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Targeting insulin-like growth factor pathways
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Some cancer cells depend on the function of specific molecules for their growth, survival, and metastatic potential. Targeting of these
critical molecules has arguably been the best therapy for cancer as demonstrated by the success of tamoxifen and trastuzumab in
breast cancer. This review will evaluate the type I IGF receptor (IGF-IR) as a potential target for cancer therapy. As new drugs come
forward targeting this receptor system, several issues will need to be addressed in the early clinical trials using these agents.
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There are several excellent reviews outlining a rationale for
targeting the IGF system in cancer (for example Pollak et al, 2004).
Indeed, the first clinical trials testing a monoclonal antibody
directed against the type I IGF receptor (IGF-IR) are currently
underway. Thus, the questions have turned away from ‘should we
target this pathway?’ to several other questions concerning best
clinical strategies for anti-IGF therapies. This mini-review will
address questions to address in the upcoming clinical trials.

WHAT ARE THE TARGETS?

Like many other growth factor systems, the IGF system consists of
more than a single ligand interacting with a single receptor. There
are three ligands (IGF-I, IGF-II and insulin) that interact with at
least four receptors. In addition, the IGF system also involves six
well characterized binding proteins that regulate IGF action
(Clemmons, 1998). IGF-IR is a transmembrane tyrosine kinase
that is highly related to insulin receptor (IR). The function for IR
in health and disease is well known. IGF-IR plays an important role
in childhood growth as demonstrated in both humans and mice
(Liu et al, 1993; Abuzzahab et al, 2003). In addition to these
holoreceptors, hybrids between IGF-IR and IR have exist (Federici
et al, 1997). Interestingly, two splice variants of IR have been
documented. The IR-A fetal splice variant is more frequently found
in cancer (Frasca et al, 1999). The type II IGF receptor (IGF-IIR)
has high affinity for IGF-II, but does not apparently transmit an
extracellular signal. This receptor has been characterized as a ‘sink’
for IGF-II and its loss has been demonstrated in human cancer
(MacDonald et al, 1988). Thus, in the extracelluar space, the IGF
ligands have potential interactions with four receptors and six
binding proteins.

IGF-IR, IR, and hybrid receptors all function as covalently
linked dimers. As such, physiologic activation of these receptors by
overexpression alone is not seen, in contrast to the epidermal
growth factor (EGF) receptor family members. While there are

some cell model studies demonstrating activation of IGF-IR by
overexpression of receptor or intracellular tyrosine kinases
(Kozma and Weber, 1990), activation of IGF-IR requires binding
to ligand in most physiologic settings. This important fact has
implications for anti-IGF therapy as noted below.

To date, much of the focus has been placed on IGF-IR. However,
it must be remembered that IR may play a role in cancer cell
biology. At physiologic concentrations of insulin, breast cancer
cells are stimulated to proliferate in vitro (Osborne et al, 1976). In
addition, activation of IR-A by IGF-II has been demonstrated in
breast cancer cell lines (Sciacca et al, 1999). Thus, inhibition of
both IGF-IR and IR may be required for optimal suppression of
IGF signalling pathways. This possibility adds a layer of complexity
to targeting the IGF system, as dysfunctional IR signalling is well
understood and results in type II diabetes.

These preclinical data suggest that targeting of only IGF-IR may
be insufficient to block tumor growth regulated by the IGFs and
insulin. Since inhibition of IR could have profound effects on host
glucose homeostasis, further definition of IR as an important
target in cancer cells is needed.

WHAT IS THE BEST STRATEGY TO BLOCK IGF
ACTION?

Given the requirement for ligand activation of IGF-IR signalling,
one possible strategy to block this pathway would be to lower IGF-I
concentrations. During puberty, growth hormone (GH) release
from the pituitary gland results in the production of IGF-I by the
liver. Thus, disruption of the hypothalamic –pituitary –liver axis
could result in lowered serum IGF-I levels. Several GH releasing
hormone (GHRH) antagonists have been described and have
antitumour activity in cancer model systems (Letsch et al, 2003). A
pegylated mutant GH (pegvisomant) has been developed to disrupt
GH signalling in patients with acromegaly, a condition of GH
excess. This compound also has antitumour activity (McCutcheon
et al, 2001). While the precise mechanisms for the antitumour
activity of these compounds is not completely understood, as both
GHRH and GH antagonists may have direct antitumour activity,
they both result in suppression of serum IGF-I levels.

Received 9 November 2005; revised 20 December 2005; accepted 21
December 2005; published online 31 January 2006

*Correspondence: Dr D Yee; E-mail: yeexx006@umn.edu

British Journal of Cancer (2006) 94, 465 – 468

& 2006 Cancer Research UK All rights reserved 0007 – 0920/06 $30.00

www.bjcancer.com



While these drugs could have activity, they do not affect IGF-II
levels. Since mice and rodents do not express IGF-II during
adulthood (DeChiara et al, 1991), it has been difficult to model
IGF-II action in vivo. Neutralization of IGF ligands could also be
effective therapeutic strategies. Pharmacologic antagonism of IGF
ligands has been accomplished by neutralizing monoclonal
antibodies and IGF-binding proteins (Van den Berg et al, 1997;
Goya et al, 2004). Since these agents would only target the IGF
ligands, insulin action would be relatively unaffected.

