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Optimally‑weighted non‑linear 
beamformer for conventional 
focused beam ultrasound imaging 
systems
Anudeep Vayyeti & Arun K. Thittai*

A novel non‑linear beamforming method, namely, filtered delay optimally‑weighted multiply and 
sum (F‑DowMAS) beamforming is reported for conventional focused beamforming (CFB) technique. 
The performance of F‑DowMAS was compared against delay and sum (DAS), filtered delay multiply 
and sum (F‑DMAS), filtered delay weight multiply and sum (F‑DwMAS) and filter delay Euclidian 
weighted multiply and sum (F‑DewMAS) methods. Notably, in the proposed method the optimal 
adaptive weights are computed for each imaging point to compensate for the effects due to spatial 
variations in beam pattern in CFB technique. F‑DowMAS, F‑DMAS, and DAS were compared in terms 
of the resulting image quality metrics, Lateral resolution (LR), axial resolution (AR), contrast ratio 
(CR) and contrast‑to‑noise ratio (CNR), estimated from experiments on a commercially available 
tissue‑mimicking phantom. The results demonstrate that F‑DowMAS improved the AR by 57.04% 
and 46.95%, LR by 58.21% and 53.40%, CR by 67.35% and 39.25%, and CNR by 44.04% and 30.57% 
compared to those obtained using DAS and F‑DMAS, respectively. Thus, it can be concluded that the 
newly proposed F‑DowMAS outperforms DAS and F‑DMAS. As an aside, we also show that the optimal 
weighting strategy can be extended to benefit DAS.

Ultrasound (US) imaging is widely used for clinical applications as it is a non-ionizing and real time modality. 
The beamformer is one of the most essential units of an US machine, which majorly determines the final recon-
structed image quality. The primary purpose of the beamformer is to achieve a narrow main lobe with reduced 
side lobes, since the resolution is related to the width of the main lobe, and contrast is related to the level of side 
 lobes1. Therefore, a beamformer is practically tuned to achieve a good tradeoff between these  two2. Delay and 
sum beamformer is generally used in medical US imaging due to its simplistic implementation. However, it has 
its own limitations of lower image resolution outside the focal region and less off-axis interference  rejection2,3. 
In literature, adaptive beamformers are proposed, which change the weights for the receive aperture dynami-
cally based on the received data statistics to improve the image resolution, but with an increased computational 
 complexity4–8. Also, methods based on using the spatial coherence have also been reported to improve the image 
 quality9–11.

Few years ago, a non-linear beamforming technique called filtered delay multiply and sum (F-DMAS) beam-
forming was introduced for US imaging inspired from delay multiply and sum (DMAS) beamforming reported 
in microwave  literature12. F-DMAS method was applied on plane wave imaging and synthetic transmit aperture 
(STA) techniques and it was demonstrated to improve the reconstructed image  quality13,14. Later, to suppress 
the noise and artifacts further, an additional correlation process was introduced to F-DMAS and was named 
double-stage DMAS, thereby, improving the final reconstructed image  quality15. Furthermore, a new method 
was proposed, which recursively applies the DMAS algorithm to improve the image  quality16.

Further, an adaptive beamformer was proposed called p-DAS which resulted in improvement of image quality. 
It was also shown that, for p = 2, p-DAS is equivalent to  DMAS17. Another research group proposed Baseband-
DMAS (BB-DMAS), where the quality of the image is improved by utilizing pth root and pth power restoration 
operations on delayed and summed RF data,  respectively18. The reason for improvement of image quality by 
F-DMAS over DAS was found to be the greater dependence of the image amplitude on signal coherence in the 
former compared to  later19,20. Many works utilized this finding to improve the image quality, for e.g., sDMAS, 
2D-DMAS, etc., which were developed by integrating coherence based beamformers with F-DMAS20–24.
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Recently, weighted non-linear beamformers called filtered delay weight multiply and sum (F-DwMAS) and 
filtered delay Euclidian-weighted multiply and sum (F-DewMAS) were proposed, where either an optimal weight 
or Euclidian-based weighting after the stage of multiplication was proposed for F-DMAS. It was shown that the 
quality of the reconstructed image improved for the data acquired using 2 receive synthetic aperture focusing 
technique (2R-SAFT) scheme using both F-DwMAS and F-DewMAS and for data acquired using synthetic 
transmit aperture (STA) scheme using F-DwMAS25–27. Even though SA-based methods like STA or MSTA are 
proven to give better image quality along the depth, conventional focussed beamforming (CFB) is still widely 
used in the commercial scanners due to some practical advantages, such as, requiring less memory for data 
handling, lower beamforming complexity, thereby, reducing processing time and hardware requirement, better 
depth of penetration due to focussing in front of the transducer. Also, it gives best image quality at the focus, 
which can be flexibly set at desired region of interest and is one of the major advantages. Additionally, several 
US applications developed over years like pulse wave Doppler flow imaging, elastography, etc., were developed 
and proven successful for CFB scheme. Therefore, it appears advantageous to improve the image quality of CFB 
technique to derive greater impact.

