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Abstract

Background and objective: The fall risk assessment tool (FRAT-up) is a tool for predicting 

falls in community-dwelling older people based on a meta-analysis of fall risk factors. Based on 

the fall risk factor profile, this tool calculates the individual risk of falling over the next year. The 

objective of this study is to evaluate the performance of FRAT-up in predicting future falls in 

multiple cohorts.

Methods: Information about fall risk factors in 4 European cohorts of older people [Activity and 

Function in the Elderly (ActiFE), Germany; English Longitudinal Study of Aging (ELSA), 

England; Invecchiare nel Chianti (InCHIANTI), Italy; Irish Longitudinal Study on Aging 

(TILDA), Ireland] was used to calculate the FRAT-up risk score in individual participants. 

Information about falls that occurred after the assessment of the risk factors was collected from 

subsequent longitudinal follow-ups. We compared the performance of FRAT-up against those of 

other prediction models specifically fitted in each cohort by calculation of the area under the 

receiver operating characteristic curve (AUC).
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Results: The AUC attained by FRAT-up is 0.562 [95% confidence interval (CI) 0.530–0.594] for 

ActiFE, 0.699 (95% CI 0.680–0.718) for ELSA, 0.636 (95% CI 0.594–0.681) for InCHIANTI, 

and 0.685 (95% CI 0.660–0.709) for TILDA. Mean FRAT-up AUC as estimated from meta-

analysis is 0.646 (95% CI 0.584–0.708), with substantial heterogeneity between studies. In each 

cohort, FRAT-up discriminant ability is surpassed, at most, by the cohort-specific risk model fitted 

on that same cohort.

Conclusions: We conclude that FRAT-up is a valid approach to estimate risk of falls in 

populations of community-dwelling older people. However, further studies should be performed to 

better understand the reasons for the observed heterogeneity across studies and to refine a tool that 

performs homogeneously with higher accuracy measures across different populations.
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For many age-related health conditions or health-related threats, information about 

epidemiologic measures, such as incidence and prevalence, knowledge of the natural history, 

risk factors, or risk indicators, has allowed the development of condition-specific predicttion 

tools.1–8 Such tools express the likelihood that an individual under assessment will 

experience the undesired condition of interest within a given time span. They are used in 

public health, medical research, and clinical practice for identification of high-risk persons 

who can be targeted for cost-effective preventive interventions.9–11

Falls are highly prevalent in older people. They are associated with increased morbidity and 

even mortality. Falls are a major cause of deterioration in quality of life because they can 

result in physical injuries (eg, fractures) and negative psychological attitudes, such as loss of 

self-efficacy. Fall prevention interventions can benefit from valid fall prediction tools.12–14 

Although many such tools have been proposed, only a few of them have been extensively 

validated and have been found to have only modest predictive accuracy.6,15–21

Recently, Cattelani et al22 proposed a new prediction tool for falls in community-dwelling 

older people called (FRAT-up). It calculates the risk of falling for an individual, expressed as 

the probability of falling within the next 12 months. The tool is freely available online.23 Its 

architecture can be outlined as the cascade of 2 building blocks. The first block receives 

some clinical variables of the person under observation, that the authors called “risk 

estimators”, and estimates the person’s exposure to a list of FRAT-up-defined fall risk 

factors. The second block uses this information about exposure to the risk factors and 

calculates the probability of falling. When applying FRAT-up on datasets of different 

studies, the first block acts as a “harmonization block,” which adapts to different risk 

estimators included in each dataset (ie, different clinical scales, medical instruments, or 

protocols) and converts this information into risk factor exposures (ie, whether the person 

has vision impairments, gait problems, etc). The second block remains unchanged across 

different datasets and can be considered as the “core block.” This architecture makes FRAT-

up a flexible tool and allows it to be used across studies where different risk estimators were 

used to estimate the fall risk factors, which is the usual case.
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All the parameters of the core block of FRAT-up were derived from the literature. In 

particular, the parameters that determine the contribution of each risk factor to the overall 

risk of falling were determined from the odds ratios obtained in the systematic review and 

meta-analysis by Deandrea et al.24 Until now, FRAT-up has been evaluated only in the 

Invecchiare nel Chianti (InCHIANTI) cohort.22 However, because the meta-analysis by 

Deandrea collated results from numerous epidemiologic studies, with risk factors assessed 

by different risk estimators, we hypothesize that FRAT-up is a suitable screening tool for 

different populations and can be adapted to different methods for risk factors assessment (ie, 

different risk estimators).

