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ABSTRACT
Today, infectious diseases represent a threatening concern for human health. Under-

standing their transmission, and possibly forecasting the dynamics of these pathogens,

represents both a scientific and sanitary emergency. To this goal, mathematical model-

ing has been a widely used tool. Nevertheless, they have important limitations to explic-

itly model the mechanisms involved in the infectious processes at the individual level.

Thanks to the increase of computing capacity, computational models such as individual-

based models (IBMs) are very relevant for understanding the complexity of mechan-

isms at the individual level that can be involved in disease outbreaks. Their computa-

tional formalism allows a large flexibility, while they rely on the same philosophy

than current models in mathematical epidemiology that have proved their relevance.

In this chapter, we review the main qualities of IBMs, what kind of new knowledge

they can bring and they have already produced in epidemiological modeling. Then,

we highlight their caveats and what could be developed during the future years to make

IBMs a more reliable and useful approach.
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1 BACKGROUND

Today, infectious diseases represent a threatening concern for human health.

In addition to the main pathogens affecting human populations, such as Plas-
modium falciparum causing malaria or influenza viruses that together kill

hundreds of thousands of human lives throughout the world (Murray et al.,

2012), an increasing number of pathogens are emerging throughout the world,

such as the MERS Coronavirus in Saudi Arabia or the Ebola virus in West
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Africa to cite a few (Jones et al., 2008). Understanding their transmission, and

possibly forecasting the dynamics of these pathogens, represents both a scien-

tific and sanitary emergency.

To this goal, modeling has been a widely used tool (Hufnagel et al., 2004;

Najera, 1974). First, mathematical models gave crucial insights for fundamen-

tal infectious diseases management (Anderson and May, 1991). For instance,

the probability of epidemics and its expected magnitude can be easily calcu-

lated through mathematical models by deriving the basic reproductive ratio

(R0), which quantifies the number of secondary cases that a single infectious

individuals will produce when introduced within a population entirely naı̈ve

from an immunological point of view (Heesterbeek, 2002). These models

have also allowed understanding that imperfect vaccination could lead to an

increase of the mean age of infection, which is problematic for many child-

hood infections because of the higher probability of severe cases when these

diseases occur after childhood (Keeling and Rohani, 2008).

In addition to these fundamental estimations, mathematical models have

also been used in emergency situation. For instance, the 2001 outbreak of

foot-and-mouth disease in the United Kingdom has seen a team of mathemat-

ical modelers being in charge of shaping the public health interventions, and

especially the number and locations of animals to kill, to mitigate the explo-

siveness of the epidemics (Keeling et al., 2001). Despite many criticisms

regarding the huge number of slaughtered animals (Kitching et al., 2006),

partly justified regarding the lack of model validation due to our poor knowl-

edge on the pathogen biology at that time, epidemics has been successfully

controlled.

Nevertheless, the mathematical models have important limitations to

explicitly model the mechanisms involved in the infectious processes at the

individual level, such as evolution within large strain assemblages, complex

spatial configuration shaping contacts, or heterogeneous individual behaviors

facing an epidemic. Considering the huge amount of computational power we

have access today, we have the opportunity to explore mechanisms of diseases

spread, surveillance, and control at very fine scale (individuals), and how

these mechanisms are related with what is observed at the population level.

This improves our understanding of fundamental processes involved in dis-

eases spread, and may improve as well forecasting potential of these models.

Broadly, two main alternatives can be invoked. First, a forecasting goal

can be satisfied with big data approach. Based on the extensive exploration

of large datasets (such as requests made on Google website or message con-

tents from digital social networks) combined with cutting-edge statistical

modeling, it is possible to forecast the dynamics of an epidemics reasonably

well in advance (Ginsberg et al., 2009; Salath�e et al., 2013). However, such

approach is similar to a “black box” because it does not rely on a mechanistic

formulation of the problem. Therefore, it hardly participates to the
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understanding of pathogen transmission; neither forecast the dynamics of rare

events.