In CFB using linear array transducer, a transmit sub-aperture with fixed focus is typically translated electroni-
cally from left to right through the array. Thus, in practice only a partial field of view benefits from having data 
from sub-aperture with symmetric transmit beam pattern. For e.g., in a 128 linear array transducer that operates 
with 64-active elements, only the region in the medium that falls between elements 32 and 96 will benefit from 
being insonified by the active sub-aperture with symmetric transmit beam pattern. Consequently, the practical 
transmit beam pattern changes for different transmissions since the beam must be steered asymmetrically, due 
to unavailability of sufficient number of elements when approaching the edges. This dictates the need to modify 
the weighted non-linear beamformers to make them optimal for CFB scheme.

In this paper, a new method named filtered delay optimally-weighted multiply and sum (F-DowMAS) beam-
forming is proposed, which compensates for the above explained variations in the transmit beam, thereby, result-
ing in  significantly improved  final reconstructed image quality. Although the major interest was to improve the 
performance of the latest non-linear beamformer, the developed apodization optimization method is directly 
extendable to traditional DAS as well. This aspect is also reported here.

Materials and methods
Conventional focused beamforming (CFB) technique. In Conventional focused Beamforming 
(CFB) technique, focused beams are used for imaging the medium. In CFB a set of transducer elements are 
excited (called as ‘transmit aperture’) to generate a beam that is focused at a particular depth. During recep-
tion, the set of elements receiving the returned echoes is referred to as a ‘receive aperture’. Later, the transmit 
aperture is scanned in lateral direction to acquire raw RF data, which is later beamformed, envelope detected, 
log compressed and finally displayed as B-mode image. There are different ways of scanning in CFB. In one such 
method, a transmit aperture whose size is much smaller compared to the size of the transducer is chosen such 
that only the scanning lines near the center, which has the same number of channels for all the transmit aper-
tures, are used for imaging. However, this method either needs a larger transducer for scanning a given region 
or should compromise on the field of view. There are also variations where the number of transmit channels is 
reduced for the scan lines at the edges. However, the image quality will be degraded in the process due to less 
data available for beamforming. Further, the imaging depth will be compromised due to reduced total transmit 
energy. Furthermore,  the changed size of the aperture  for scan lines close to the edges, also introduces changes 
to the beampattern. There are also variations such as trapezoidal scanning, where the direction of the scanning 
lines is tilted (oblique scanning), which also results in image quality degradation due to the beampattern varia-
tions. In this paper we selected a CFB scan technique where the aperture chosen during both transmission and 
reception uses the maximum permitted active channel supported by the Ultrasound scanner hardware (i.e., 64 
channel aperture on a 128-element transducer in our case). Since maximum possible aperture size is used in 
transmission, transmit energy and thereby the imaging depth is not compromised. Also, using maximum pos-
sible size during reception ensures that the SNR is not sacrificed due to missing data. The chosen CFB technique 
is illustrated in Fig. 1. The transmit aperture is scanned in lateral direction (indicated by red, green and oranges 
rectangles in Fig. 1, corresponding to different transmit receive events (TREs)) to acquire raw RF data, which is 
later beamformed, envelope detected, log compressed and finally displayed as B-mode image.

The transmit beam in CFB scheme is such that the focus is along the ‘line of sight’ of the transmit aperture 
center, when sufficient number of elements are available on either side, as shown in  TRE64 of Fig. 1. If this is not 
the case, the beam is focused and steered as shown for  TRE1 and  TRE126 in Fig. 1. This is also the case with  TRE1 
to  TRE32 and  TRE97 to  TRE128, where the transmit aperture remains static but the beam is steered, thus leading to 
huge variations in the transmit beam pattern for various transmissions, both in axial and lateral directions. This 
can be mathematically explained using Eq. (1), which gives the transmit beam pattern at any particular location 
(l, a) when an Ultrasound beam is focused by an Array transducer made of rectangular  elements28.

where, U is the intensity of beam, α represents “proportional to”, l  and a are the spatial co-ordinates in lateral and 
axial directions, respectively,  L is the length of the array transducer, � is the wavelength, s is the spacing between 
the elements and d is the element width.

From both, Eq. (1) and Fig. 1, it can be observed that the intensity at a particular point (l1, a1) is dependent 
on the distance between the element and the point: Farther elements would contribute lesser compared to the 
nearer elements, due to attenuation. Therefore, at the point (l1, a1) the intensity contribution due to first element 
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that is at a lesser path length  (PL1) would be more, compared to sixty fourth element that is at a greater path 
length  (PL64). In the same way, by analyzing path lengths between points (l3, a3), (l4, a4) and (l5, a5) and various 
transducer elements in transmit aperture, it can be observed that the intensity contribution of center element 
is highest compared to extreme elements, which is very different from the case of (l1, a1) and (l2, a2), where the 
contribution was highest from the first element, which is on the left extreme. Similarly, for points, (l6, a6), (l7, a7) 
and (l8, a8), the contribution would be highest from sixty second element, which is neither center nor an extreme 
element. Also, due to attenuation the contribution from various elements would change with respect to depth. 
For example, even though the contribution from the first element to points (l1, a1) and (l2, a2) is highest compared 
to other elements, it would be higher for (l1, a1) compared to (l2, a2), due to depth dependent attenuation. In 
summary, the contributions from different elements to different points in the medium for different transmis-
sions would vary drastically based on factors like location of point in the medium and the distance of the point 
from various elements. Further, the wavelength ( � ) would change with distance, due to frequency shifts caused 
by attenuation. From all the above observations, it can be concluded that the transmit beam pattern varies at 
different points in the imaging plane. Due to these variations, even though the focus is located at the same depth, 
‘width of the beam at focus’ and ‘depth of focus’ changes for different transmits, which affects the resolution.

