presence of exonic, intronic, intergenic, and repeat contexts
(Fig. 2b). Likewise, E9–10 and E14–16 are exonic regions, but
differ in terms of their chromatin, nuclear localization, telomere,
and replication contexts. Joint annotation of MRE states across
cell types meant that the interpretation of the MRE state is
invariant across cell types, but genomic segments attributed to
that state might differ between cell types, primarily due to
difference in cell-type dependent epigenomic makeups. A
predominantly parent–child relationship between the MRE states
in the lower and higher order models was observed, such that the
MRE states are mostly subclassified into finer sub-states in
corresponding higher order models (Fig. 2c), which would allow
us to control resolution of the context-map by selecting
appropriate state model if necessary. For instance, a single state
(10E9) in the 10-state model was subdivided into E18 and E19 in
the 20-state model. Interpretation of the contexts and their
genome-wide prevalence in different cell types are provided in
Supplementary Data 2 and 3 respectively, while an example of
MRE annotations from the 10, 20, and 30 state models for
chromosome 21 in breast epithelial cell type are shown in Fig. 2d
and Supplementary Fig. 2. Our approach is conceptually similar
to that adopted to identify chromHMM states22, which are
specific for transcriptional regulation. But unlike chromHMM we
incorporated genomic and epigenomic features that are specifi-
cally relevant for replication, DNA damage and repair, such that
(i) the composition of chromHMM and MRE states are different,
and (ii) genome-wide distributions of MRE states are fundamen-
tally different (Fig. 2e). The composite MRE states are more
broadly distributed genome-wide than the chromHMM states
which show variations primarily around coding and regulatory
regions which cover only about 2–5% of the genome.

SBS8 was over-represented in MRE state E20 (Fig. 2f), which is
late replicating heterochromatin across multiple cancer types, but
also in E6 and E17 states, which showed similar contextual
composition. In liver cancer, SBS8 was also common in E18 and
E19 contexts (Fig. 2f), which shared the late replication patterns.
Although there were minor variations between the cancer types,
SBS8 was prominently present in late replicating heterochromatin
and depleted in early replicating euchromatin in all cancer types
analyzed. Based on the feature-by-feature and composite context
analyses, we conclude that SBS8 is prevalent in late replicating,
repeat-rich, heterochromatic regions over early replicating, gene-
rich, euchromatic regions, as consistently observed in tissue-
invariant feature-by-feature and tissue-specific composite context
analyses in all cancer types.

Inference of etiology of SBS8 per exclusionem. SBS8 was pre-
sent in multiple cancer cohorts, including those not attributed to
environmental exposure and its nucleotide substitution pattern
did not overlap with any known exogenous mutagen. This sug-
gests that it is unlikely to occur due to external agents, and might
arise via endogenous processes. The context-guided analysis
further indicates that SBS8 rarely occurs in certain epigenomic
contexts, allowing us to exclude certain classes of mutagenic
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processes from consideration. Unlike other mutational signatures
(e.g., SBS4, SBS12, SBS16, and SBS19) that are specifically associated
with transcription-coupled DNA damage and repair, SBS8 was
depleted in exons (Fig. 1c–k) and did not have strong transcrip-
tional strand bias23. In addition, lack of enrichment of SBS8 in
euchromatin regions and lack of motif-preference, as reflected in
the broad trinucleotide context-preference of SBS8, provide no
support for transcription factor-mediated or motif-specific muta-
genesis. Recent reports suggest that SBS8 might be associated with
HRD signature SBS310 and that nucleotide-excision repair deficient
tumors have excess of SBS811. But SBS8 is present in tumors with
no obvious NER pathway defects or homology-mediated repair
defects9—suggesting that there are additional mutagenic mechan-
isms involved. On the other hand, prevalence of SBS8 showed the
most systematic difference with chromatin and nuclear localization

across all cell types. In the composite context analysis chromatin
and replication timing were the key factors distinguishing the
enriched states such as E6, E17–20 from others. We know that (i)
chromatin is the primary determinant of replication profile of
eukaryotic genomes24, and (ii) a vast majority of somatic mutations
arise as a result of replication errors, and late replication is parti-
cularly error-prone2,18,20—motivating us to investigate plausible
roles of replication in the etiology SBS8.

Replication context preference of SBS8. Using Repli-seq data25

from multiple human cell and tissue types, we annotated genomic
regions as early or late replicating in respective cell types, and
further inferred both replication direction relative to the reference
strand in the genome and speed of replication from the pattern of
transition of replication timing along the genome (Fig. 3a).