As we said, computational models such as individual-based models

(IBMs) are very relevant for understanding the complexity of mechanisms

at the individual level that can be involved in disease outbreaks. Their compu-

tational formalism allows a large flexibility, while they rely on the same phi-

losophy than current models in mathematical epidemiology that have proved

their relevance.

In this chapter, we review the main qualities of IBMs, what kind of new

knowledge they can bring and they have already produced in epidemiological

modeling. Then, we highlight their caveats and what could be developed dur-

ing the future years to make IBMs a more reliable and useful approach.

2 BROAD MODEL PHILOSOPHY

By definition, an IBM focuses at the individual scale. It is worth pointing out

that we will use the term “individual-based models” in a broad sense through-

out this chapter, i.e., encapsulating a large gradient from basic models with

few individuals interacting in simple ways like cellular automata until very

complex situations where individuals can interact with other individuals

directly and/or through modifications of their environment, and where indivi-

duals can exhibit complex behaviors, such as what is generally assumed for

agent-based models (ABMs). It is worth to notice here that ABMs are devel-

oped in many disciplines, from distributed artificial intelligence in computer

sciences, to sociology, geography, or ecology. In this chapter, we use the term

IBM because in epidemiology, IBMs clearly refer to the modeling of indivi-

duals within a population.

In software engineering, we talk about objects, which represent individuals

that are instance of a class, which are abstract pattern of an object (such as

human, vector, or pathogen in our case), and include methods (i.e., functions
that an object can execute). Then, each individual has a set of attributes and

functions. For epidemiological systems, classic attributes are the infectious

status of the individual, such as Susceptible (who can be infected), Infectious

(who can transmit the pathogen), or Recovered (who cannot be infected any-

more) to frame it within the SIR philosophy (Keeling and Rohani, 2008).

Obviously, any kind of status could be considered and other attributes than

infectious status can be included, such as time of infection, spatial location,

age, etc.

The methods of each individual characterize the processes that could be

involved at this individual scale. In epidemiological systems, transmission

and recovery are obviously naturally present. Nevertheless, these processes

could rely on the individual itself (such as for recovery that will only depend

of host attributes) or on the population, as it is the case for transmission that
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will depend on the number of individuals in contact with the focal host. Each

of these methods is used to characterize the change of host’s attributes at the

next time step.

Indeed, IBMs are generally discrete time models. To avoid important edge

effects, it is required to properly schedule the updating of the individuals

states. Two main methods exist. The first one consists in updating every indi-

viduals states at time t considering the individuals states at time t– dt. This
method respects the causality principle and considers that individuals instan-

taneously change their states at the same time t. The corresponding scheduling

algorithm is as follow:

FOR T IN 1:TMAX

FOR I IN 1:NB_INDIVIDUALS

INDIVIDUAL[I].STEP()

END

FOR I IN 1:NB_INDIVIDUALS

INDIVIDUAL[I].UPDATE()

END

END

where functions STEP() and UPDATE() compute and update the states of the

individual, respectively, as represented by object INDIVIDUAL[I].

The second method consists, for each time step, to randomly draw an indi-

vidual from the list of individuals, compute its new state, and then repeat the

drawing for all individuals. This method considers that individuals randomly

interact between the time t and t+dt. Here, interactions are asynchronous

and continuous within one time step. The corresponding scheduling algorithm

is as follow:

FOR T IN 1:TMAX

RANDOMLY_SORT(LIST_OF_INDIVIDUALS)

FOR_ALL INDIVIDUAL IN LIST_OF_INDIVIDUALS

INDIVIDUAL.STEP()

INDIVIDUAL.UPDATE()

END

END

3 MODELING IBMs

3.1 Specification

The specification corresponds to the description of a model using a particular

formalism, being mathematical, graphical, textual, or hybrid. Knowing repro-

ducibility to be a key process in the scientific activity, the specification of

IBMs appears to be fundamental. It enables to communicate the model to

pairs for validation and verification. Without unambiguous specification, pairs
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cannot reproduce the model, and then the simulation results. They are many

different types of specification for IBMs: from pseudo-code, like in the previ-

ous section, to graphical modeling language such as UML (Unified Modeling

Language, see below). Nevertheless, most of the specifications remain ambig-

uous and need to be complemented by a documentation.

