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Background: This study aims to investigate the association between immune cells and the development of COPD, while providing 
a new method for the diagnosis of COPD according to the changes in immune microenvironment.
Methods: In this study, the “CIBERSORT” algorithm was used to estimate the tissue infiltration of 22 types of immune cells in 
GSE20257 and GSE10006. The “limma” package was used for differentially expressed analysis. The key modules associated 
with vital immune cells were identified using WGCNA. GO and KEGG enrichment analysis revealed the biological functions 
of the candidate genes. Ultimately, a novel diagnostic prediction model was constructed via machine learning methods and 
multivariate logistic regression analysis based on GSE20257. Furthermore, we examined the stability of the model on one 
internal test set (GSE10006), three external test sets (GSE8545, GSE57148 and GSE76925), one single-cell transcriptome 
dataset (GSE167295), macrophages (THP-M cells) and lung tissue from COPD patients.
Results: M0 macrophages (AUC > 0.7 in GSE20257 and GSE10006) were considered as the most important immune cells through 
exploring the immune microenvironment landscapes in COPD patients and healthy controls. The differentially expressed genes from 
GSE20257 and GSE10006 were divided into six and five modules via WGCNA, respectively. The green module in GSE20257 (cor = 0.41, 
P < 0.001) and the brown module in GSE10006 (cor = 0.67, P < 0.001) were highly correlated with M0 macrophages and were selected as 
key modules. Forty-one intersected genes obtained from two modules were primarily involved in regulation of cytokine production, 
regulation of innate immune response, specific granule, phagosome, lysosome, ferroptosis, and other biological processes. On the basis of 
the candidate genetic markers further characterized via the “Boruta” and “LASSO” algorithm for COPD, a diagnostic model comprising 
CLEC5A, FTL and SLC2A3 was constructed, which could accurately distinguish COPD patients from healthy controls in multiple datasets. 
GSE20257 as the training set has an AUC of 0.916. The AUCs of the internal test set and three external test sets were 0.873, 0.932, 0.675 
and 0.688, respectively. Single-cell sequencing analysis suggested that CLEC5A, FTL and SLC2A3 were expressed in macrophages from 
COPD patients. The expressions of CLEC5A, FTL and SLC2A3 were up-regulated in THP-M cells and lung tissue from COPD patients.
Conclusion: According to the variations of immune microenvironment in COPD patients, we constructed and validated a novel 
macrophage M0-associated diagnostic model with satisfactory predictive value. CLEC5A, FTL and SLC2A3 are expected to be 
promising targets of immunotherapy in COPD.
Keywords: COPD, CLEC5A, FTL, SLC2A3, immune infiltration, WGCNA, machine learning, multivariate logistic regression

Introduction
Chronic obstructive pulmonary disease (COPD) is a respiratory disease characterized by progressive airflow limitation 
and chronic inflammation of the airway and lung parenchyma. It is the result of interactions between innate genetic 
factors, such as α1-antitrypsin deficiency, and acquired environmental factors, such as smoking.1–4 Whether in developed 
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or developing countries, the high incidence, disability and mortality of COPD have brought heavy economic burden to 
patients and society.5,6 Diagnosis and timely treatment have critical clinical significance for slowing down the decline of 
pulmonary function and improving the long-term prognosis of patients.7 Nevertheless, relying solely on pulmonary 
function monitoring and imaging examination cannot fully identify the specific initial stage of COPD at present.8–10 

Undoubtedly, the accurate clinical diagnosis of COPD has yet to be resolved which is the utmost important.
In recent years, increasing studies have proved the essential role of immune cell infiltration in the occurrence and 

development of various diseases.11,12 In the scope of COPD, Yang et al found that monocytes and M0 macrophages were 
up-regulated and CD8 T cells, activated NK cells, M2 macrophages, resting dendritic cells and resting mast cells were 
down-regulated in COPD lung tissues, while these differentially infiltrated immune cells were significantly associated 
with ferroptosis-related genes.13 Remarkably, even immune cells, such as monocytes, that have never been directly 
exposed to external stimuli, such as cigarette smoke or biomass smoke, have been observed to manifest defects in their 
function and regulation.14,15 The expressions of SLC27A3 and STAU1 which were identified as the diagnostic markers of 
COPD by Zhang et al were enhanced in COPD models, accompanied by the activation of immune infiltration.16 

However, although many biomarkers have been developed to identify COPD, a novel diagnostic model that focused 
on the immune microenvironment associated with COPD has not been constructed. With the development of technology, 
the fusion of bioinformatics analysis and machine learning (ML) has been applied to identify the diagnostic or prognostic 
genes related to COPD.16–18 For example, Dhong et al identified TRPC6 as a diagnostic biomarker of Particulate matter- 
(PM-) induced COPD using machine learning models,19 but such studies still lacked validation of sufficient external 
datasets or relevant experiments to ensure stability.

In our investigation, two COPD microarray datasets were first extracted from NCBI Gene Expression Omnibus 
(GEO) database. Secondly, vital immune cells that were differentially infiltrated in COPD and healthy samples were 
identified and quantified by the cell-type identification by estimating relative subsets of RNA transcripts 
(“CIBERSORT”) algorithm, and a weighted gene co-expression network analysis (WGCNA) was used to screen out 
the key modules associated with these cells. Based on the candidate genes acquired from the intersection of key modules, 
we constructed a novel diagnostic prediction model using ML approaches and multivariate logistic regression analysis. 
Finally, we validated the diagnostic performance of our model on one internal test set, three external test sets, one single- 
cell transcriptome dataset, cigarette smoke extract- (CSE-) induced COPD models in vitro and lung tissue from COPD 
patients. This study aims to provide a new method for the diagnosis of COPD according to the changes in immune 
microenvironment, which is different from lung function and imaging examination.