Fig. 2 Composite epigenomic context analysis of SBS8. a A schematic representation of the Hidden Markov Model used to identify mutagenesis-related
epigenomic (MRE) states integrating genomic, epigenomic, and cellular process features relevant for mutagenesis and DNA repair. b Enrichment score of
the features for the MRE states in a 20-state model. Descriptions of the MRE states are provided in Supplementary Data 1. Enrichment values of exon for
E9–10 and 14–16 are >9. Contrast is saturated for values >3.5. c Relationship between MRE states from the 10, 20, and 30 state models. d Annotation of
chromosome 21:27–30Mb regions using 10, 20, and 30 state models and UCSC Genes are shown in breast epithelial cell type. Genomic coordinates of the
MRE annotations from the 20-state model are provided in Supplementary Fig. 2 and Supplementary Data 3. e Relationship between MRE states and
ChromHMM chromatin states. f Boxplot showing distributions of weight of SBS8 in different MRE contexts for multiple cancer types. See Supplementary
Data 1 for description of the cancer cohorts including the number of samples.
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Fig. 3 Replication context analysis of SBS8. a Schematic representation of inference of replication timing, direction of fork progression, and replication
speed from repliseq data. b Scatterplot showing changes in replication speed with replication timing in MCF7 breast cancer cell line, which shows an
increase in replication speed late during replication. Similar results are observed for other cell lines. c Boxplot showing distributions of weight of
Signature 8 in replication timing contexts in breast cancer (BRCA-EU), ovarian cancer (OV-AU), and lymphoma (MALY-DE). d Boxplot showing
distributions of weight of Signature 8 in combinations of replication timing and speed contexts in breast cancer (BRCA-EU), ovarian cancer (OV-AU),
and lymphoma (MALY-DE). p Values for comparisons between fast and slow replication speed in late replication contexts are listed; combined p value
for the three cohorts using Fishers method is 3.45e−09. e Boxplot showing distributions of weight of Signature 8 in combinations of replication timing,
speed, and direction contexts in breast cancer (BRCA-EU), ovarian cancer (OV-AU), and lymphoma (MALY-DE). See Supplementary Fig. 3 for similar
results for other cancer cohorts. p Values for comparisons between left and right replication direction were not significant, when analyzed in the
context of combinations of replication timing and speed in the cohorts. See Supplementary Data 1 for description of the cancer cohorts including the
number of samples.
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Although replication speed showed regional variations, in general,
it increased towards very late replication in all cell types analyzed
(Fig. 3b, Supplementary Fig. 3). This is in agreement with reports
that late replication is marked by low origin density but higher
replication speed (1.5–2.3 kb/min) than that of early replication
domains (1.1–1.2 kb/min)26.

Analyzing the proportion of SBS8-associated somatic muta-
tions in tumor genomes in the replication contexts from closely
related cell types, we found that late replicating regions had
significant excess of SBS8 compared to early replicating regions in
cancer (Fig. 3c, Supplementary Fig. 3; Wilcoxon rank sum test;
combined p value <1e−05), and within late replication timing
contexts, high replication speed was associated with increased
burden of SBS8 (Fig. 3d; Wilcoxon rank sum test; combined p
value <1e−05). We also found similar results using tissue-
invariant replication timing data on all cancer cohorts (Supple-
mentary Data 4), and our findings are consistent with the
observations in breast cancer27. We did not find significant
difference between left and right replicating strands in terms of
the burden of SBS8 (Fig. 3e), that is in agreement with previous
reports that SBS8 displays no major replication strand bias28.
There were no evidence that SBS8 was preferentially enriched for
kataegis or extended processivity27, i.e., sets of consecutive
mutations with same reference allele attributed to the same
signature. Common and early replicating fragile sites were not
enriched for SBS8 (Supplementary Fig. 1), especially relative to
late replicating regions in general—indicating that replication
fork collapse may not be a major source of SBS8.

Anyhow, Fig. 3d suggests that both replication speed and timing
likely have independent effects, although replication timing might
have proportionally higher effect size. It is known that average
replication fork speed increases markedly in presence of A+T)29,
and that dATP/dTTP proportions increase during late replication
(Supplementary Fig. 4) and drive mutation spectrum that favors AT
nucleotides at late S-phase30, and indeed SBS8 has a preference for
substitution to A or T. Moreover, although replication errors occur
throughout S phase, early replication errors are more effectively
repaired by mismatch repair and nucleotide excision repair (NER)
than those replicated late31,32, which also contribute to increased
mutation burden in late replicating regions20.