Linear (DAS), non‑linear (F‑DMAS) beamforming methods. In DAS beamforming, to reconstruct 
a point in the medium, the raw RF data acquired over the receive aperture is delayed making them in phase and 
then summed. Whereas, in DMAS it is combinatorially coupled and multiplied before being  summed12. Equa-
tions (2) and (3) gives the final beamforming equations of DAS and DMAS.

where, di(t) and dj(t) are the delayed RF signals received by the ith and jth transducer elements, wi(t) is the apo-
dization window coefficient multiplied to di(t), and n is the number of transducer elements in receive aperture.

Further, additional steps of sign preservation, dimensionality reduction and bandpass filtering were intro-
duced in DMAS to develop filtered DMAS (F-DMAS)12.

Weighted non‑linear (F‑DwMAS and F‑DewMAS) beamforming methods. In the recently pro-
posed filtered delay weight multiply and sum (F-DwMAS) and filtered delay euclidian-weighted multiply and 
sum (F-DewMAS) beamforming methods, an extra stage of weighting is introduced after the delay stage. In 
F-DwMAS, a set of window coefficients raised to the power of ‘r’ are multiplied to the aperture data, where ‘r’ 
can be used as a tuning parameter to control image quality. Whereas, in F-DewMAS, the combinatorial combi-
nations of the window coefficients obtained after the multiplication stage are raised to the power of ‘Euclidian 
distance’26. In general, these operations can be mathematically represented as in Eq. (4). The sign of the signal 
is preserved in Eq. (5), while Eq. (6) gives the final beamforming equation for either F-DwMAS or F-DewMAS 
depending on the ‘power’ chosen.

(2)DAS(t) =

n
∑

i=1

wi(t)di(t),

(3)DMAS(t) =

n−1
∑

i=1

n
∑

j=i+1

di(t)dj(t).

Figure 1.  A schematic representing the changes in the transmit beam pattern (TBP) in the CFB scanning using 
a 128 element transducer, where, 65th transmit is symmetric around the aperture center compared to 1st and 
126th transmits, which are skewed.
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where, power = r(for DwMAS) or
∣

∣i − j
∣

∣(for DewMAS) when d(i) and d(j) are the delayed RF signals received 
by the ith and jth transducer elements, respectively. x(i,j) is the weighted combinatorially coupled data, y(i,j) 
preserves the sign and finds the square root x(i,j) and n is the number of transducer elements in receive aperture.

Further detailed explanation of F-DwMAS and F-DewMAS beamforming methods can be found in reference 
Vayyeti and  Thittai26.

Filtered delay optimally‑weighted multiply and sum (F‑DowMAS) beamforming. It was 
explained in the previous section that the transmit beam pattern varies in CFB scheme. The proposed filtered 
delay optimally-weighted multiply and sum (F-DowMAS) beamformer incorporates compensation for the 
changes in the transmit beam pattern caused due to the position (l, a) and wavelength (�) (in Eq. (1)) by optimiz-
ing the apodization function at every imaging location (l, a ). The developed F-DowMAS beamformer tries to 
reduce the width of the main lobe of receive beam pattern while simultaneously reducing the side lobe levels. 
Since image resolution is related to the width of the main lobe and image contrast is related to the level of side 
lobes, F-DowMAS can improve the overall image quality. F-DowMAS beamformer tries to achieve this by mini-
mizing Eq. (7), where, axial resolution (AR), lateral resolution (LR), contrast ratio (CR) and contrast to noise 
ratio (CNR) are used as optimizing parameters. The numerator of Eq. (7) consists of resolution terms, which 
takes care of reducing the main lobe in both axial and lateral direction, whereas, the denominator consisting of 
contrast terms take care of reducing the level of side lobes. F-DowMAS can be mathematically described using 
Eqs. (7)–(11), where, Eqs. (7)–(9) compensates for the variations in the beam pattern.

where, AR and LR are computed as full width at half maximum (at − 6 dB level) across the Axial and Lateral 
profiles of point scatterrers, CR and CNR are computed as explained in reference 26, p represents the imaging 
point being operated, r is the power variable varied over a wide range (e.g., 0 to 200, in discrete steps and later 
interpolated to attain resolution of 0.001), m is the function to be minimised, R

(

p
)

 is the adaptive power matrix 
computed on the whole raw RF data acquired at full sampling frequency, d(i) and d(j) are the delayed RF signals 
received by the ith and jth transducer elements, respectively. x(i,j) is the weighted combinatorially coupled data, 
y(i,j) preserves the sign and finds the square root x(i,j), and n is the number of transducer elements in receive 
aperture.

It can be observed from the above equations that R(p) must be estimated, which requires calculation of image 
quality metrics from the image. This estimation of R(p) operates similarly to a closed loop feedback system, to 
optimize the weights and make them more adaptive to the variations in the beam shape and intensity. However, 
this process being computationally intensive may not be suitable for real-time operation. Instead, we propose 
computing these adaptive weights (Eq. (8)), as a calibration step before hand. This is practical since it can be 
done once for the chosen transducer and system configuration either through experiments on a calibrated test 
phantom or in simulation. The estimated R(p) can then be stored and used in Eq. (9). Thereafter, Eqs. (10) and 
(11) are used to perform DowMAS reconstruction.