Grimm et al. have proposed the “Overview Design Details” (ODDs) pro-

tocol to communicate IBMs (Grimm et al., 2006). Using ODD can improve

significantly the replication of IBM simulations. The major drawback of

ODD remains in the ambiguity of its terminology and the absence of a rigor-

ous description of the simulator, i.e., the software that supports the implemen-

tation of the IBM (Duboz et al., 2012). In a recent paper, Donkin et al. (2017)

show that using ODD does not fully support replication by implementing the

same IBM on two different simulation platforms (Repast and NetLogo). They

found that the results not only differ in magnitude but also in trends leading to

different conclusions regarding the question the model is supposed to address.

This work highlights the tremendous importance to be able to specify IBMs

rigorously. Despite the fundamental importance of replication in science,

few works have been done regarding IBMs (Axtell et al., 1996; Bajracharya

and Duboz, 2013; Donkin et al., 2017; Railsback et al., 2006; Wilenksy and

Rand, 2007). Of course, replication is time consuming and perceived as non-

rewarding. It is nevertheless mandatory if we want IBM to be considered as a

valid scientific tool.

3.2 Unified Modeling Language and Individual-Based Modeling

The main language used to model IBM is the UML. Developed during the

1980s to improve software design with the increasing use of object-oriented

languages, this language allows a graphical representation of the interactions

between the different classes involved in the software (class diagram) as well

as the behavior of the most important methods (Fig. 1).

3.3 Toward a Formal Specification of IBMs by Using the
Discrete Events Specification System

A possible answer to the specification problem in IBMs is to ground the spec-

ification into existing abstract formalisms that have been developed by simu-

lation practitioners in the field of “automatic.” In particular, states machines

and computation theory are both very inspiring. The most promising formal-

ism for IBMs specification is probably the Discrete Events Specification Sys-

tem (DEVS), an operational formalisma to specify discrete events simulation

models.

aAn operational formalism is a specification having a strict equivalence with the algorithms that

implement it. It is independent from the programming language used for its implementation.
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DEVS is derived from discrete mathematics and relies on systems theory.

It involves enough generalism to formalize discrete and continuous time mod-

els and can also merge continuous and discrete time dynamics together. (A

comprehensive introduction to DEVS is available in Zeigler et al. (2000).)

From DEVS, several extensions have been proposed for specific purposes.

For instance, spatially explicit systems can be formalized using Cell-DEVS,

differential equations systems by using QSS (a quantized version of DEVS

to solve differential equations), etc. An interesting property of DEVS exten-

sions models is that they are all formally equivalent to DEVS models. There-

fore, any models specified using a particular extension can be formally and

computationally coupled with other models in a DEVS framework. This prop-

erty ensures the scalability of models and promotes models reuse. Further-

more, DEVS proposes a compositional and hierarchical approach to

modeling. Therefore, elementary models (called atomic models) can be cou-

pled together to build a coupled model that can be view as an atomic model

at upper hierarchical level.

Since the beginning of this century, DEVS is used for the specification

of IBM (Kim and Kim, 2001; Zhang et al., 2011). One specific feature of

IBM is that individuals can continuously appear and disappear, change

their behaviors, and change the way they interact with others. Then, the

structure of such a model is dynamic, conversely to differential equations

models that possess a static structure. It is now recognized that the dynamic

structure of IBMs can be specified with DS-DEVS (Dynamic Structure

DEVS (Duboz et al., 2006; Zeigler et al., 2000)), and recent works still

improve IBM specification within this DEVS framework (Won Bae and

Il-Chul, 2015).