SBS8 and genome maintenance. Uncorrected replication errors
have potentials to stall replication, trigger checkpoint activation, and
promote genomic instability32. ATR mediated DNA damage sen-
sing for single strand breaks and CHEK1/2-mediated checkpoint
activation are tightly coupled such that mis-incorporated bases
trigger DNA damage sensing and checkpoint activation. Check-
point defects are common in cancer genomes, which might allow
the cells to proceed through the cell cycle without appropriate repair
of these lesions resulting in mutations. Therefore, if SBS8 is indeed
due to replication errors, we should detect additional evidence at
genomic and cell cycle contexts. At this end, we grouped the tumors
in respective cohorts into three groups based on purity adjusted
ATR expression—low (0–33%), middle (33–67%), and high (top
66–100%), and found that the ATR-high tumors indeed have high
proportion of SBS8 in somatic mutations accumulated in late
replicating domains (Supplementary Fig. 5); in contrast, when the
tumors are grouped according to purity adjusted CHEK1 or CHEK2
expression, low checkpoint gene expression was associated with
high proportion of SBS8 in late replicating domains (Supplementary
Fig. 5). In fact, the tumors with high ATR and also low CHEK1 or
CHEK2 expression had proportionally more SBS8 compared to
other combinations (Supplementary Fig. 6). These observations are
consistent with a model that checkpoint defects are associated with
high prevalence of SBS8.

We note that tumor transcriptome changes with time such that
current expression of those genes is a poor proxy of their past
expression, and it is not possible to obtain expression data from the
time-point when dividing cells accumulated the observed somatic
mutations in the genomes. Moreover, components of DNA repair
pathways are regulated at transcriptional and post-translational
levels, such that correlative data need to be interpreted keeping the
caveats in the mind. Thus, next we analyzed data on acquired
mutations in clonally derived cell lines with checkpoint defects, i.e.,
that had no functional copy of multiple DNA repair pathway genes
including CHEK233. The catalog of acquired mutations in the
CHEK2−/− clones had predominantly background genome
maintenance signature (dubbed BG signature) while contribution
from homology repair defect signature (SBS3 like) was minimal33.
We observed that the BG signature had one of the highest cosine
similarity with SBS8 (0.663). Taken together, these observations
suggest that the checkpoint defects generate a mutational signature
that bear high similarity with SBS8.

Crosstalk between SBS8 and other mutational signatures. We
investigated association between SBS8 and other mutational sig-
natures within and across genomic and epigenomic contexts to
understand context-dependent interplay between these signatures
for a number of reasons. First, mutagenesis and DNA repair do
not occur in isolation and there is crosstalk between different
mutagenic, DNA damage sensing, and repair pathways14,16,32.
Second, there are ongoing debates about computational decon-
volution of mutational signatures, especially those with broad-
spectrum substitution patterns (e.g., SBS3, SBS5, and SBS8).
Third, multiple signatures might represent variations of the same
underlying process in a context-dependent manner14. At this end,
we first projected the signatures in a PCA plot based on their
trinucleotide contexts. In terms of trinucleotide context fre-
quencies, SBS8 has some similarities with other mutational sig-
natures such as SBS3 and SBS5 (Fig. 4a), which also have broad-
spectrum nucleotide substitution patterns and are often discussed
together.