With the present study, we aim to further validate FRAT-up and verify this hypothesis, 

evaluating its predictive performance on 4 datasets from relevant European epidemiologic 

studies including community-dwelling older adults. The performance of a predictive model 

depends on the model itself but also on the cohort on which it is tested. To gain better insight 

on the robustness of FRAT-up performance across different datasets, we also aim to compare 

the predictive performance of FRAT-up with data-driven prediction models, each specifically 

fitted on 1 of the 4 cohorts.

Methods

The FRAT-up validation process is described in this article in compliance with the 

Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or 

Diagnosis checklist for transparent reporting.25,26 To achieve the objectives listed above, we 

used 4 datasets from cohort studies conducted in different European countries (Germany, 

England, Italy, and Ireland). The 4 datasets were initially harmonized to obtain estimates of 

risk exposure on a standard list of risk factors. The FRAT-up risk score was calculated and 4 

cohort-specific prediction models were developed for comparison. All analyses were run 

with R version 3.0.2 (R Core Team, Vienna, Austria).27

Included Study Populations

The Activity and Function in the Elderly (ActiFE) in Ulm study is a population-based 

observational study on a cohort of community-dwelling older adults. Its principal aim is to 

investigate the relation-ship of physical activity, measured with body-worn accelerometers, 

with a number of health outcomes. The study design has been pre-viously described in 

detail.28,29 Briefly, inclusion criteria were living in the area of greater Ulm or Neu-Ulm, 

located in the South of Germany; being 65 to 90 year old; not being institutionalized; being 

able to walk independently through their own room; not having serious difficulties in 

German language, and no severe deficits in cognition. Older age strata were oversampled to 

recruit an equal number of persons for each age group. At baseline (2009–2010), 1506 

participants were assessed on a number of health parameters, including the fall risk 

estimators used in the present study. Successively, they were prospectively followed for 12 

months to monitor the occurrence of falls using fall calendars as recommended by the 

Profane consortium.30 We excluded 90 people (6%) on whom follow-up information about 

falls was missing.

Palumbo et al. Page 3

J Am Med Dir Assoc. Author manuscript; available in PMC 2018 September 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The English Longitudinal Study of Aging (ELSA) is a panel study of a cohort that is 

representative of the population of noninstitutionalized men and women aged 50 years or 

older living in England. Its broad scope is to study aging in England in its health, economic, 

and social aspects.31 In 2004–2005 (wave 2), the participants underwent a home interview 

and a nurse visit, which included the fall risk estimators used in the present study.32 About 2 

years later (wave 3), they were asked about falls experienced since the last interview.33 Four 

thousand fifty-six participants aged 65 years or older concluded the interview and the nurse 

visit. Of those, we excluded 753 (19%) participants that at wave 3 were not reinterviewed or 

did not answer questions about experienced falls.

The InCHIANTI study is an observational cohort study on older adults living in the Chianti 

region, Italy. Its principal aim is to investigate the factors contributing to the decline of 

mobility in older persons and to establish clinical variables and thresholds to evaluate 

mobility in geriatric practice.34 The invited persons were sampled from the municipality 

registries of Greve in Chianti and Bagno a Ripoli. Those aged 90 years or older were 

oversampled. At baseline (1999–2000), 1155 participants aged 65 years or older were 

assessed on a number of health parameters, including the fall risk estimators considered in 

the present study. After 3 years, they were re-interviewed and asked about falls experienced 

during the previous 12 months. We excluded 263 (23%) participants who at the first follow-

up were not re-interviewed or did not answer questions about previous falls.

The Irish Longitudinal Study on Aging (TILDA) is a cohort study representative of 

noninstitutionalized men and women aged 50 years or older living in Ireland. It aims to 

study aging in Ireland in its health, economic, and social aspects.35–37 The fieldwork relative 

to the baseline was carried out between October 2009 and February 2011. At baseline, the 

participants were asked about falls experienced during the last year and were assessed on a 

number of fall risk estimators. The first follow-up was carried out after about 2 years (from 

April 2012 to January 2013). At the follow-up, the participants were asked about falls 

experienced since the baseline interview. Two thousand three hundred seventy-two 

participants aged 65 years or older concluded the interview and the health assessment. We 

excluded 271 (11%) participants who at the first follow-up were not re-interviewed or did 

not answer questions about experienced falls. TILDA and ELSA are considered sister 

surveys, as both were designed similarly according to the United States Health and 

Retirement Study.38

Each of these 4 studies has received ethical approval by local competent ethics committees.