FIG. 1 Examples of UML diagrams. (Left) Class diagram, showing relationships between differ-

ent classes. (Right) Sequence diagram, showing behavior of a specific method.
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4 WORKING WITH MEAN-FIELD AND INDIVIDUAL-BASED
MODELS

As said previously, many mathematical models have been developed on

numerous diseases at a population scale, and it will be a pity to not rely on

these models when we add details at the individual scale. Conversely, build-

ing an aggregated model from an IBM can enlighten how properties emerge

at the population level (Huet and Deffuant, 2008). Nevertheless, going up

and down in scales is not that trivial. Indeed, parameters in population math-

ematical models (also called mean-field models, MFMs, because they are con-

tinuous states models assuming well-mixed populations and the ergodic

hypothesis) are generally expressed as rates at a population scale, while para-

meters in IBMs have generally to be expressed as a probability at an individ-

ual scale (deterministic IBMs are not very common and will therefore not be

addressed in this chapter). If we assume that time between state transitions are

exponentially distributed, the individual probability can be calculated from

the corresponding rate used in MFMs (Keeling and Rohani, 2008) as

following:

P eventð Þ¼ 1� exp : �rate� tð Þ
But it underlines that the duration t of a time step is dramatically impor-

tant. While a large time step will allow faster model execution, it will also

dangerously overaggregate the event distribution and can therefore bias

completely the dynamics. While a time step of 1 day was generally considered

in epidemiology (Keeling and Rohani, 2008), it has been shown that a finer

time resolution is required, even with very simple dynamics (Roche

et al., 2011).

4.1 IBMs and MFMs of the Same System

By comparing an IBM with its equivalent MFM, we can learn what are the

approximations made by the MFM that can lead to significant differences

with the IBM simulation results. In their paper, Bont�e et al. (2012) built

two epidemiological models of the same system. The first one is an IBM

and the second one is the corresponding MFM derived using the moments

approximation technique. This work highlighted the importance for the mod-

els to capture the displacement behaviors and the contact processes at the

individual level in the study of disease spread.

In their recent paper, €Ozmen et al. (2016) built several MFMs and IBMs

of the well-documented Spanish Flu epidemic. They show clearly that

the underlying modeling hypothesis in MFM and IBM can lead to signifi-

cantly different simulation results for the simulation of the same phenome-

non. This result is extremely important as both models can be used for

decision-making.
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4.2 The Coupling of IBM With MFM to Enable Scale Transfer
Modeling (Multiscale Modeling)

Another interesting use of both approaches is to couple them to form a single

model of the considered system at different space and timescales. Doing this,

it is possible to simulate a scale transfer between two hierarchical levels, the

individual level (IBM) and the population level (MFM) (Duboz et al., 2003).

This coupling enables to study how individual behavior (foraging in the men-

tioned study) impacts the population dynamic. In this approach, the IBM is

considered as a virtual experiment to compute the parameters of the MFM.

This technique has the potential to greatly reduce computation time, which

represents one of the main limitations of complex IBMs. Indeed, the MFM

can deal with any size of population and the IBM is considered as a popula-

tion sample that is coupled through individual statistics computed from simu-

lation outputs.

5 SPECIFIC USES OF IBMs

Mathematical models have proved that they can provide crucial insights into

our understanding and our ability to forecast epidemiological dynamics.

Therefore, it is important to identify what kind of improvements IBMs can

bring. We will here review nonexhaustively some of the most important

opportunities offered by this modeling approach, which can be also combined

together.

5.1 Spatially Explicit Models

Classic compartmental mathematical models are able to consider a spatial

dimension, through a collection of populations connected between them

(Xia et al., 2004) or through a diffusion equation involved within a partial dif-

ferential equations systems (Tran and Raffy, 2006). However, such models

have generally a simplistic representation of space at fine scale.

Therefore, the most involved improvement of IBM has been clearly to

consider a spatially explicit dimension at this fine scale. Use of IBM in this

context has started very early with the development of cellular automata

(Wolfram, 2002) and remains one of the main reasons to develop IBM in

epidemiology.

Considering an explicit spatial dimension yields to the fact that the differ-

ent elements of an epidemiological system (humans, animal reservoir, and/or

vectors among others) have less or more contact than with others. As a result,

this explicit spatial dimension can be summarized as a network of interac-

tions, which can fluctuate through time.