Estimation of the adaptive power matrix, R, in simulation. For the purposes of this study, we esti-
mated R(p) from simulation and evaluated the performance of F-DowMAS beamformer in experiments. Here, 
a computer test phantom was generated using Field II  software29,30. The phantom contained both point scatter-
ers and cysts (2 mm diameter), which were equally spaced and arranged in 15 rows and 7 columns to cover the 
entire imaging region as shown in Fig. 2. The arrangement and spacing of the point scatterers and cysts were 
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selected such that the side lobes of one scatterer will not interfere with the main lobe of the neighbouring scat-
terers, since this would corrupt the AR and LR computations. Also, the size of the cysts was selected in such a 
way to incorporate as many cysts as possible while having enough background region for CR and CNR com-
putations for any of the cyst. This computer phantom was imaged with a simulated array transducer using the 
CFB scheme with the parameters as listed in Table 1. The simulated array transducer was as close as possible to 
the L11-5v (Verasonics Inc., WA.USA) transducer used in the experiments. Gaussian white noise was added to 
the simulated data so that the SNR of the acquired RF data after the addition of noise was at 40 dB. This RF data 
was subject to the process described earlier (Eqs. (7)–(11)) to find the optimal adaptive weights ‘R’, which are 
assigned to the midpoint of the line joining the centers of point scatterer and the cyst. At other imaging locations 
interpolated values were generated.

Example numerical analysis to explain the role of adaptive power matrix, R, in compensating 
for beam pattern variation. Consider two points  p1 (close to focus) and  p2 (away from focus) that are 
within the locations highlighted by red and green boxes in Fig. 2, which were insonified by a focused beam trans-
mitted through a transmit aperture consisting of 5 transducer elements. Assuming that 5 raw RF data points  (d1 
to  d5, acquired by receive aperture consisting of same 5 transducer elements) are used to reconstruct these points 
by F-DowMAS beamformer, a total of 10 combinations will be generated as shown in Eq. (12). Where,  w1 to  w5 
are the window coefficients multiplied to  d1 to  d5 as shown in Fig. 2, and R(p1) is the value of power at location  p1.

Figure 2.  The cross-section view of the simulated phantom consisting of strong point reflectors (white circles), 
no scattering regions (black), and scattering region (grey). The phantom geometry, along with dimensions, is 
also shown. An illustration of the apodization function at two different points in the imaging medium shaped by 
R(p) to compensate for beampattern variations is also provided.

Table 1.  Transducer parameters used in simulation.

Parameter CFB scheme

Number of elements  (NT) 128

Active elements (n) 64 (TX), 64 (RX)

Inter-element spacing 0.3 mm

Element width 0.275 mm

Element height 4 mm

Center frequency 8 MHz

Sampling frequency 31.25 MHz

Focus 40 mm
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Now, assuming the following values for window coefficients (Hanning window) and powers (taken from 
Fig. 3) we have w1 = 0.1,w2 = 0.5,w3 = 1,w4 = 0.5,w5 = 0.1,R

(

p1
)

= 0.5(closetofocus),R
(

p2
)

= 1 (away from 
focus). Substituting these values in Eq. (12), we get values as shown in Eq. (13) for point  p1

Similarly, for point  p2, the computed values are shown in Eq. (14)

From Eqs. (13) and (14), it can be noted that, C1(2,1) = 1.4C2(2,1);C1(1,4) = 10C2(1,4).
It can be observed that the Beamformer gave more weightage to all the combinations involved in reconstruc-

tion of point  p1 compared to those involved in reconstruction of  p2, since the SNR of the signal received from 
focal region is greater due to relatively stronger insonification compared to region away from the focus. When 
the point is away from the focus, the beamformer assigns disproportionately lower weightage to the points far 
from the “line of sight” of CFB. For example, C2(1,4) was given 10 times lower weightage compared to C1(1,4) , 
since either d1 or d5 or both will be the farthest from “line of sight” depending on the transmission (i.e., if it is 
symmetric, d1 and d5 are both farthest, if it is right skewed, d5 is the farthest and if it left skewed, d1 is the farthest) 
and would lead to a larger attenuation (exponential decay in signal) in both transmission and reception and 
therefore lower SNR. Whereas, for C2(2,1) the weightage was reduced only by a factor of 1.4, since, d2 and d3 are 
relatively closer to “line of sight” irrespective of transmission, so the attenuation levels are lower compared to the 
C1(1,4) and C2(1,4) case. Also, from Fig. 3, the weightage is related to intensity of transmit beam at a particular 
location, which takes care of the intensity variations due to skewness (or left–right symmetry) of the beam by 
changing weightage accordingly. In this manner, the beamformer changes the weightage based on the location 
of the points in the medium, thus compensating for beampattern variations. The other way to look at this pro-
cess is that, the shape of the apodization function is changed at every location (as shown in Fig. 2) giving more 
weightage to signals with better SNR during beamforming thus resulting in better image quality.
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Figure 3.  Image of ‘R’ matrix obtained for different transmit focal depth settings of (a) 40 mm, (b) 25 mm 
and (c) 60 mm in CFB technique that is used in F-DowMAS. The corresponding normalized amplitude map 
computed by taking maximum intensities in their transmit beams (along lateral direction) are shown in (d–f), 
respectively.