Variable Harmonization

We had to develop 4 harmonization blocks because the 4 cohort studies are different in the 

way they were designed and carried out. The process of deriving common variables from 

different existing datasets is often called “retrospective harmonization.” It allows the 

utilization of data coming from different sources within 1 combined analysis.39 We call 

“target variables” the variables that are desired as a result of the harmonization process. We 

distinguish between “predictor target variables” and an “outcome target variable.” Predictor 

target variables are all the fall risk factors obtained as output of FRAT-up harmonization 

block and taken as input by the FRAT-up core block. The outcome target variable is the 
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object of prediction (ie, occurrence of any fall during 1 year after the assessment, hereinafter 

“subsequent falls”). We call “source variables” the variables that are native of each dataset 

and that are used to construct the target variables. Predictor source variables are the risk 

estimators received in input by the FRAT-up harmonization block.

For each dataset, harmonization rules were developed and applied whenever possible to 

construct the target variables from the source variables. This process was fully blinded, 

meaning that the effect of the different choices of the harmonization process on the 

performance of any predictive model was not evaluated.

It was considered impossible to construct 5 and 3 risk factors in the ELSA and TILDA 

datasets, respectively. The outcome variable was harmonized imperfectly in all the datasets 

except ActiFE. In the InCHIANTI dataset, the corresponding source variable is relative to a 

time span that comes 2 years after the assessment, whereas in the ELSA and TILDA 

datasets, the corresponding source variables are relative to a time span that covers 2 years 

instead of 1. A more detailed description of the source and target variables and of the 

harmonization process is provided in an Appendix that is available upon request from the 

corresponding author.

Statistical Analysis

Use of sample weights—In health surveys, it is often the case that the study sample, 

which is available for the analyses, is not fully representative for the target population. This 

happens because some population strata are purposely oversampled or because there can be 

differential response and drop-out rates. As a consequence, it may happen that the 

distribution of some quantities of interest in the sample population differs substantially from 

the distribution in the target population. Sample weights are, thus, used to make sample 

estimates closer to their respective target population quantities.40

The ELSA and TILDA datasets are released with a set of sample weights. Among those, for 

ELSA, we have considered the weights assigned to the participants who underwent the nurse 

visit. For TILDA, we have considered the weights assigned to the participants who 

completed the health assessment, either at home or at the health center. The weights for the 

samples of the ActiFE and InCHIANTI datasets were calculated after stratifying by age 

group and sex (for the InCHIANTI we also stratified by site, Greve in Chianti or Bagno a 

Ripoli34). More in particular, each participant in stratum h was assigned a weight Nh/nh, 

with Nh (nh) being the total number of participants in stratum h in the target population (in 

the available sample, respectively).

Data imputation

Missing data are less of an issue for FRAT-up because of the ability of the tool to handle 

missing information through use of prevalence proportions.22 Conversely, missing data 

imputation is a necessary preprocessing step before computation of the data-driven models. 

Missing data have been imputed in 11 copies with multivariate imputations by chained 

equations.41 Percentage of missing values, when different from zero, is indicated in square 

Palumbo et al. Page 5

J Am Med Dir Assoc. Author manuscript; available in PMC 2018 September 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



brackets in Table 1. Totally missing variables in a dataset (eg, number of medications in the 

ELSA dataset) were replaced with the prevalence rates used in FRAT-up (Table 1).

Descriptive statistics

Descriptive statistics of the 4 cohorts were calculated for the harmonized variables using 

sample weights. Univariate associations between single risk factors and subsequent falls 

were quantified with odds ratios (ORs) and corresponding 95% confidence intervals (CIs).

Development of cohort-specific risk models

FRAT-up was applied on the 4 harmonized datasets. Its performance on the datasets was 

then compared with the performances of data-driven, cohort-specific risk models, estimated 

by 10-fold cross-validation.

In particular, each harmonized dataset was once used as a training set and, to this aim, 

randomly divided in 10 folds, balanced with respect to number of fallers. In turn, one of the 

imputed copies of 9 folds was used to fit a stepwise logistic regression with Akaike 

information criterion as model selection metrics.42 All FRAT-up risk factors were included 

as candidate regressors, together with their 2-way interactions. This regression model was 

then used to calculate the risk score on the test fold of the same dataset. This procedure was 

repeated 10 times, to calculate risk scores on all the samples of the dataset. One randomly 

chosen model among these 10 was used to obtain risk scores also on the other 3 harmonized 

datasets used as testing sets.