When individual movements are not considered explicitly, epidemiologi-

cal studies have generally considered spatial dimension through a network

of interactions among individuals. These networks could be derived from
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complex socioeconomic data, with a clear aim of forecasting possible future

disease outbreaks (Eubank et al., 2004). These networks could be also a result

of well-known algorithms, which can generate a large gradient of network

properties such as random networks with the Erdos–R�enyi algorithm (Erdos

and R�enyi, 1959) until realistic network patterns that can mimic accurately

documented network with the preferential attachment that generates scale-free

networks (Barabasi et al., 1999). Generally, epidemiological studies that have

relied on such networks have investigated the role of connectivity between

these epidemiological elements on the different metric of disease transmission

(Keeling, 1999; Roche et al., 2013) or on pathogen evolution (Read and

Keeling, 2003).

These interactions networks can be the result of an explicit consideration

of individual movement from one place to another. Generally, when the spa-

tial dimension is discrete, we consider that individuals can interact with their

neighborhood, i.e., with the individuals that are located closely. Thanks to an

inheritance from the cellular automata era, we can consider a “Von Neumann”

neighborhood (assuming that an individual can interact only with the adjacent

individuals) or a “Moore” neighborhood (assuming that individuals can inter-

act with all the eight individuals surrounding the considered one). Today,

even when the spatial dimension can be still discrete, it is also common to

consider a spatial radius where focal individual can interact with other ele-

ments of the model (Fig. 2). In epidemiology, these models that not relying

on field data have been mostly used to identify fundamental properties of

pathogen propagation with physical constraints or different kind of habitats

(Roche et al., 2008).

Based on this explicit consideration of the spatial dimension, many sophis-

tications have been made possible thanks to software design and computing

resources. The recent developments of IBM platforms that allowed the inte-

gration of very complex heterogeneous data with multiple layers of spatial

dimensions from Geographical Information Systems (GISs). These models

are allowing to explore the spatial propagation of epidemics in a realistic con-

text (Brown et al., 2005; Muller et al., 2004), despite their validation on epi-

demiological data remains extremely challenging.

FIG. 2 Different considerations of the spatial neighborhood. (Left) Von Neumann neighborhood,

(middle) Moore neighborhood, and (right) radius neighborhood.
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5.2 Complex Behaviors

The second main reason to use IBMs is the potential to consider complex

behaviors of the different epidemiological elements. For instance, the decision

of an individual to adopt a preventive measure depends on her/his perception

of risks associated with her/his actions. This perception depends on individual

experiences and personal beliefs and can evolve in time. The set of possible

choices is discrete and finite, and the rules selecting actions often refer to

qualitative data.

Differential equations hardly represent discrete choices and qualitative

information, whereas computer programming is extremely flexible and allows

considering behaviors relying on many different things, such as the surround-

ing individuals, the environment status, etc. Therefore, integrating complex

behavior has always been a key element of IBMs, mainly in ecological studies

(Grimm et al., 2005).

This aspect is critical for IBMs. Indeed, human behavior is increasingly

recognized as a key element in pathogen transmission (Funk et al., 2010).

Nevertheless, integration of behaviors in IBMs is still burgeoning in epide-

miology despite the numerous models that have been developed in the field

of artificial intelligence, and more specifically for ABMs. The main reason

is the quasi-absence of data regarding human behavior being explicitly col-

lected for a modeling purpose in epidemiology. It appears necessary here to

collaborate with sociologists or behavioral economists for instance, to

benefit from their methodologies. More generally, participatory modeling

methods are needed to integrate the different disciplines and stakeholders

concern with public health issues (Binot et al., 2015). Moreover, the possi-

bility to track simple parts of human behavior in simple mathematical model

relying on the classic SIR framework has been very insightful (Andrews and

Bauch, 2016), but has also delayed the consideration of more complex

behaviors.