The bulk of drug development has been directed towards
targeting IGF-IR. Several monoclonal antibodies directed against
IGF-IR have been created (Li et al, 2000; Burtrum et al, 2003;
Maloney et al, 2003; Goetsch et al, 2005; Wang et al, 2005). To date,
all antibodies seem to have a similar mechanism of action and
result in IGF-IR downregulation. Unlike binding of the native
ligands that allow receptor recycling, several laboratories have
shown that monoclonal antibody binding results in endosomal
degradation of the receptor (Sachdev et al, 2003; Wang et al, 2005).
While most of the antibodies also block ligand binding and inhibit
the activation of the receptor, it is notable that a fully agonistic
antibody also has antitumour properties (Li et al, 2000; Sachdev
et al, 2003). This is presumably due to the antibody’s ability to
downregulate receptor expression. Thus, the agonist properties of
the antibody may be less relevant than the ability to downregulate
receptor levels over time.

Since IGF-IR is a tyrosine kinase, small molecule inhibitors have
also been developed (Garcia-Echeverria et al, 2004; Mitsiades et al,
2004; Carboni et al, 2005). While these compounds show some
selectivity of IGF-IR over IR in cell model systems, it is uncertain
as to whether this selectivity can be seen in vivo. Moreover,
whether or not IGF-IR selectivity is even desirable is an open
question. As noted above, if IR mediates a substantial portion of
IGF-stimulated tumour cell biology, especially via IGF-II activa-
tion, then cancer cell inhibition of IR would be necessary.

In addition to small molecule inhibitors, which mostly bind the
catalytic site of IGF-IR, other compounds have been described that
disrupt receptor function. A cyclolignan, picropodophyllin, has
been shown to disrupt IGF-1R activation by interfering with
substrate phosphorylation (Vasilcanu et al, 2004). This compound
appears specific for IGF-IR and has been shown to have activity in
several model systems (Girnita et al, 2004; Stromberg et al, 2006).
As noted above, complete selectivity for IGF-IR would have
obvious benefits for host glucose may be insufficient for complete
disruption of tumour signalling. Another compound, nordihydro-
guaiaretic acid (NDGA) has also been shown to disrupt IGF-IR
activation (Youngren et al, 2005). Compared to picropodophyllin,
this NDGA is not specific for IGF-IR but also blocks human
epidermal growth factor-2 (HER2) signalling. While this might
seem undesirable, recent data suggest that IGF-IR plays a role in
resistance to the anti-HER2 monoclonal antibody trastuzumab
(Nahta et al, 2005). Thus, a drug that disrupts both pathways may
be of value in specific situations.

Carefully designed clinical trials will be necessary to examine the
effect on host glucose metabolism. While temporary inhibition of
IR function and resultant hyperinsulinemia or hyperglycemia
could be tolerated, insulin resistance over long periods of time
would surely be detrimental to patients. Moreover, there are
animal model systems showing that disruption of IGF-IR affects
survival of the pancreatic beta cells (Withers et al, 1999). In a worst
case scenario, long-term inhibition of IGF-IR could induce type I
and type II diabetes by inhibiting insulin secretion and insulin
action, respectively.

ARE THERE BIOMARKERS FOR IGF ACTION?

The development of trastuzumab and the EGFR tyrosine kinase
inhibitors have demonstrated that careful measurement of

biomarkers is necessary when only a minority of patients have
‘receptor driven’ tumours. In contrast, tamoxifen was initially
given to breast cancer patients unselected for estrogen receptor-a
(ERa) status. Eventually it became clear that only ERa expressing
patients responded to tamoxifen. However, the early unselected
clinical trials were successful because ERa is expressed by the
majority of tumours and a high percentage of those ERa positive
tumours respond to tamoxifen as a single agent. Thus, biomarkers
do not need to be defined if a substantial number of tumours
express the target and inhibition of the target causes a clinical
response in a high proportion of target-bearing tumours.

While it is clear that IGFs stimulate growth of many tissues, it is
difficult to show evidence of IGF-IR activation, even in the most
favourable settings. In animal models of IGF action, administration
of exogenous IGF is necessary to show activation of IGF signalling
pathways (Pete et al, 1999). At a minimum, IGF-IR must be
present, but beyond this requirement, the ‘signature’ of an
IGF-driven tumour is unclear.

Measurement of key signalling pathways immediately down-
stream of IGF-IR offers some insight into IGF action. In model
systems, the expression of insulin receptor substrate (IRS)
molecules is necessary to couple IGF-IR with key downstream
signalling pathways. In breast cancer cells, specific IRS adaptor
proteins are activated downstream of IGF-IR that link the receptor
to specific phenotypes. For example, IRS-1 activation is associated
with IGF-stimulated proliferation, while IRS-2 signalling is
necessary for metastatic behaviour (Jackson et al, 1998, 2001;
Nagle et al, 2004; Zhang et al, 2004). While phosphorylation of IRS
proteins has been difficult to show in primary human breast
cancers, it is possible that expression of both IGF-IR and distinct
IRS species could be used to identify cancers most likely to
respond to IGF-IR inhibition.