To calculate risk scores, each regression model was applied on each imputed copy of the 

samples, obtaining 11 risk scores for each participant. These 11 scores were then averaged to 

obtain a unique risk score for each participant.

Model evaluation

The area under the receiver operating characteristic curve (AUC) was chosen to evaluate 

FRAT-up and the other cohort-specific risk models because this is the most common 

statistics to evaluate the discriminative ability of prediction models. Mean and 95% CIs for 

model AUCs were derived by means of bootstrapping.43,44 Observations were sampled with 

replacement with probability proportional to their sample weights.

FRAT-up was also graphically evaluated for calibration. To draw the calibration plot, the 

FRAT-up 1-year risk of falling (p1) was adjusted to a 2-year risk of falling (p2) for the 

ELSA and the TILDA dataset according to the formula p2 = p1(2℃p1). The method is 

further explained in the Appendix, available upon request from the corresponding author.

The values of FRAT-up AUCs attained on the 4 populations were pooled with random 

effects meta-analysis using the R package “meta.”45 In particular, mean AUC was estimated 

with inverse variance weighted average. Between-study heterogeneity was quantified with 

Higgins-Thompson I2,46 and between-study variance with the DerSimonian-Laird estimate.
47
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Results

Table 1 describes the 4 cohorts with respect to main sociodemographic and medical 

characteristics as obtained after the harmonization process. Most characteristics showed a 

large variation and difference among the 4 cohorts, except sex, history of diabetes, and use 

of antiepileptics.

Table 2 reports for each cohort univariate associations of the single risk factors with risk of 

subsequent falls. ORs quantified in the meta-analysis by Deandrea et al24 and used by 

FRAT-up are reported for comparison. As expected, most ORs are statistically significant in 

ELSA, InCHIANTI, and TILDA. Surprisingly, only 6 ORs are statistically significant in the 

ActiFE dataset. History of falls is among the strongest risk factors. In ELSA, the 

exceptionally high OR may be explained by the particular predictor and outcome source 

variables employed.

Table 3 reports the AUCs attained by FRAT-up and by the cohort-specific risk models on the 

4 cohorts. The AUC of FRAT-up is 0.562 (95% CI 0.530–0.594), 0.699 (95% CI 0.680–

0.718), 0.636 (95% CI 0.594–0.681), and 0.685 (95% CI 0.660–0.709) respectively, for 

ActiFE, ELSA, InCHIANTI, and TILDA. In each cohort, FRAT-up discriminant ability is 

surpassed, at most, by the cohort-specific risk model fitted on that same cohort. On the 

InCHIANTI cohort, FRAT-up has higher discriminative accuracy than the InCHIANTI-

specific risk model.

The mean FRAT-up AUC estimated by pooling results obtained on the 4 cohorts with 

random effects meta-analysis is 0.646 (95% CI 0.584–0.708). The between-cohort variance 

is 0.0038 and the Higgins-Thompson I2 measure of heterogeneity is 95.1% (95% CI 90.3%

−97.5%). Cochran’s Q-test for heterogeneity is highly significant (P < .0001) indicating 

substantial heterogeneity among the included studies (Figure 1).

Figure 2 shows the calibration curves of FRAT-up for the 4 datasets. Participants of ActiFE 

with low (high) risk scores, experienced more (respectively, less) falls than expected. This 

pattern, sometimes referred to as low resolution,48 is also present in the participants of 

InCHIANTI who were assigned to the lowest or highest risk score deciles. In ELSA and 

TILDA, FRAT-up overestimated the risk consistently across the risk strata.

Discussion

In this comparative study, we investigated the performance of FRAT-up as a prediction tool 

for falls in 4 cohorts of European community-dwelling older adults, and we compared its 

discriminative ability with those of cohort-specific, data-driven risk models. Overall, FRAT-

up seems suitable to be applied across different cohorts, thereby being a valid approach to 

estimate risk of falls in populations of community-dwelling older adults, although the 

performance varied among the different cohorts.