5.3 Multistrains Pathogens

Another possibility is also to expand the possibility of classic mathematical

models. To this extent, considering large assemblages of pathogen strains rep-

resent a crucial example. Many pathogens show an antigenic variability that

constrains vaccine development and therefore disease control, such as in the

case of influenza or Dengue viruses. In populational mathematical models,

the strain space has to be fixed, which could also generate some edge effects

around the first or the last strains (Gog and Grenfell, 2002). This constraint is

removed thanks to the computational formulation because this strain space

can be extended dynamically, while it can nevertheless rely on the same com-

partmental formulation (Roche et al., 2011).
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6 IBM CALIBRATION

IBM calibration or optimization is an important issue. For IBM, as for any kind

of models, it may happen that some of the parameters cannot be estimated exper-

imentally. In such case, the modeler could fit model parameters to reproduce

collected data and then calibrate the model. The main difficulty is the stochastic

nature of IBM. We have therefore to use Monte Carlo techniques to fit para-

meters, which are difficult to implement and for which the convergence toward

an optimum cannot be assert. Moreover, this problem is particularly important

with IBMs when one single simulation may require minutes or hours to be

achieved. Heuristic techniques, such as evolutionary algorithms, can reduce

the computation time for parameter exploration (Fig. 3) (Duboz et al., 2010).

Replacement
IBM

Evaluation

Offspring Crossover/Mutation

Selection

Stopping criterion

Parents
Evaluation

Creation of
the population

FIG. 3 General outline of an evolutionary algorithm. Creation of a population using a uniform

random drawing of parameter values within the search space. Evaluation: Computation of the

phenotype and the fitness of each individual. It consists in using the IBM instead of a mathemati-

cal evaluation function. Selection: Choice of some individuals that will become parents based on

the fitness. Crossover/mutation: Use of parents to create new individuals, the offspring. Several

parents’ genotypes can be mixed (crossover) and/or modified (mutation). Evaluation: Computa-

tion of the phenotype and the fitness of the offspring. Replacement: Choice of the individuals

(among parents and offspring) which will constitute the next generation (based on the fitness).

From Duboz, R., Versmisse, D., Travers, M., Ramat, E., Shin, Y.J., 2010. Application of an evolu-

tionary algorithm to the inverse parameter estimation of an individual-based model. Ecol. Model.

221, 840–849.
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Nevertheless, convergence is still an issue and IBMs calibration remains

difficult when the number of parameters is large. Some methodological devel-

opments in Approximate Bayesian Computation (ABC) have started addres-

sing this problem. ABC has the potential to optimize an IBM’s structure

and parameters within an established statistical framework. In their paper,

Van der Vaart et al. (2015) showed that ABC can potentially represent uncer-

tainty in IBM parameters, structure, and predictions. However, work remains

to be done in developing ABC for IBM with a large number of parameters.

6.1 Sensitivity Analysis

Sensitivity analysis focuses on studying uncertainties in model outputs

because of uncertainty in model inputs. In other words, the aim of sensitivity

analysis is to assess the influence of model’s parameter values and model

structure on its output. Sensitivity analysis is divided into two main

approaches: local and global. The local approach looks at the variation in

the output of the model when parameters vary around their reference values.

The global approach considers the whole values intervals for each parameter.

When using sensitivity analysis with IBM, we consider model-free meth-

ods, for which the explicit mathematical formulation of the model is not nec-

essary (Saltelli et al., 2008). With sensitivity analysis, we can identify the

parameters that we have to know precisely (conversely roughly) to increase

the confidence we have in simulation results. The method is particularly use-

ful in the design phase of the model, when the modeler wants to identify what

are the important processes to consider when trying fitting the simulation out-

put to data. Then, the modeler increases his knowledge on the mechanisms

responsible for generating the model output.

One of the most interesting methods for IBM is the variance decomposi-

tion method (Ginot et al., 2006). It consists in using the analysis of variance

method (ANOVA) to study the part of variance in the output originating in

the variance of the input parameters values. It is possible to study linear and

nonlinear direct effects and the interaction effects between parameters. Ginot

et al. also showed how local sensitivity analysis can be done for all the para-

meters, showing how their influence can vary over time. In epidemiology,

Nsoesie et al. (2015) developed an IBM for influenza spread. They considered

public health-relevant outcomes of the model: time to epidemics peak, propor-

tion of infected people at the peak, and total attack rate. Their results sug-

gested that small changes in some of the model parameters could

significantly influence the characteristics of an epidemic.

