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A commentary on

Emergence of a Stable Cortical Map for Neuroprosthetic Control

by Ganguly, K., and Carmena, J. M. (2009). PLoS Biol. 7:e1000153. doi: 10.1371/journal.pbio.
1000153

This highly cited paper by Ganguly and Carmena (2009) reported a case of neuroplasticity
associated with the operation of a brain-machine interface (BMI). Neuroplasticity is of great interest
to BMI developers because of its causal role in the embodiment of neural prostheses (Lebedev and
Nicolelis, 2006; Dobkin, 2007; Koralek et al., 2012; Shenoy and Carmena, 2014; Kraus et al., 2016;
Gulati et al., 2017).

Ganguly and Carmena reported that small populations of neurons (from 10 to 15) recorded in
monkey primary motor cortex (M1) adapted to operating a BMI based on a fixed linear decoder.
The decoder was trained once and left unchanged for several weeks. The population activity
patterns underwent plastic modifications and stabilized on an optimal “cortical map” that assured
accurate performance of center-out movements with a screen cursor. Moreover, monkeys learned
to operate shuffled decoders, where the original neuronal weights were randomly reassigned.

Here I comment on three issues arising from this paper: (1) the proper way to assess neuronal
tuning under BMI control; (2) the constraints imposed on neuronal tuning properties by a fixed
decoder; and (3) the problem of measuring changes in tuning when both neuronal activity and
cursor trajectories change.

NEURONAL TUNING UNDER BMI CONTROL

Classically, neuronal directional tuning is the dependence of neuronal firing rate on the direction of
arm reachingmovement (Georgopoulos et al., 1982; Schwartz et al., 1988). Typically, anM1 neuron
exhibits the highest firing rate when the armmoves in the direction, called preferred direction (PD).
If the armmoves at an angle with respect to the PD, firing rate declines proportionally to the cosine
of the angle.

While it is tempting to use a directional tuning analysis for BMI control (Taylor et al., 2002;
Lebedev et al., 2005; Ganguly and Carmena, 2009), the results of such an analysis should be
interpreted with caution. The main caveat here (and this is rarely explained in the literature) is the
strong dependence of neuronal tuning characteristics on the decoder parameters. Taking a single-
tap positional decoder (Georgopoulos et al., 1983, 1986; Taylor et al., 2002; Schwartz et al., 2004) as
an example, the relationship between the firing rate of a given neuron,N(t), and cursor coordinates,
x and y, is expressed by the equations:

x = aN(t)+ contribution_of_other_neurons

y = bN(t)+ contribution_of_other_neurons (1)
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Let’s assume first that the correlation is very low between
N(t) and the activity of other neurons. In this case,
contribution_of_other_neurons does not interfere with the
neuronal directional tuning, and the vector [a, b] defines the
neuron’s PD. This PD would persist during BMI control even
if the neuron produces nonsensical firing unrelated to motor
commands or feedback from the cursor.

Next, if the correlation of N(t) with the activity of the other
neurons is substantial, the neuron’s PD may be different from [a,
b]. Consider the case of two neurons with positively correlated
rates:

x = a1N1(t)+ a2N2(t)

y = b1N1(t)+ b2N2(t) (2)

N2(t) = KN1(t)+ noise

In this case, the PDs of neurons 1 and 2 are [a1 + Ka2, b1
+ Kb2] and [a1/K + a2, b1/K + b2], respectively, i.e., neurons
affect each other’s directional tuning. Again, these PDs would be
produced even if the neuronal firing is nonsensical. Furthermore,
if the contribution of one neuron, for example neuron 2, is much
stronger than the contribution of the other, both have the same
PD, [a2, b2]. Such “capture” of the PD by the stronger weighted
neurons may explain the previously reported similarity of many
neurons’ PDs during BMI control (Carmena et al., 2003; Lebedev
et al., 2005; Green and Kalaska, 2011; O’Doherty et al., 2011).