FRAT-up mean AUC for any fall was estimated to be 0.646 by meta-analysis of the AUCs 

obtained from the 4 cohorts. Compared with prediction tools for other health outcomes, such 

as prediction tools for cardiovascular health,1 this value per se cannot be considered high. 
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However, previous research has already shown that the FRAT-up discriminative ability is 

superior to other screening tools,49 such as gait speed and the Short Physical Performance 

Battery (SPPB).50 Also, the Timed Up and Go test has been shown to have discriminative 

ability for falls similar to gait speed.51 Its ability to predict falls6,15 has been quantified with 

an AUC ranging from 0.6152 to 0.71 (value obtained when discriminating recurrent fallers).
53 The AUC of the Tinetti Balance test54 has been reported to be around 0.5652 and 0.62.55 

Thus, the risk models for falls that have been proposed and validated so far, have left a 

conspicuous part of the phenomenon unexplained. Nevertheless, these considerations and 

the results of our study suggest that FRAT-up is a suitable screening tool to use in 

populations of community-dwelling older people.

In all cohorts, FRAT-up risk score was predictive for future falls. Without considering the 

results obtained when fitting and testing a model on the same population (also known as 

internal validation56), we note that for any given test cohort, the FRAT-up discriminative 

ability was comparable to or even greater than the other cohort-specific risk models. 

Furthermore, ELSA was the test cohort on which the models attained the highest and ActiFE 

the one with the lowest AUCs, respectively.

Besides differences among the studies in terms of risk factor prevalence rates and ORs, the 

I2 statistics indicated substantial heterogeneity among the 4 included studies. It is not 

possible to unequivocally determine to which degree this heterogeneity is attributable to true 

population dissimilarities (eg, differences in the distribution of the SPPB score) or to 

differences in the study protocols and data collection procedures (eg, methods of recording 

fall occurrences). This limitation is partly due to the lack of consistent data across the 

studies (eg, SPPB is not available in TILDA), and to the small number of datasets included 

(ie, 4), therefore, not allowing to conduct a meta-regression, which might have shed further 

light on potential reasons. Nevertheless, first a high heterogeneity in terms of risk factors 

ORs was already found in the meta-analysis on which FRAT-up was built.24 Second, some 

variables and the resulting heterogeneity might be the result of a sometimes imperfect 

harmonization process. For example, estimating exposure to the risk factor “pain” requires 

having a consistent and specific definition of it. However, in the actual implementation of 

the harmonization process, we had to deal with questionnaires being different across the 4 

datasets in terms of frequency (eg, assessment of frequent or occasional pain), reference 

time period (eg, 12 months or 2 years before the assessment), or differences in location (eg, 

pain in any body location or in specific areas). Therefore, some limitations are intrinsic in 

the 4 different datasets; others might have been mitigated by an expert consensus process.

Other considerations to explain heterogeneity in results regard the outcome target variable 

(ie, occurrence of at least 1 fall in the 12 months after the assessment). First, from theoretical 

analyses, we expect that longer follow-ups lead to higher AUCs.57 This may explain why, 

excluding results from internal validation, AUC is consistently higher on ELSA and TILDA, 

where participants report about falls experienced during a time period of 2 years, which is 

twice longer than in ActiFE and InCHIANTI. Second, the differences in the approaches used 

to assess fall incidence could have played a role. In particular, use of prospective falls 

calendars (as employed in ActiFE) is expected to be more precise,30 whereas retrospective 

questionnaire assessment (as used in ELSA, InCHIANTI, and TILDA) might register only 
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more severe fall events, that are supposedly more easily predictable from information about 

exposure to standard risk factors. Finally, the differences in fall incidence among the study 

populations provide another potential explanation for the different behavior of FRAT-up in 

calibration. In particular, FRAT-up was developed assuming an average 1-year prevalence of 

31% for at least 1 fall.22 This value is similar to the prevalence of 35% found in ActiFE, 

where FRAT-up is substantially calibrated, whereas is much higher than the prevalence of at 

least 1 fall of 23% and 21% found in ELSA and InCHIANTI, respectively, where FRAT-up 

overestimates the risk. Discrepancies of fall incidence figures among populations is indeed a 

debated issue in the literature.58,59

Externally validating a prediction model means to evaluate the performance of the model on 

data that were not used for its development. It is of fundamental utility as it allows 

evaluating the generalizability of the model outside the derivation cohort. In addition, it 

allows estimating its predictive ability excluding some sources of bias that may intervene in 

other types of validation procedures.60,61 External validation is rarely performed, partly 

because it is time-consuming and costly. Also, in the domain of falls, only few prediction 

models for community-dwelling older adults have been externally validated, and they have 

shown modest predictive accuracy.6,16 By performing a harmonization process, that is 

connatural with the FRAT-up 2-block architecture, we have been able to apply and evaluate 

this tool on 4 datasets relative to 4 cohort studies of European older people. The issues 

discussed above related to the harmonization process can be thought as the price to pay for 

avoiding a long and expensive data collection campaign. However, if FRAT-up is conceived 

to be applied on multiple data sources after the construction of specific harmonization 

blocks, our approach to validate it reflects its intended way of using it.