Table 2.  Frequency cutoffs of the BP-filter windows for various methods.

Method Pre-filter on RF signals (MHz) Post-filter after beamforming (MHz)

DAS/DowAS 5–11 5–11

F-DMAS/F-DwMAS/F-DewMAS/F-DowMAS 5–11 8–20
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Figure 4.  B-mode images of the computer phantom reconstructed using the different beamformers (a–f), 
wherein, the data were acquired using CFB technique. A zoomed region (indicated by red rectangle) from 
within these B-mode images are also shown in (g–l), respectively.
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In this paper, Hanning was chosen as the window function without loss of generality; however, one can select 
any other window functions as well. The filters applied for various methods are listed in Table 2, along with the 
cut-off frequencies, where the transmit frequency was 8 MHz. The post filters were applied to the interpolated 
data since the sampling frequency was 31.25 MHz.

Delay optimally‑weighted and sum (DowAS) beamformer. It is reasonable at this time to expect 
that the developed apodization optimization method can be readily adapted to also DAS beamformer. Therefore, 
we incorporated this strategy to develop delay optimally-weighted and sum beamformer (DowAS) and report it 
in comparison with the other methods in simulations and experiments.

Data involved in beamforming process of all the beamformers and complexity reduction for 
CFB. Consider a CFB case, where the number of receive elements is equal to n. Now, to reconstruct one pixel 
in any reconstructed RF A-line DAS makes use of a maximum of n raw RF data points. Whereas, F-DMAS/F-
DwMAS/F-DewMAS/F-DowMAS handles (0.5× n× (n− 1)) raw RF data points in the process. In a similar 
fashion, for an  NT-element transducer, a total of  NT reconstructed RF A-lines are formed, using the RAW RF 
data acquired from different transmit-receive events and are stacked next to each other to form the final recon-
structed image. Since the data involved in beamforming is high, to reduce the processing and computational 
complexity and resources, F-DowMAS beamformer was implemented utilizing matrix operation based real time 
method proposed by Jeon et al.31.

Phantom experiments. Experimental data were acquired using Vantage 64 (Verasonics Inc., WA.USA) 
scanner with L11-5v (Verasonics Inc., WA, USA) transducer operating at 8 MHz sampled at 31.25 MHz. Experi-
mental imaging studies were performed on commercially available ‘Multi-Purpose, Multi Tissue Ultrasound 
phantom (Model 040GSE)’ (CIRS, 2428 Almenda Suite, Norfolk, Virginia 23515, USA).

All the settings for the experiments, including the number of active elements during transmit and receive, 
location of focus, etc., were the same as that of simulations (see Table 1).

In‑vivo data. The developed methods were tested on an example in vivo data from the “Challenge on Ultra-
sound Beamforming with Deep Learning (CUBDL)” data set available  online32–34. The data was acquired by 
taking informed consent form from the volunteers after the approval of the Johns Hopkins Medicine Institu-
tional Review Board (IRB00127110). All experiments were performed in accordance with relevant guidelines 
and regulations. Specific permission was obtained to use the data for this publication.

Figure 5.  Bar plots showing a comparison of the different image quality metrics (mean and standard deviation 
over all 105 cysts and 105 point scatters) obtained in simulations.
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Results and discussion
Figure 3 shows the map of the window coefficients (‘r’) that is used in F-DowMAS over the entire imaging 
region for three different settings of the focal depth in a CFB technique. It can be observed that the value of ‘r’ 
varies both in the axial and lateral directions, due to the variations in the transmit beam pattern. Also, the vari-
ations in the pattern are minimal with respect to the change in the focal depth, except for a spatial shift, which 
can be used to make the F-DowMAS beamformer adaptive to change in the focal location. Figure 3d–f shows 
the corresponding normalized amplitude maps of the transmit beam. It can be observed from Fig. 3 that the 
adaptive power matrix ‘R’ has a close relation to amplitude levels of the transmit beam. It is clear from Fig. 3 that 
weightage given suitably compensates for the variations in the beampattern.

Figure 4 shows the B-mode images of the computer-generated phantom with points and cysts reconstructed 
using various reconstruction methods. Visually, the image reconstructed using F-DowMAS appears to be the 
best having the least spread of the points. Further, from the zoomed cyst region shown in images of Fig. 4, it 
can be observed that not only does F-DowMAS yields the tightest point spread, but also has the least noise level 
inside the cyst compared to those that are reconstructed using other methods. The developed DowAS has lower 
point spread and lower noise level inside cyst compared to DAS and F-DMAS respectively. Furthermore, the 
quantitative image quality metrics of AR, LR, CR and CNR estimated from the images obtained using F-DowMAS 
are superior compared to those obtained using other beamformers as observed in Fig. 5. Since GCNR is more 
robust metric compared to CNR, GCNR values are also computed and reported in Fig. 535,36. The developed 
F-DowMAS beamformer has a better GCNR value compared to other methods.

Figure 6 shows the B-mode images from experiments performed on CIRS phantom. The images obtained 
using the different reconstruction methods are compared. It can be observed that the image reconstructed using 
F-DowMAS not only has the least point spread, but  also is visibly more comparable to the reference image in 
Fig. 6 than those images reconstructed using other methods. Specifically, the reconstruction of the high scatter-
ing regions, + 3 dB and + 6 dB, is much better visualized in image reconstructed by F-DowMAS compared to all 
other methods, due to the adaptive weighting strategy that compensated for transmit beam variations.