Nonetheless, when the epigenomic and replication context
preferences were analyzed, differences among the signatures
became evident. We used PCA plot to compare epigenomic
context-based proportions of different signatures (Fig. 4b) based
on genomic, chromatin, and nuclear localization features from
Fig. 1; SBS8 showed similarity with SBS40 and was distinct from
other broad-spectrum nucleotide substitution signatures such as
SBS1, SBS3, and SBS5. Like SBS8, SBS40 is also a broad-spectrum
substitution-based signature with unknown etiology. Among the
closely related broad-spectrum substitution-based signatures,
only SBS8 shows consistent and significant preference for late
replication, while SBS1, SBS3, and SBS5 consistently were
depleted in late replication context, in all cancer cohorts including
those representing similar cancer types (Fig. 4c; Supplementary
Fig. 7). We also observed similar results using cell type dependent
replication timing data. In a pan-signature analysis, among the
signatures with sufficient presence (>5% proportion) in the
cohorts, SBS8 showed the highest effect size in to discriminate
early and late replication contexts (Fig. 4d). Apart from the SBS8,
only SBS40 and to some extent SBS12 had high proportional
contribution among somatic mutations in late replicating regions
in all cancer types, and also high effect size to discriminate early
and late replication contexts (Fig. 4d; Supplementary Fig. 8).
SBS12 is a NER signature marked by excess of T > C, which is
distinctly different from SBS8, but the etiology of SBS40 is
unknown. Based on their similarity both at the trinucleotide level
and presence in different epigenomic and replication contexts, we
argue that SBS8 and SBS40 might be related.
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Next, we investigated whether SBS8 in late replication context
correlated with any other mutational signature, especially those
known to be genome maintenance-related, in early replication
context complementing it. Association of SBS8 with other
mutational signatures was cancer type dependent and context-
dependent (Supplementary Data 3). The proportion of different
NER signatures (e.g., SBS7, SBS19, and SBS32) in early replicating
regions correlated with the proportion of SBS8 in late replication
in multiple cohorts. But no single signature, NER-related or
otherwise, correlated with SBS8 within and across epigenomic
contexts in a majority of cancer types tested. In liver cancer the
proportion of SBS8 in late replication context correlated with
SBS5 in early replication, while in breast and ovarian cancer,
proportion of SBS8 in late replication significantly correlated with
the proportions of Signature SBS3 and SBS1 in early replicating
contexts. Our observations are consistent with reports that
tumors with BRCA1/BRCA2 deficiency have high burden of
SBS810, but indicate that such associations are tissue specific.

Replication errors have potentials to cause DNA double strand
breaks, rearrangements, and genomic instability, and the burden
of genomic structural variations in cancer genomes is known to

be high in late replicating heterochromatin domains34,35.
Integrating somatic structural variation data for the ICGC
cohorts we observed that, in selected cancer types such as breast
and ovarian cancer, the proportion of SBS8 genome-wide strongly
correlated with increased frequency of somatic structural
variations in breast and ovarian cancers (Supplementary Fig. 9);
we observed similar results based on proportion of SBS8 in late
replicating regions in these cohorts. Our observations are
consistent with that based on SBS3 published reports in breast
cancer10 and suggest that association between SBS8 and genomic
structural instability might be cancer type dependent. It is
possible that repair pathway defects augment both late replication
errors and genomic instability, which might drive the observed
associations.

SBS8 is uncommon in nonmalignant tissues. Analyzing de novo
germ line mutations from whole genome sequencing of 250
parent–offspring families36, we found that proportion of
SBS8 signature overall was very low in the germ line, and there
was no significant difference between its weight in late (mean:

Fig. 4 Crosstalk between SBS8 and other mutational signatures. a PCA plot showing different mutational signatures projected based on their
trinucleotide frequencies. Cosine similarity is shown to the right. b PCA plot showing different mutational signatures projected based on their weights in
different epigenomic contexts. SBS8 is marked with an arrow. Cosine similarity is shown to the right. c Effect size of selected mutational signatures SBS1,
SBS3, SBS5, and SBS8 in late replication contexts relative to early replication contexts in different cohorts. Negative values indicate preferential occurrence
in early replication contexts. d Scatterplot showing mean proportion of each signature in late replication against its effect size between early and late
replication contexts. SBS8, SBS40, and SBS12 are marked. Whiskers indicate the maximum and minimum values across the cancer cohorts. See
Supplementary Data 1 for description of the cancer cohorts including the number of samples.
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0.0142) and early replicating regions (mean: 0.0114; p value >
0.05; Supplementary Fig. 10). This was not due to modest
mutation count per sample; we observed similar results when the
analysis was performed at the cohort-level after mutations from
all samples were pooled. Likewise, mutational signature analysis
of nonmalignant somatic did not show any substantial con-
tribution of SBS8 at a genome-wide level37–40, which contrasts the
patterns observed in cancer genomes in all major cancer cohorts.
In addition, unlike SBS1 and SBS5, it does not show any pro-
minent clock-like properties, i.e., age-associated increase in bur-
den of associated mutations in somatic genomes41. On the other
hand, when the tumors were grouped based on stage, the weight
of SBS8 in late replicating regions increased with pathological
staging in multiple cancers (Supplementary Fig. 10). Therefore,
SBS8 mutational signature appears to be rare in nonmalignant
cells, but likely arises during cancer progression.