7 BIOLOGICAL KNOWLEDGE GAINED THANKS TO IBMs

The first objective of IBMs was clearly to consider an explicit spatial dimension

at a low scale combined with the need to represent individual heterogeneity.
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Therefore, many different scenarios have been tested to simulate the propa-

gation of numerous emerging pathogens, such as Ebola disease for instance

(Merler et al., 2015). For other pathogens like influenza viruses potentially

pandemic, the simulation of complex spatiotemporal dynamics (Ferguson

et al., 2005) may have also been used to quantify how different kind of

interventions may impact this spatiotemporal dynamics (Longini et al.,

2005). Such approach has been even used in decision-making, in the case

of the foot-and-mouth epidemics in the United Kingdom (Keeling et al.,

2001, 2003).

As said previously, IBMs can be used to offer a more flexible formalism

than the mathematical one in the case where mathematical model could yield

to combinatory explosion. It was the case for the genetic diversity of avian

influenza viruses, where the environmental transmission route (i.e., infected

ducks are excreting viral particles in their feces that can persist during several

weeks in the environment) was suspected to play an important role. Neverthe-

less, the current multistrains mathematical models were involving mathemati-

cal assumptions in order to reduce the complexity of this problem that

consequently underestimate transmission. While these assumptions are not

problematic with human influenza viruses where direct transmission is short

and intense, relying on these assumptions for environmental transmission,

which operates on a longer term, would yield to a disappearance of this trans-

mission route. Through the development of an IBM validated to reproduce the

same dynamics than an equivalent mathematical one (Roche et al., 2011), its

investigation has been able to show the importance of this transmission in

avian influenza genetic diversity (Roche et al., 2014).

The Pattern-Oriented Modeling (POM) method introduced by Grimm

et al. (2005) is a pragmatic method to develop IBM. It is well known in

ecology. It consists in selecting observational data characterizing the pro-

cesses under study, the patterns (for instance the evolution of total biomass

in time if we are interested in population tree growth), and measuring the

distance between observations (selecting several independent patterns) and

the model output. The idea is to increment the complexity of the model until

the fit with the patterns is considered acceptable (the distance between

the patterns and simulation output is small). An important contribution to

this method is the use of an information criterion similar to AIC to select

the best model (Piou et al., 2009). As we said previously regarding IBM cal-

ibration, ABC can be used to optimize the model (Van der Vaart et al.,

2015) and could be combined with an information criterion to select the

best model.

When using the POM, the modeler selects the minimum set of processes

and their formulation necessary to reproduce the field data. The use of a par-

simony criterion increases the confidence we have on the ability of the model

to effectively represent the processes that occur in the real system, therefore

increasing the knowledge we have on it.
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8 CAVEATS OF IBMs

Despite their flexibility and the increase of computing resources, there are

some relevant reasons that mathematical models are still more used than

IBMs. The first one is a problem of reproducibility that is inherent to the com-

plexity of these models. For mathematical models, everything is encapsulated

within a set of equations or table of rates associated with the different events.

IBMs rely on complex computational code, and that is rarely made available

to the whole scientific community. As a consequence, most of the results pro-

duced by these IBMs are not reproducible, which casts doubts on their validity

because epidemiological outcomes could be the result of coding errors or even

hidden process not explained in model description. This is even more detri-

mental because some specification norms (DEVS, see previously) already

exist, but are not well disseminated in the epidemiological literature. This

concern leads to a lack of confidence in this approach, which is extremely det-

rimental for the use of IBMs in many fields and not only for epidemiological

studies. The effort of computational coding, which has obviously to be

rewarded through scientific valorization, should nevertheless not constrain

its reproducibility.