Figure 7 shows the mean and standard deviations of the estimated AR, LR, CR, CNR and GCNR values 
obtained from 12 independent experimental renditions.

Figure 6.  B-mode images of the CIRS phantom reconstructed using the different beamforming methods for 
data acquired using CFB.
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Figure 7.  Bar plots showing a comparison of the different image quality metrics for various methods in 
experiments.

For ready comparison, the calibrated reference contrast value is also listed alongside the estimated contrasts. 
All the metrics were computed from the point scatterers, cysts and calibrated targets located in both near and far 
fields. From Fig. 7, it can be observed that AR, LR, CR, CNR and GCNR estimated from images reconstructed 
using F-DowMAS are better compared to those from images reconstructed using other methods. The developed 
DowAS has lower point spread and lower noise level inside cyst compared to DAS and F-DMAS respectively. 
Further, from Fig. 7e it can be observed that the estimated contrasts are the closest to the calibrated ground truth 
contrasts (i.e., + 3 dB and + 6 dB) in the case of F-DowMAS. The reason for the improvement is because of added 
imaging point based adaptive weighting, which reduces the contributions of the point spread, which influences 
the signal to noise ratio (SNR) levels.

Figure 8 shows the B-mode images obtained from imaging experiments on CIRS phantom imaged at a dif-
ferent location. It can be observed from Fig. 8g–f that the point scatterrers are clearly separable in the images 
reconstructed with F-DowMAS, unlike those that are reconstructed using other methods. This demonstrates 
an improvement in both AR and LR. In addition, it can be observed that the most point scatterers are well 
distinguishable from background only in the case of F-DowMAS, which demonstrates an improvement in the 
contrast (CR and CNR). Results from experiments on phantom show that the proposed F-DowMAS resulted in 
improvements of AR by 57.04% and 46.95%, LR by 58.21% and 53.40%, CR by 67.35% and 39.25% and CNR by 
44.04% and 30.57% compared to those obtained using DAS and F-DMAS, respectively.

In order to better illustrate the benefit of the proposed method the lateral profiles of two points (enclosed 
by red and blue rectangles in Fig. 8a,f, respectively) are compared in Fig. 9. It can be observed that, in DAS 
reconstructed image with standard Hanning apodization, the point spread is more in the edge compared to the 
central region. Whereas, in the developed F-DowMAS beamformer both the points have almost the same width 
due to beampattern compensation. Also, the improvement is more for the point present in the edge compared 
to that located in the central region, which demonstrates that the developed F-DowMAS beamformer was able 
to compensate for variations in the left–right symmetry.
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Figure 8.  B-mode images of the CIRS phantom imaged at a different location containing point scatterers for 
resolution assessment reconstructed using the different beamforming methods. A zoomed around the resolution 
point scatterers (indicated by green rectangle in “REFERENCE”) from the respective B-mode images are also 
shown.
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As explained earlier, DAS makes use of a maximum of n RF data points, whereas F-DMAS/F-DwMAS/F-
DewMAS/F-DowMAS handles a maximum of (0.5× n× (n− 1)) RF data points in the process to reconstruct 
one pixel in the final beamformed image, where n is the number of active receive elements. In this work, a trans-
ducer array consisting of 128 elements was used, and the active receive aperture for CFB was 64. Therefore, to 
reconstruct one pixel DAS makes use of 64 RF data points, whereas, F-DMAS, uses 2016 RF data points, where 
the additional data points are generated from the existing data. As stated earlier, the amount of data involved in 
the DMAS reconstruction is huge, and one may expect an improvement in the image quality. However, the results 
demonstrate that by exploiting appropriate weighting for each data one can achieve even better image quality.

Overall, F-DowMAS have shown to improve the reconstructed image quality compared to DAS and F-DMAS. 
Also, since F-DowMAS is adaptive to change in the focal depth, which is the major variable for clinical imaging, 

Figure 10.  B-mode images of the example in vivo data reconstructed using the different beamformers. The red 
color arrow points to the cyst.

Figure 9.  Lateral profiles taken across two point scatterrers (enclosed by red and blue rectangles in Fig. 8a,f) 
one from central and the other from edge in the images reconstructed by DAS and F-DowMAS beamformers.
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it makes it possible to immediately transfer this beamformer onto existing US machines by calibrating it for other 
parameters like transducer type, element pitch, bandwidth, active aperture size and excitation voltage etc., which 
are fixed in clinical applications. Perhaps, recently proposed generalized CNR (GCNR) can be used to optimize 
F-DowMAS, which is left open for a future  study35.

An in vivo example from CUBDL dataset, acquired from breast of a patient volunteer using L8–17 Transducer 
operating at a center frequency of 12.5 MHz using CFB and beamformed using the different methods is shown 
in Fig. 10 (Note: The R matrix for F-DowMAS and DowAS was recomputed in simulation to correspond to the 
acquisition parameters of the data). It can be observed that the proposed F-DowMAS yields a visibly superior 
image quality compared to the rest. Specifically, the cyst is visible with better contrast compared to the back-
ground in the image reconstructed using F-DowMAS.