Discussion
Our results indicate that SBS8 preferentially occur in late replicating
gene poor, lamina-proximal heterochromatin regions, where repli-
cation timing and speed emerge as major determinants (Fig. 5a). In
contrast, replication strand bias appears to have no major effects on
SBS8. Our results are consistent with that reported in breast can-
cer27. It is possible that high replication speed increases replication
stress and elevates base-line error-rates, as observed in viral gen-
omes42. Imbalance in the nucleotide pools may further promote
C >A:G > T and T >A:A:T substitutions during late replication.
While early S phase templates have more time to recognize and
repair mutations prior to mitosis, late replication errors may persist,
especially in tumor genomes where strong growth signal and/or
checkpoint defects drive the cell cycle to progress to mitosis without
sufficient replication-coupled or post-replicative repair. It is known
that mismatch repair and NER manage to correct replication errors
more effectively during early replication31,32, and when either the
nucleotide excision or mismatch repair pathway is defective,
mutations are relatively more evenly distributed throughout the
genome31. Indeed, SBS8 is rare in the germ line mutations and
somatic mutations in nonmalignant tissues, while tumor genomes,
particularly those with checkpoint defects, DNA repair defects, or
signatures of genomic instability have high prevalence of SBS8
(Fig. 5b, Supplementary Fig. 10)—which is in line with the facts that
uncorrected replication errors trigger checkpoint activation, and
promote somatic mutations and overall genomic instability34,43.
Therefore, SBS8 might be a marker of tumorigenesis, although
further work is needed to firmly establish that.

Our observations offer a potential reconciliation among dif-
ferent perspectives in the debate about the etiology of SBS8. It was
recently suggested that NER pathway deficiency, particularly in
CC»AA context contribute to SBS8 burden11 while others showed
that BRCA1 and BRCA2 mutant tumors have high burden of
SBS8 associating it with HRD and genomic instability10. Our

findings suggest that such associations are not necessarily
mutually exclusive, and might be context-specific especially since
SBS8 is also detected in tumors with no overt HRD or NER
defects. It is possible that inefficient global genomic NER during
late replication contributes to this signature, and uncorrected
lesions could lead to both point mutations and genomic
instability, particularly in HRD contexts. Furthermore, replication
and genome maintenance are complex processes, involving
interaction among multiple repair-related pathways14,16,32 such
that associated mutations arising may not be explained by a single
mutational signature; rather owing to differences in cell-type
dependent differences in cell cycle, endogenous mutagenesis,
chromatin remodeling, and repair processes there may be tissue-
dependent crosstalk between multiple mutational signatures.

Context-guided analysis can provide crucial insights into
mutagenic processes operating on the genome. Our approach is
complementary and synergistic to the attribution method27 given
that the former can identify prevalence of different mutational
signatures in a given epigenomic context, while the latter can
probabilistically assign individual mutations therein to most likely
mutational signatures, providing etiological insights at different
genomic resolutions. At this end, our context-guided approach is
applicable not just to the SBS8, but provides a rational roadmap
for investigating underlying mechanisms of the emerging muta-
tional signatures associated with single- and dinucleotide sub-
stitutions, InDels, and rearrangements.

Methods
Cancer cohort datasets. We analyzed somatic point mutation data for multiple
cancer types from the International Cancer Genome Consortium (ICGC release 28)13.
The cancer types selected had diverse tissue-of-origin, mutation burden, and onco-
genic drivers, which enabled us to draw etiological inference about the mutational
signatures without any tissue-dependent bias. After removing samples with
<500 somatic point mutations from whole-genome sequencing, we had
20–569 samples (median: 145) per cohort for downstream analyses. A summary of
the cohorts included in the study are listed in Fig. 1b and Supplementary Data 1.
In some cohorts, a subset of the samples had structural variation and/or RNAseq-
based expression data available. We also obtained data on 11,020 de novo germ line
mutations identified using whole genome sequencing of 250 Dutch parent–offspring
families from the Netherland Genome Project36, which profiled 231 trios, 11 quartets
with monozygotic twins, and 8 quartets with dizygotic twins from 11 of the 12 Dutch
provinces without ascertaining on the basis of phenotype or disease.