These simple considerations are relevant to the previous
studies that reported changes in PD during BMI control (Taylor
et al., 2002; Green and Kalaska, 2011), including the fixed-
decoder study of Ganguly and Carmena, where a linear decoder
generated cursor position from the activity of a small population
of M1 neurons. Ganguly’s and Carmena’s decoder extracted joint
angles instead of x and y coordinates (Figures 1A,B), but for
simplicity a linear approximation can be used:

X (t) = b+
∑

u,i
auiNi(t − u) (3)

where X(t) is the BMI output (x, y and/or their time derivatives),
b is zero intercept, i is neuron number, u is Wiener filter tap, aui
are regression weights, and Ni are neuronal rates. This equation
differs from Equation (1) by the presence of tap structure in the
representation of neuronal rates. Ganguly and Carmena used ten
100-ms taps.

Ganguly and Carmena assessed directional tuning by
measuring neuronal rates in two windows: a short, 200-ms,
window, and a long, 2s, window. The former was used “for
the analysis of the directional modulation of the firing rate
with respect to the actual direction of cursor movements”1 and
the latter for “for calculating the mean firing rate versus target
direction”. None of these analyses was designed to capture the 10-
tap structure of the decoder. Furthermore, Ganguly and Carmena

1The description of the 200-ms window analysis is not entirely clear in Ganguly

and Carmena. To the best of my understanding, only the first 200ms following

movement onset were analyzed, and neuronal activity during this period was

compared to the actual direction of cursor movement, not target direction.

did not report the values of aui, so at this point it is impossible to
assess the PDs incorporated in the decoder.

Although Ganguly and Carmena did not analyze PD for each
tap, one previous study (Lebedev et al., 2005) conducted such
an analysis for three conditions: manual cursor control with a
joystick, BMI control assisted by the joystick, and BMI control
without arm movements. It was found that neuronal PDs rotated
with incrementing taps for the first two conditions but not for the
third.

CAN NEURONAL TUNING CHANGE FOR A
FIXED DECODER?

The main claim of Ganguly and Carmena is that M1 ensemble
starts with one pattern of directional tuning, and then gradually
adapts to a new, more stable pattern as the monkey perfects
the BMI control (Figure 1D). Similar changes in PD had been
previously reported by Taylor and her colleagues for an adaptive
decoder (Taylor et al., 2002). But is this even possible if the
decoder is fixed and its weights define a basic PD structure?
The answer is “yes” because, as explained above, changes in
correlation between the neurons (Equation 2) could result in PD
modifications. Drifts in neuronal firing rates could explain PD
changes, as well. According to Ganguly and Carmena, mean rate
increased in 8 of 15 neurons in one monkey, and 6 of 10 in the
other. These changes in mean rates could reconfigure the joint
angles (Figure 1A), which could in turn affect the neuronal PDs
measured with respect to linear displacements (Equation 3).

ASSESSMENT OF CHANGES IN
NEURONAL TUNING WHEN CURSOR
PATTERNS CHANGE

While the monkeys in the experiments of Ganguly and
Carmena clearly improved their performance (Figure 1C), an
overt strategy (e.g., pressing on the arm restraint in different
directions) cannot be ruled out. The authors reported that
they “concurrently performed video and surface electromyogram
(EMG) recordings from proximal muscle groups” but did not
present any results that would convince that directionally tuned
EMG modulations did not occur. The same authors reported
a paradigm with a better control for overt strategies (Ganguly
et al., 2011), but the task was different; monkeys possibly used
directionally tuned preparatory activity previously reported for
instructed-delay tasks (Weinrich and Wise, 1982) to drive the
cursor in that study.

With or without an overt strategy, cursor trajectories changed
very dramatically from the very convoluted ones during the
initial training days to nearly straight lines during late in training
(Figure 1C). The presence of such dramatic changes makes
inadequate the analysis of PDs using the wide 2-s window
that covered a convoluted trajectory in the beginning of the
training and a straight trajectory in the end. The 200-ms window
analysis does not appear adequate either. Indeed, cursor velocity
was generated from ten 100-ms taps (Equation 3, Figure 1B).
The 200-ms window represents only 20% of this neuronal
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FIGURE 1 | Ganguly and Carmena’s experiment. (A) Task schematics. The

behavioral apparatus suspended the arm in a horizontal plain. Monkeys were

free to flex and extend their shoulder and elbow to control the cursor

coordinates, defined by the center of the hand. On the right, the equations are

shown for the translation of joint angles into the cursor Cartesian coordinates.