HOW SHOULD IGF INHIBITORS BE TESTED IN
COMBINATION WITH OTHER DRUGS?

The combination of targeted agents with conventional cytotoxic
drugs has provided important insight into the therapeutic synergy.
Disruption of HER2 or EGFR enhances cytotoxic drug activity in
some, but not all, cancers. Perhaps the most striking example of
synergy occurs with the coadministration of trastuzumab with the
taxanes. First demonstrated in metastatic breast cancer (Slamon
et al, 2001), the synergy is even more dramatic in the adjuvant
therapy of breast cancer (Piccart-Gebhart et al, 2005; Romond
et al, 2005). Similarly, cetuximab in combination with irinotecan
demonstrates therapeutic benefit, even when tumours have
progressed beyond irinotecan alone (Cunningham et al, 2004). In
contrast, gefitinib in combination with paclitaxel and carbo-
platinum in nonsmall cell lung cancer failed to show any evidence
for therapeutic synergy (Herbst et al, 2004). Furthermore,
tamoxifen given simultaneously with chemotherapy in the
adjuvant treatment of breast cancer reduces the benefit for
chemotherapy (Albain et al, 2002).

These trials show that the synergy between targeted therapies
and conventional chemotherapy is not necessarily easily predicted.
On one hand, the targeted therapy may induce apoptosis and lower
the survival threshold of cancer cells thereby augmenting a second
apoptotic stimulus. Trastuzumab, when given as a single agent,
induced apoptosis in primary breast cancers (Mohsin et al, 2005)
and this could be the mechanism of action for the observed benefit
of combined therapy. In contrast, some targeted therapies, such as
tamoxifen, antagonize the effects of chemotherapy, potentially by
altering progression through the cell cycle or by affecting transport
of drugs (Osborne et al, 1989).

Inhibition of IGF-IR may act in either fashion and may be
dependent on the strategy used to block IGF signalling. Mono-
clonal antibodies directed against IGF-IR induce tumour cell
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apoptosis in preclinical model systems and have been shown to
synergize with chemotherapy. It has been suggested that down-
regulation of IGF-IR induces apoptotic cell death (Baserga, 2005).
Since all of the currently described antibodies have demonstrated
the ability to downregulate receptor, this may be an important
mechanism of synergy. In contrast, tyrosine kinase inhibitors
successfully inhibit the biochemical activity of IGF-IR and do not
appear to downregulate receptor levels. Thus, the tyrosine kinase
inhibitors may block progression through S-phase without
inducing apoptosis. If this is the case, then the kinase inhibitors
may actually interfere with the cell cycle specific effects of
chemotherapy similar to the interference observed between
tamoxifen and cytotoxic treatment. Careful evaluation of synergy
between IGF-IR disruption and combination therapy must be
studied in combination clinical trials.

WHAT’S WRONG WITH IGF ACTION AS A TARGET?

Anti-IGF-IR trials will first be tested in patients with advanced
cancers. As noted above, identifying patients with IGF-driven
tumours may be difficult. In addition, IGF-IR has many effects on
cancer cells that are not easily measured in a phase II clinical trial.
For example, IGF-IR activation stimulates motility in many cancer
cells. In some cells, IGF-IR activation does not apparently effect
proliferation or survival. Thus, these types of cells have fully intact
IGF-IR signalling pathways yet lack a phenotypic response to
IGF inhibition that can be easily measured in clinical trials.
Even the most carefully designed studies with appropriate and
robust biomarker measurement would be unable to identify this
type of IGF effect.

IGF-IR is ubiquitously expressed in most normal tissues
(Werner et al, 1991). In this regard, targeting IGF-IR is different
than targeting estrogen receptor where relatively limited expres-

sion of the receptor is seen. For example, IGF-IR enhances
neuronal survival, maintains cardiac function, stimulates bone
formation and hematopoiesis (Zumkeller, 2002; Rosen, 2004;
Leinninger and Feldman, 2005; Saetrum Opgaard and Wang,
2005). IGF-IR signalling has also been shown to play a role in
maintaining survival of pancreatic beta cells (Withers et al, 1999).
Thus, disruption of IGF-IR could result in many potential
toxicities. Of course, these concerns could be raised about
essentially every successful cancer therapy. Inhibition of basic
cellular processes, such as nucleotide synthesis, tubulin function,
and DNA replication have all been proven to be of value in the
treatment of cancer despite many potential toxicities. The ongoing
clinical trials will determine whether long- or short-term inhibition
of IGF-IR results in unacceptable toxicity. Hopefully, these studies
will define a therapeutic window for IGF-IR inhibition.

CONCLUSION

There are many reasons to consider IGF-IR as a target for cancer
prevention and therapy. Similarly, there are also many potential
methods to disrupt IGF-IR signalling. Finally, there are numerous
potential toxicities associated with disruption of IGF-IR activation
in normal tissues. As clinical trials move forward, we will
determine what is ‘potential’, what is of clinical relevance, and
whether disruption of this growth factor pathway results in
relevant clinical outcomes.
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