Mutational signature analysis. We obtained consensus single base substitution
(SBS) mutational signatures (version 3) from the COSMIC database23 that inclu-
ded 49 SBS, 11 doublet base substitution, and 17 indel signatures. These signatures
were identified by Alexandrov et al.9 who used nonnegative matrix factorization
techniques to analyze nucleotide contexts of somatic mutations in tumor genomes
from the ICGC cancer cohorts13. SBS8 (Fig. 1a) is one of the single nucleotide
substitution signatures, which has remained broadly consistent with that reported
in the previous versions (e.g., SBS mutational signatures from the COSMIC
database version 2). It can be challenging to directly apply the attribution
method27, i.e., compute probability for individual mutations to be caused by a
given mutational signature in a given sample, especially for mutational signatures
with broad trinucleotide context preferences (e.g., SBS8). Therefore, we adopted a
complementary approach, and segmented the genome in different genomic/

Fig. 5 Schematic representation showing emerging characteristics of SBS8 mutational signature. a SBS8 is suspected to arise due to replication errors,
and has higher burden in context of late and fast DNA replication. b SBS8 is relatively uncommon in de novo germ line mutations and somatic mutations in
nonmalignant tissues, but has progressively increased burden in advanced tumors, which have sustained growth signal, impaired genome maintenance,
and/or checkpoint defects.
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epigenomic contexts, identified the somatic mutations in such contexts in each
sample, and estimated the proportion of mutational signatures based on those
somatic mutations. We computed the proportions of the signatures in the cohorts
using deconstructSigs44, and took into consideration the discussion about best
practice guidelines for mutational signature extraction45–48. This allowed us to
directly compare contributions of different mutational signatures across genomic
contexts, and across patients such that our inferences are unaffected by length of
different genomic contexts or difference in overall mutation burden between
tumors. We also computed the burden of mutational signatures (signature
weight × number of somatic mutations/Mb in that context) genome-wide or in
specific genomic context. Our key conclusions were unchanged when we compared
mutational signature burden, or used legacy SBS mutational signature COSMIC
version 2, which had 30 signatures.

Genomic and epigenomic contexts. The mechanisms of DNA damage and repair
depend on local sequence, chromatin, and nuclear contexts14. Thus, we defined
(i) genomic contexts: exons, whole genes (including exons and introns), repeats,
and telomere, (ii) epigenomic contexts: strong heterochromatin, weak hetero-
chromatin, intermediate chromatin, weak euchromatin, and strong euchromatin,
and (iii) nuclear localization contexts: lamina-proximal regions in the nuclear
periphery and inter-lamina regions in the nuclear interior, and compared presence
of different mutational signatures within and across contexts.

Some features (e.g., genomic contexts) are tissue-independent; in other cases,
cell type specific data (e.g., replication timing) was used when available.
Annotations for exons, genes, telomere, and repeat elements was obtained from the
UCSC Genome Browser49. Tissue-dependent replication timing data were obtained
from the Replication Domain database50. Tissue-dependent histone modification
and chromatin data for selected human tissue types was obtained from the
ENCODE project21. Tissue invariant early and late replication timing, giemsa-
staining based chromatin, and lamina proximity data was obtained from Smith
et al.18 and processed in a similar manner. Data on common fragile sites and early
replicating fragile sites were obtained from published studies35,51.

We processed and analyzed somatic mutations in the contexts of genomic,
epigenomic, chromatin, and nuclear features using mutSigTools R package
(https://github.com/sjdlabgroup/MutSigTools). We computed the proportions of
the mutational signatures in each sample in each context using deconstructSigs44.
The proportion of SBS8 in tissue-invariant early and late replication contexts is
provided in Supplementary Data 5. As a special case, we compared both proportion
and mutation burden of mutational signatures between different contexts to assess
whether the number of mutations attributed to a mutational signature (signature
weight × number of mutations/Mb) is higher in a context, even when there is an
apparent decrease in relative proportion of that signature due to an excess of other
signatures. We found no evidence supporting that possibility confounding our
conclusions about the observed difference in preference of SBS8 for
heterochromatin over euchromatin, and late replication over early replication
context. We used SigProfiler9,52 to extract de novo mutational signatures from
somatic mutations in early and late replicating regions across all samples, and
compare those with SBS8; but that did not resolve SBS8 into stable subsignatures
with discrete and informative trinucleotide preferences.