(B) Schematics of the BMI decoder, which was composed of two Wiener

filters converting neuronal activity into the shoulder and elbow angles. The

decoders contained ten 100-ms taps and were trained on the manual

performance in a center-out task. For BMI control, the monkeys’ arms were

isometrically restrained. Horizontal bars illustrate the time windows (200ms

and 2s) that Ganguly and Carmena used in their directional tuning analyses.

None of these analyses matched the tap structure of the decoder.

(C) Examples of cursor trajectories on different training days. (D) Directional

tuning analysis using a 200-ms window representing the initial portion of

cursor movement from the screen center to the target. Directional tuning

characteristics for different neurons (horizontal lines) are represented by

sinusoids fitted to neuronal data. The color plots are normalized to have the

same minimal and maximal values for all neurons. With this representation,

tuning depths cannot be compared across neurons or different training days.

(C) and (D) are adapted from Ganguly and Carmena (2009).

contribution and also does not capture the complexity of rate
changes with different taps. Clearly, a much more complex
procedure was used to generate cursormovements fromneuronal
activity compared to the attempt to measure how the generated
movements depended on the activity of individual neurons.

There is no easy solution for assessing neuronal tuning in
a reliable way when cursor patterns dramatically change, but
several analyses could be helpful. First, PDs could be measured
for each tap individually (Lebedev et al., 2005) and compared

with the tap-dependent structure of PDs (also called impulse
response function) enforced by the decoder. This analysis may
show a pattern of PD rotations like the one observed during
manual control, meaning that the monkey learned to generate
neuronal patterns matching the decoder design. Alternatively,
PDs would stay the same across the taps, and this would
indicate that the monkey cannot produce neuronal patterns
matching the training data and uses some other strategy. The
tap-dependent PD patterns could be then compared to the
corresponding shapes of cursor trajectories for different training
days. Additionally, since correlated neuronal activity can affect
PDs during BMI control (Equation 2), changes in correlation
between the neurons should be assessed, as well. Finally, a simpler
one-tap decoder could be used to minimize the number of
factors affecting neuronal PDs. Most importantly, PD should be
treated as a parameter highly dependent on the decoder settings
(Equations 1, 2) rather than a separate property of brain activity.
Without such analyses, the claim that a monkey learned a fixed
decoder would not be sufficiently substantiated.

CONCLUSIONS

Ganguly and Carmena’s study is very convincing regarding
monkey ability to learn new types of BMI control with a
fixed decoder, but less convincing regarding the neuronal
mechanisms underlying this learning. Some of the questionable
issues could be resolved using data analyses that match more
closely the decoder structure. Yet, more experiments or analysis
of previously collected data may be needed with easily tractable
BMI algorithms [e.g., liner decoder with just one tap (Taylor et al.,
2002)] to clarify neuronal adaptations under constraints imposed
by a fixed decoder.

Since the publication of Ganguly’s and Carmena’s work, a
dynamical-systems perspective (as opposed to representation
perspective) gained popularity (Shenoy et al., 2013). This new

view emphasizes changes in neuronal patterns in a multi-
dimensional neuronal space and downplays the importance

of the description in terms of neuronal-tuning parameters,
such as PD. Among the findings that emerged from this

approach is the discovery of neuronal subspaces that correspond

to different types of neuronal processing (Kaufman et al.,
2014; Lebedev, 2017). Moreover, it has been demonstrated
that plastic adaptations related to BMI operations occur
more readily if the BMI control signal is derived from
particular, action-potent subspaces (Sadtler et al., 2014), the
result that can be interpreted as a constraint on Ganguly’s
and Carmena’s adaptive “cortical maps”. Yet, even with these
new developments neuronal plasticity during BMI control
remains a largely unexplored problem that needs proper
methods for quantification. Particularly, “cortical maps” should
be distinguished from the “map” applied by the decoder.
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