Conclusions

Despite extensive research, falls are still difficult to predict because of the multiplicity of 

risk factors involved. Applying FRAT-up on different cohorts where risk factors were 

assessed according to different procedures and policies resulted in a risk score that was 

significantly predictive for falls, although with very heterogeneous discrimination ability. 

Overall, FRAT-up seems more suitable to be transferred across different cohorts than data-

driven fall-risk models stemming from individual cohorts, thereby being a valid option to 

use on populations of community-dwelling older people if no specifically validated, 

population-specific fall risk tools already exist for the respective population. Nevertheless, 

further studies should be performed to better understand the reasons for the observed 

heterogeneity and to refine a tool that performs homogeneously with higher accuracy 

measures across different populations.
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Fig. 1. 
Forest plot of random effect meta-analysis for AUC attained by FRAT-up on the 4 cohorts. 

SE, standard error.
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Fig. 2. 
Calibration plot for FRAT-up fall risk score on the 4 datasets. The calibration curves for 

ELSA and TILDA are relative to falls occurred during a time span of 2 years. Error bars 

indicate 95% CIs.
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Table 1

Main Baseline Characteristics of the 4 Included Cohorts Estimated Using Sample Weights

ActiFE ELSA InCHIANTI TILDA Prevalence 
Used by 
FRAT-up*

Number of participants (n) 1416 3303 892 2101

Predictor harmonized variables

 Age (years): mean (SD) 75.70 (6.76) 74.56 (7.31) 73.78 (6.62) 72.79 (5.22) 65–69 
years: 25%
70–74 
years: 25%
75–79 
years: 20%
80–84 
years: 16%
85 years+: 
14%

 Sex (women) 56.8% 56.7% 56.2% 53.5% 48%

 1-year history of falls 
(yes/no)

36.1% [1.3%] 22.7% [0.4%] 20.8% 22.8% [0.05%] 31%

 Living alone 27.7% [1.6%] 34.1% 18.2% 31.1% 32%

 Walking aid use  1.4% [8.5%]  9.3% [1.0%]  8.2% [6.4%] 1.6% 18%

 Urinary incontinence 41.0% [1.4%] 17.4% [0.1%] 34.3% 17.2% [0.5%] 19%

 Diabetes mellitus 12.3% [0.3%] 10.8% 12.9% 10.5% 11%

 Parkinson disease 1.6% 0.7%  1.3% [0.8%]  NA [100%] 0.8%

 History of arthritis or 
rheumatism

52.4% [0.4%] 44.7% 34.7% 41.0% 47%

 Cognition impairment 
(moderate to severe)

 0.7% [8.1%] 0.6% 10.5%  2.5% [0.2%] 19%

 History of stroke  4.9% [0.4%] 6.8%  5.8% [0.2%] 3.1% 13%

 Depression (current 
depressive symptoms)

11.3% [5.2%] 10.0% [0.03%] 16.9% [2.5%]  3.3% [1.5%] 13%

 Poor self-perceived health 
status

16.2% [0.5%]  NA [100%]  6.4% [2.6%] 5.9% 20%

 Pain (chronic or occasional) 60.5% [0.6%] 43.1% [0.4%] 87.6% [0.4%] 39.3% [0.1%] 30%

 Physical disability
 (difficulties in activities of 
daily living)

 3.7% [1%] 19.3% [0.03%] 5.6% 4.6% 11%

 Instrumental disability
 (difficulties in instrumental 
activities of daily living)

14.4% [1.9%] 14.4% [0.03%] 21.3% 5.1% 37%

 Reported fear of falling 11.3% [1.4%]  7.5% [0.03%] 37.4% [0.1%] 32.3% [0.1%] 33%

 History of dizziness 42.0% [1.0%] 22.4% [1.7%] 35.1% [6.6%] 26.5% [0.2%] 20%

 Current vision impairment 83.9% [1.7%] 25.5% 54.3% [14.6%] 42.4% [23.2%] 19%

 Current hearing impairment 24.2% [1.7%] 27.2% 24.1% [5.8%] 22.2% 36%

 Number of medications: 
mean (SD)