Composite context analysis. Trinucleotide, genomic, and epigenomic features are
not independent, and synergistically impact DNA damage and repair14. We con-
sidered that biologically relevant combinations of such features could be repre-
sented by composite contexts, which could be modeled using a multivariate HMM
(Fig. 2a). This approach enables probabilistic modeling of both the combinatorial
presence/absence of multiple features and the spatial constraints of how these
feature-combinations occur relative to each other across the genome. The former
and latter are considered in the emission parameters and transition matrix of the
multivariate HMM, respectively. We used Baum-Welch algorithm to learn the
model parameters de novo in a data-driven manner on the basis of an unsupervised
machine-learning technique that iteratively maximizes the model fit to the
data. We jointly annotated MRE states for multiple cell types using ENCODE
data for relevant cell lines (lung: IMR90; breast: MCF7; liver: HepG2; neuronal:
SK–N–SH; hematopoietic lymphoid and myeloid cell types: GM12878 and K562,
respectively)21. We computed enrichment scores for the features for classifying the
MRE states (Fig. 2b), and generated MRE annotation for models with different
number of states in different cell types. We further compared the MRE states with
chromatin states identified by chromHMM22 that are relevant for transcription
regulation. The features relevant and DNA damage and repair are distinct from
those critical for chromHMM, although there are some overlaps. We computed the
proportions of the mutational signatures in each sample in each composite context
using deconstructSigs44 as before.

Replication timing, strand bias, and directionality analysis. Replication is a
highly coordinated cellular process; a majority of origins do not fire determinis-
tically, rather origin firing occurs both individually and as clusters in the genome
that correlate with local chromatin status. For tissue-dependent analysis, genome-
wide replication timing data were fitted with cubic smoothing spline (smoothing
parameter of 0.2) and analyzed as published53,54. Genomic regions with positive

and negative value of replication timing scores were considered early and late
replicating, respectively. From any origin of replication, the fork progress in both
directions such that on one side, the genome reference strand is continuously
replicated, while in the other direction it is replicated via Okazaki fragment. The
sign of the replication gradient on the smoothed data provide information about
direction of replication fork progression such that positive slope is represents left
replicating strand and negative slope represents right replicating strand53. On both
sides of the early replicating peaks the slope changes its polarity. Furthermore, we
note that replication gradient along the length of the genome provides information
about the speed of replication; when replication fork progresses fast, greater stretch
of the genome is replicated between early and late S phases, compared to slow
replicating segments where replication peaks and valleys are closely spaced. Thus,
we labeled genomic regions as fast or slow replicating, if their absolute replication
gradient is below or above median of the genome-wide values. Our key conclusions
did not change after excluding the ENCODE back-listed genomic regions that are
prone to technical artefacts (http://hgdownload.cse.ucsc.edu/goldenpath/hg19/
encodeDCC/wgEncodeMapability/ wgEncodeDacMapabilityConsensusExcludable.
bed.gz).

Effect size calculation. For effect size estimation, we first calculated Wilcox

signed-rank test statistic as W ¼ Pn
i¼1 sgnðSBSi;LRT � SBSi;ERT Þ:Ri

h i
, where

SBSi;LRT and SBSi;ERT are proportion of i-th mutational signature in late and early
replicating regions, respectively. Cell-type invariant replication timing data was
used for effect size calculation for consistent processing of replication context in all
cancer types. But we observed similar results using cell type specific data as well. To
compute an effect size for the signed-rank test, the rank-biserial correlation was
used. When R is the total rank sum, the effect size was computed as W/R55.

Statistics and reproducibility. All statistical analyses were performed using R
version 3.4.0. Sample sizes for respective cohorts are provided in Supplementary
Data 1. Statistical tests and corresponding p values are listed for respective analyses.
Correction for multiple testing using false-discovery rate was performed as
appropriate. Combined p values were calculated using the Fisher’s method. In the
boxplots, upper whisker is defined to be 1.5 × IQR more than the third quartile or
the maximal value of the adjusted mutation rate (depending on which value is
greater) and the lower whisker is defined to be 1.5 × IQR lower than the first
quartile or the minimum value of the adjusted mutation rate (depending on which
value is smaller) respectively, where IQR is the difference between the third quartile
and the first quartile, i.e., the box length.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability
This study used publicly available datasets. Composite epigenomic states are provided as
Supplementary Data 3. Any other data are available from the corresponding author upon
request.

Code availability
The scripts used to process and analyze the mutation data are available at https://github.
com/sjdlabgroup/MutSigTools, and/or can be requested from the corresponding author.
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