The second caveat to this approach is the rare confrontation of models

simulations to real data. This is also inherent to the complexity of this

model, because such comparison is challenging to conduct. It is worth

pointing out that the initial goal of these models was clearly to evaluate,

or at least to visualize, different scenarios, mostly of spatial propagation

of some diseases. Nevertheless, the lack of confrontation with real data

makes these models equivalent as some kind of thought experiments, or

toy models that are impossible to validate, casting doubts on the predictions

produced by them. Because the computing resources are now available to

confront these simulations to real data, it would extremely relevant to

develop relevant statistical framework to ensure a clear and deep evaluation

of their accuracy.

The last important caveat to these IBMs relies on the difficulty to explore

the whole range of parameters included in these models. Because they gener-

ally involve a high complexity, doing a sensitivity analysis could be

extremely challenging and time consuming. Nevertheless, algorithms such

as the Latin Hypercube Sampling (Tang, 1993) can allow an efficient explo-

ration of this multidimensional parameter space and be combined with a

decomposition of variance, in order to quantify the fraction of the variance

that can be attributed to each input parameters. Today, other approaches using

Monte Carlo filtering exist with the goal to identify parameter space where

models outputs are significantly different from other parameter space.

Because the risk of overparameterization is high with IBMs and that the par-

simony principle of the modeling approach is not always satisfied, sensitivity

analyses should become a standard for these models.
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9 SOFTWARE PLATFORMS

These IBMs can be developed with any kind of computing language, espe-

cially object-oriented ones such as C++ or Java. Nevertheless, in order to

focus only on the concepts involved in the model and then facilitate its coding

(especially when complex interactions exist between the different objects),

numerous platforms exist. We review briefly here three of them that are rep-

resentative to what could exist.

Swarm is one of the first individual-based platforms that has been made

available. Historically rooted in the field of artificial life, this platform has

been originally developed at the Santa Fe Institute. As a consequence, it has

been developed to offer a wide range of possibilities in order to be able to

simulate a large range of systems, such as social, ecological, or epidemiologi-

cal ones. Coded in Java today, this platform does not have a specific interface

to develop these models, but rather offers numerous libraries to facilitate task

scheduling, simulation visualization, or data interface among many other

possibilities.

Netlogo is a platform initiated by the Northern University’s Center for

Connected Learning and Computer-Based Modeling. At the opposite of

Swarm, its use is extremely simple through a friendly integrated interface.

While it is consequently less flexible than low-scale platforms such as Swarm,
NetLogo is extremely used for educational purposes because it could illustrate

rapidly the possibilities offered by IBMs.

GAMA is one example of a sophisticated individual-based modeling plat-

form, involving hybrid models (models combining simultaneously numerical

resolution of integrated mathematical models and IBMs), GIS integration,

and parallel simulations allowing simulations of huge ecosystems (up to

millions of agents) among others. Developed by the French National Research

Institute for Sustainable Development (IRD), this platform is an example of

intermediate platforms between the gradient offered going NetLogo to Swarm.
Models are developed through a high-level language (GAML) through a ded-

icated interface. Therefore, it offers more flexibility than NetLogo despite

more complicated to use for educational purposes, but is nevertheless more

constrained than Swarm and its Java libraries.

10 CONCLUSIONS

IBMs represent an intriguing opportunity in epidemiological modeling. They

allow addressing epidemiological systems that are not easily addressable with

classic mathematical models, such as complex spatial landscape, complex

behaviors, or large pathogen assemblages among others. Nevertheless, these

models have not passed the threshold of “being an opportunity” to become

a reliable and widely used formalism. This is mostly because of the lack of

validation of these models, which is deeply rooted in their complexity but that
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could be overcome with the increasing computing resources and sophisticated

statistical framework.

It is therefore crucial to highlight that IBMs and mathematical models are

not competing with each other, but rather complementary. On one hand, math-

ematical modeling offers a compact and synthetic way to a given problem that

should be favored for simple problem. On the other hand, IBMs can go further

when mathematical formalism is not adequate anymore. The emergence of

hybrid models (Bobashev et al., 2007), involving numerical resolution of ordi-

nary differential equation, and stochastic IBMs confirms the complementarity

of these different approaches. Nevertheless, it also highlights the relevance of

the paradigm “one model for one question.”
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