3.62 (2.90)  NA [100%] 2.18 (2.03) 3.86 (2.87) [0.8%] 0: 23.7%, 
1: 22.6%,
 2: 19.4%, 
3: 13.3%, 
4: 8.1%
5: 4.9%, 6: 
3.6%, 7: 
2.0%
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ActiFE ELSA InCHIANTI TILDA Prevalence 
Used by 
FRAT-up*

8: 1.0%, 9: 
0.7%, 10: 
0.7%

 Use of antihypertensives 56.4%  NA [100%] 37.5% 57.7% 32%

 Use of sedatives 1.3%  NA [100%] 5.7%  NA [100%] 14%

 Use of antiepileptics 1.7%  NA [100%] 1.4%  NA [100%]  1%

 Physical activity limitations 14.0% [14.3%]  8.1% [0.09%] 19.8% [0.3%] 36.3% [0.5%] 56%

 Gait problems 22.5% [3.0%] 31.8% [8.1%] 18.4% [8.0%] 17.3% [18.4%] 42%

Outcome harmonized variable

 Subsequent falls (yes/no) 32.9% 1-year adjusted: 
22.1%
 (2 years 33.5%)

22.8% 1-year adjusted:

 NA
†
 (2 years 

27.1%)

Other characteristics

 Grip strength (kg): mean 
(SD)

32.18 (11.09) [1.8%] 26.38 (10.17) [2.0%] 29.92 (11.62) [18.9%] 24.00 (8.86) [0.6%]

 Gait speed (m/s): mean (SD)  0.96 (0.29) [5.3%]  0.85 (0.25) [8.5%]  1.02 (0.26) [9.9%] NA [100%]

 SPPB balance subscore: 
mean (SD)

 3.68 (0.81) [2.5%]  3.27 (1.24) [0.03%]  3.38 (1.13) [6.5%] NA [100%]

 SPPB gait subscore: mean 
(SD)

 3.59 (0.91) [3.0%]  3.47 (0.89) [8.1%]  3.67 (0.81) [8.0%] NA [100%]

 SPPB chair standing 
subscore: mean (SD)

 3.16 (1.16) [1.6%]  2.40 (1.45) [6.0%]  3.16 (1.22) [6.7%] NA [100%]

 SPPB score: mean (SD) 10.45 (2.36) [5.6%]  9.46 (2.67) [13.1%] 10.23 (2.78) [8.3%] NA [100%]

NA, not available; SD, standard deviation.

If values were missing, percentage of missing values is indicated in square brackets.

*
Values from Cattelani et al.22

†
Not available because of lack of information about fall counts.
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Table 2

Univariate Associations (ORs) With Risk of Subsequent Falls, as Estimated From the 4 Datasets and as 

Reported in the Meta-analysis by Deandrea et al24

Odds Ratio (95% CI)

ActiFE ELSA (2-year Risk) InCHIANTI TILDA (2-year Risk) Deandrea et al*

Age (5-year increase) 1.04 (0.95–1.13) 1.32 (1.25–1.39) 1.18 (1.06–1.32) 1.14 (1.04–1.26) 1.12 (1.07–1.17)

Sex (women) 1.40 (1.12–1.75) 1.44 (1.24–1.67) 1.47 (1.07–2.03) 1.49 (1.23–1.81) 1.30 (1.18–1.42)

1-year history of falls (yes/no) 1.58 (1.25–1.99) 8.40 (6.68–10.55) 1.89 (1.33–2.69) 3.50 (2.82–4.34) 2.77 (2.37–3.25)

Living alone 1.06 (0.82–1.38) 1.63 (1.40–1.89) 1.38 (0.94–2.03) 1.46 (1.19–1.80) 1.33 (1.21–1.45)

Walking aid use 1.53 (0.62–3.81) 2.92 (2.27–3.77) 1.74 (1.02–2.95) 3.23 (1.44–7.26) 2.18 (1.79–2.65)

Urinary incontinence 1.58 (1.26–1.99) 1.73 (1.44–2.08) 1.32 (0.96–1.81) 1.61 (1.26–2.06) 1.40 (1.26–1.57)

Diabetes mellitus 0.94 (0.67–1.31) 1.24 (0.99–1.56) 1.17 (0.75–1.82) 1.08 (0.79–1.48) 1.19 (1.08–1.31)

Parkinson disease 1.40 (0.63–3.15) 4.48 (1.82–11.01) 0.70 (0.15–3.26) NA 2.71 (1.08–6.84)

History of arthritis or rheumatism 1.34 (1.07–1.68) 1.72 (1.48–1.99) 1.69 (1.22–2.33) 1.63 (134–1.98) 1.47 (1.28–1.70)