Conclusion
A novel optimally-weighted non-linear beamformer called F-DowMAS was introduced. The results demonstrate 
clearly that the F-DowMAS method significantly improved the image quality in terms of Axial Resolution, Lat-
eral Resolution, Contrast, and Contrast to Noise Ratio compared to that obtained by either DAS or F-DMAS 
for CFB technique.

Received: 28 March 2021; Accepted: 14 October 2021

References
 1. Thomenius, K. E. Evolution of ultrasound beamformers. In 1996 IEEE Ultrasonics Symposium. Proceedings, Vol. 2, 1615–1622. 

IEEE (1996).
 2. Thomenius, K. E. Recent trends in beamformation in medical ultrasound. In IEEE Ultrasonics Symposium (2005).
 3. Karaman, M., Li, P. C. & O’Donnell, M. Synthetic aperture imaging for small scale systems. IEEE Trans. Ultrason. Ferroelectr. Freq. 

Control 42(3), 429–442 (1995).
 4. Synnevag, J. F., Austeng, A. & Holm, S. Adaptive beamforming applied to medical ultrasound imaging. IEEE Trans. Ultrason. 

Ferroelectr. Freq. Control 54(8), 1606–1613 (2007).
 5. Vignon, F. & Burcher, M. R. Capon beamforming in medical ultrasound imaging with focused beams. IEEE Trans. Ultrason. Fer-

roelectr. Freq. Control 55(3), 619–628 (2008).
 6. Seo, C. H. & Yen, J. T. Sidelobe suppression in ultrasound imaging using dual apodization with cross-correlation. IEEE Trans. 

Ultrason. Ferroelectr. Freq. Control 55(10), 2198–2210 (2008).
 7. Asl, B. M. & Mahloojifar, A. Minimum variance beamforming combined with adaptive coherence weighting applied to medical 

ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(9), 1923–1931 (2009).
 8. Kim, K. et al. Flexible minimum variance weights estimation using principal component analysis. In 2012 IEEE International 

Ultrasonics Symposium, 1275–1278. IEEE (2012).
 9. Camacho, J., Parrilla, M. & Fritsch, C. Phase coherence imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(5), 958–974 

(2009).
 10. Dahl, J. J., Hyun, D., Lediju, M. & Trahey, G. E. Lesion detectability in diagnostic ultrasound with short-lag spatial coherence 

imaging. Ultrason. Imaging 33(2), 119–133 (2011).
 11. Lediju, M. A., Trahey, G. E., Byram, B. C. & Dahl, J. J. Short-lag spatial coherence of backscattered echoes: Imaging characteristics. 

IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(7), 1377–1388 (2011).
 12. Matrone, G., Savoia, A. S., Caliano, G. & Magenes, G. The delay multiply and sum beamforming algorithm in ultrasound B-mode 

medical imaging. IEEE Trans. Med. Imaging 34(4), 940–949 (2014).
 13. Moubark, A. M., Alomari, Z., Harput, S., Cowell, D. M. & Freear, S. Enhancement of contrast and resolution of B-mode plane wave 

imaging (PWI) with non-linear filtered delay multiply and sum (FDMAS) beamforming. In 2016 IEEE International Ultrasonics 
Symposium (IUS), 1–4. IEEE (2016).

 14. Matrone, G., Savoia, A. S., Caliano, G. & Magenes, G. Depth-of-field enhancement in filtered-delay multiply and sum beamformed 
images using synthetic aperture focusing. Ultrasonics 75, 216–225 (2017).

 15. Mozaffarzadeh, M., Sadeghi, M., Mahloojifar, A. & Orooji, M. Double-stage delay multiply and sum beamforming algorithm 
applied to ultrasound medical imaging. Ultrasound Med. Biol. 44(3), 677–686 (2018).

 16. Song, K., Liu, P. & Liu, D. C. Recursively apply delay multiply and sum beamforming algorithm to enhance quality of ultrasonic 
image. J. Med. Imaging Health Inform. 9(5), 1028–1036 (2019).

 17. Polichetti, M., Varray, F., Béra, J. C., Cachard, C. & Nicolas, B. A nonlinear beamformer based on p-th root compression—Applica-
tion to plane wave ultrasound imaging. Appl. Sci. 8(4), 599 (2018).

 18. Shen, C. C. & Hsieh, P. Y. Ultrasound baseband delay-multiply-and-sum (BB-DMAS) nonlinear beamforming. Ultrasonics 96, 
165–174 (2019).

 19. Prieur, F., Rindal, O. M. H. & Austeng, A. Signal coherence and image amplitude with the filtered delay multiply and sum beam-
former. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(7), 1133–1140 (2018).

 20. Kirchner, T., Sattler, F., Gröhl, J. & Maier-Hein, L. Signed real-time delay multiply and sum beamforming for multispectral pho-
toacoustic imaging. J. Imaging 4(10), 121 (2018).

 21. Matrone, G. & Ramalli, A. Spatial coherence of backscattered signals in multi-line transmit ultrasound imaging and its effect on 
short-lag filtered-delay multiply and sum beamforming. Appl. Sci. 8(4), 486 (2018).

 22. Su, T., Zhang, S., Li, D. & Yao, D. Combined sign coherent factor and delay multiply and sum beamformer for plane wave imaging. 
Acoust. Phys. 64(3), 379–386 (2018).

 23. Shen, C. C. & Hsieh, P. Y. Two-dimensional spatial coherence for ultrasonic DMAS beamforming in multi-angle plane-wave 
imaging. Appl. Sci. 9(19), 3973 (2019).