Cognition impairment (moderate 
to severe)

1.82 (0.47–7.13) 1.84 (0.71–4.79) 1.50 (0.94–2.39) 0.86 (0.39–1.92) 1.36 (1.12–1.65)

History of stroke 0.95 (0.57–1.57) 1.90 (1.44–2.51) 1.05 (0.51–2.18) 2.88 (1.70–4.89) 1.61 (1.31–1.98)

Depression (current depressive 
symptoms)

1.14 (0.79–1.65) 1.72 (1.36–2.18) 2.16 (1.49–3.13) 1.93 (1.16–3.23) 1.63 (1.36–1.94)

Poor self-perceived health status 1.23 (0.91–1.66) NA 2.22 (1.32–3.72) 2.30 (1.55–3.41) 1.50 (1.15–1.96)

Pain (chronic or occasional) 1.18 (0.94–1.48) 1.67 (1.44–1.93) 1.51 (0.91–2.50) 2.11 (1.73–2.56) 1.39 (1.19–1.62)

Physical disability 1.52 (0.84–2.74) 2.63 (2.19–3.15) 2.24 (1.23–4.08) 2.15 (1.36–3.40) 1.56 (1.22–1.99)

Instrumental disability 1.27 (0.91–1.78) 2.43 (1.98–2.99) 2.16 (1.53–3.05) 2.68 (1.71–4.19) 1.46 (1.20–1.77)

Reported fear of falling 1.43 (1.01–2.03) 3.50 (2.64–4.63) 1.87 (1.37–2.57) 2.28 (1.86–2.79) 1.55 (1.14–2.09)

History of dizziness 1.12 (0.89–1.40) 2.55 (2.15–3.03) 1.01 (0.72–1.41) 1.98 (1.59–2.45) 1.80 (1.39–2.33)

Current vision impairment 0.95 (0.70–1.30) 1.64 (1.39–1.94) 1.51 (1.05–2.17) 1.04 (0.82–1.31) 1.35 (1.18–1.54)

Current hearing impairment 1.23 (0.95–1.59) 1.37 (1.17–1.61) 1.18 (0.83–1.67) 1.43 (1.13–1.80) 1.21 (1.05–1.39)

Number of medications (1-drug 
increase)

1.03 (0.99–1.07) NA 1.11 (1.03–1.19) 1.10 (1.06–1.13) 1.06 (1.04–1.08)

Use of antihypertensives 1.11 (0.89–1.40) NA NA 1.09 (0.90–1.32) 1.25 (1.06–1.48)

Use of sedatives 0.52 (0.17–1.56) NA NA NA 1.38 (1.15–1.66)

Use of antiepileptics 2.63 (1.25–5.52) NA NA NA 1.88 (1.02–3.49)

Physical activity limitations 1.11 (0.79–1.56) 2.14 (1.63–2.79) 2.44 (1.70–3.49) 1.36 (1.11–1.66) 1.20 (1.04–1.38)

Gait problems 1.02 (0.77–1.35) 1.94 (1.64–2.28) 2.39 (1.65–3.47) 1.55 (1.13–2.11) 2.06 (1.82–2.33)

Statistical significant ORSs are reported in bold.

*
Values from Deandrea et al.24
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Table 3

Comparison Among Models Applied on the 4 Cohorts

AUC (95% CI)

ActiFE ELSA InCHIANTI TILDA

FRAT-up 0.562 (0.530–0.594) 0.699 (0.680–0.718) 0.636 (0.594–0.681) 0.685 (0.660–0.709)

Cohort-specific model fitted on ActiFE 0.574 (0.541–0.604) 0.566 (0.545–0.585) 0.549 (0.505–0.594) 0.559 (0.532–0.584)

Cohort-specific model fitted on ELSA 0.560 (0.527–0.593) 0.719 (0.698–0.739) 0.611 (0.570–0.654) 0.675 (0.648–0.704)

Cohort-specific model fitted on InCHIANTI 0.530 (0.501–0.559) 0.664 (0.644–0.681) 0.571 (0.520– 0.619) 0.633 (0.608–0.661)

Cohort-specific model fitted on TILDA 0.561 (0.527–0.592) 0.661 (0.642–0.678) 0.600 (0.558–0.647) 0.686 (0.660–0.710)

The discriminative ability is quantified with AUC (95% CI). The results from internal validation (fitting and testing on the same cohort) are in 
italics.
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