 24. Song, K., Liu, P. & Liu, D. C. Combining autocorrelation signals with delay multiply and sum beamforming algorithm for ultrasound 
imaging. Med. Biol. Eng. Comput. 57(12), 2717–2729 (2019).

 25. Vayyeti, A. & Thittai, A. K. A filtered delay weight multiply and sum (F-DwMAS) beamforming for ultrasound imaging: Preliminary 
results. In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), 312–315. IEEE. https:// doi. org/ 10. 1109/ ISBI4 
5749. 2020. 90985 28 (2020).

 26. Vayyeti, A. & Thittai, A. K. Weighted non-linear beamformers for low cost 2-element receive ultrasound imaging system. Ultrasonics 
110, 106293. https:// doi. org/ 10. 1016/j. ultras. 2020. 106293 (2021).

 27. Vayyeti, A. & Thittai, A. K. A weighted non-linear beamformer for synthetic aperture ultrasound imaging. In 2020 IEEE Interna-
tional Ultrasonics Symposium (IUS), 1–3. IEEE. https:// doi. org/ 10. 1109/ IUS46 767. 2020. 92514 13 (2020).

https://doi.org/10.1109/ISBI45749.2020.9098528
https://doi.org/10.1109/ISBI45749.2020.9098528
https://doi.org/10.1016/j.ultras.2020.106293
https://doi.org/10.1109/IUS46767.2020.9251413


14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21622  | https://doi.org/10.1038/s41598-021-00741-5

www.nature.com/scientificreports/

 28. Cobbold, R. S. Foundations of Biomedical Ultrasound (Oxford University Press, 2006).
 29. Jensen, J. A. & Svendsen, N. B. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. 

IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(2), 262–267 (1992).
 30. Jensen, J. A. Field: A program for simulating ultrasound systems. In 10th Nordicbaltic Conference on Biomedical Imaging, Vol. 4, 

351–-353 (1996).
 31. Jeon, S. et al. Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging 

of humans. Photoacoustics 15, 100136 (2019).
 32. Hyun, D. et al. Deep learning for ultrasound image formation: CUBDL evaluation framework & open datasets. IEEE Trans. Ultra-

son. Ferroelectr. Freq. Control. https:// doi. org/ 10. 1109/ TUFFC. 2021. 30948 49 (2021).
 33. Wiacek, A. et al. Robust short-lag spatial coherence imaging of breast ultrasound data: Initial clinical results. IEEE Trans. Ultrason. 

Ferroelectr. Freq. Control 66(3), 527–540 (2019).
 34. Wiacek, A. et al. Coherence based beamforming increases the diagnostic certainty of distinguishing fluid from solid masses in 

breast ultrasound exams. Ultrasound Med. Biol. 46(6), 1380–1394. https:// doi. org/ 10. 1016/j. ultra smedb io. 2020. 01. 016 (2020).
 35. Rodriguez-Molares, A. et al. The generalized contrast-to-noise ratio: A formal definition for lesion detectability. IEEE Trans. 

Ultrason. Ferroelectr. Freq. Control 67(4), 745–759 (2019).
 36. Rodriguez-Molares, A. et al. The generalized contrast-to-noise ratio. In 2018 IEEE International Ultrasonics Symposium (IUS), 

1–4. https:// doi. org/ 10. 1109/ ULTSYM. 2018. 85801 01 (2018).

Acknowledgements
The student author, Anudeep Vayyeti, would like to thank the Ministry of Education, Government of India, for 
financially supporting through Half-Time Research Assistantship (HTRA) stipend. The purchase of Verasonics 
scanner was supported by The Department of Science and Technology, Govt. of India, under the FIST program 
Grant # Sr/FST/ETII-064/2015, the CIRS phantom by BIRAC PACE Grant #BT/AIR02648/PACE-12/17 and the 
Ultrasonix scanner by a Seed Grant by the Institute.

Author contributions
A.K.T. and A.V. conceived the study and developed the Beamforming method. A.V. performed numerical simu-
lations and experiments and prepared the initial draft of the paper and the subsequent revisions. A.K.T. guided 
A.V. through the study design and writing of the paper. A.K.T. is the Principal Investigator of the grant funding 
from which the scanners and commercial phantom’s used in the experiments were procured.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.K.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1109/TUFFC.2021.3094849
https://doi.org/10.1016/j.ultrasmedbio.2020.01.016
https://doi.org/10.1109/ULTSYM.2018.8580101
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Optimally-weighted non-linear beamformer for conventional focused beam ultrasound imaging systems
	Materials and methods
	Conventional focused beamforming (CFB) technique. 
	Linear (DAS), non-linear (F-DMAS) beamforming methods. 
	Weighted non-linear (F-DwMAS and F-DewMAS) beamforming methods. 
	Filtered delay optimally-weighted multiply and sum (F-DowMAS) beamforming. 
	Estimation of the adaptive power matrix, R, in simulation. 
	Example numerical analysis to explain the role of adaptive power matrix, R, in compensating for beam pattern variation. 
	Delay optimally-weighted and sum (DowAS) beamformer. 
	Data involved in beamforming process of all the beamformers and complexity reduction for CFB. 
	Phantom experiments. 
	In-vivo data. 

	Results and discussion
	Conclusion
	References
	Acknowledgements