Materials and Methods
Raw Data Acquisition
Datasets for three COPD airway tissues (GSE20257,20 GSE1000621 and GSE8545)22, two COPD lung tissues 
(GSE5714823–25 and GSE76925)26,27 were downloaded from GEO (https://www.ncbi.nlm.nih.gov/geo/). All datasets 
above are gene expression arrays and were generated using the GPL570 (HG-U133_Plus_2) Affymetrix Human Genome 
U133 Plus 2.0 Array. GSE20257, GSE10006, GSE8545 contains 53 healthy and 23 COPD samples, 22 healthy and 27 
COPD samples, 18 healthy and 18 COPD samples, respectively. GSE20257 was used as the training set for airway tissue, 
while GSE10006 and GSE8545 were used as the validation set for airway tissue. GSE57148 and GSE76925 were used to 
model the effect of external validation of lung tissue. All GEO raw datasets were pre-processed by “affy” in R, including 
background calibration, normalization and log2 transformation.28 When multiple probes corresponded to a common 
gene, the average value was taken as its expression value.

Quantification of Immune Cells
The “CIBERSORT” inverse convolution algorithm (http://cibersort.stanford.edu/) was used to quantify 22 immune 
cells.29,30 The “CIBERSORT” algorithm combined vector regression and LM22 gene set to estimate cell type propor-
tions, incorporating samples with p < 0.05 into this work. We compared the proportion of immune cells between COPD 
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and healthy samples. Immune cells with differential distribution and high predictive abilities were identified by the area 
under the curve (AUC) calculated via the “pROC” software package.31

Differentially Expressed Analysis
The “limma” package was applied to the GEO cohorts to screen for differentially expressed genes (DEGs). P-value < 
0.05 and |log2FC| > 0.5 was set as the cut-off point.32,33

Weighted Correlation Network Analysis
Weighted correlation network analysis (WGCNA) is a systems biology method for identifying gene relationship patterns 
across samples.34 We chose the optimal soft threshold power β through the function “pickSoftThreshold”, where scale- 
free topological fitting index R2 = 0.9. aij = |Sij|β (aij: adjacency matrix between gene i and gene j; Sij: similarity matrix, 
which is obtained by Pearson correlation of all gene pairs) was used to calculate the matrix composed of weighted 
correlation values between genes and genes, ie, the adjacency matrix. Next up, the adjacency matrix was transformed into 
the topological overlap measure (TOM) matrix to reflect the similarity of co-expressed genes. We obtained the highly 
similar co-expressed genes and merged them into modules via the “dynamic tree cutting” algorithm and the “merged 
dynamic” algorithm. The fractions of vital immune infiltrating cells in COPD patients were used as sample traits. We 
identified the key modules according to a high correlation between these co-expression gene modules and sample traits. 
Additionally, the genes in the important modules were the key genes, and the intersected key genes between GSE20257 
and GSE10006 were included as candidate genes in our work.

Functional Enrichment Analysis
Functional enrichment analysis, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis, was performed by the R software packages “clusterProfiler”, “circlize”, etc.35,36 The screening criteria 
for significance terms was P-value <0.05 after adjustment.

Construction of Protein–Protein Interaction (PPI) Network
We constructed the PPI network via STRING database (https://string-db.org/), and then the hub genes in the network 
were processed and visualized in “Cytoscape” software (version 3.9.1).37

Construction and Validation of a Diagnostic Model
In GSE20257, the Boruta algorithm with 500 maxRuns was used to further screen for significant genes among the 41 
candidate genes using the “Boruta” package. The genes were classified into three categories, including confirmed, 
tentative and rejected. Meanwhile, we put the 41 candidate genes into the least absolute shrinkage and selection operator 
(LASSO).38 LASSO, a dimension reduction approach, shows superiority in evaluating high-dimensional data in 
comparison to regression analysis. LASSO analysis was implemented with a turning/penalty parameter utilizing a 10- 
fold cross-verification via glmnet package. The minimum lambda value was obtained by 10 times cross-validation. Nine 
genes identified as significant by Boruta as well as having non-zero regression coefficients were used for stepwise 
multivariate logistic regression analysis.39 We constructed a score based on the 3 genes with P < 0.05 in the stepwise 
multivariate logistic regression. Score = Constant + Gene1 × Coef1 + Gene2 × Coef2 + Gene3 × Coef3 + - - - + Genen × 
Coefn (Constant, constant; Gene, gene expression; Coef, regression coefficient). The airway sequencing datasets 
GSE10006 and GSE8545 were used to verify the stability of this signature.

Processing of Single Cell Sequencing Data
We downloaded 10×scRNA-seq data containing three samples with COPD lung tissue from GSE167295.40 Cells with 
fewer than 200 or more than 10,000 genes, fewer than 1000 molecules, and more than 20% mitochondrial and ribosomal 
genes were removed to retain high-quality cellular data. The remaining genes were expressed in at least three single cells. 
Above all, we used the “harmony” R package to remove batch effect between different samples41 and the “Seurat” 
R package to normalize the RNA-seq data via the function “NormalizeData”. After that, the standardized scRNA-seq 
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data were transformed into Seurat objects and the top 2000 highly variable genes were identified using the function 
“FindVariableFeatures”. We applied the function “RunPCA” of the “Seurat” R package to perform principal component 
analysis (PCA) of the top 2000 genes based on dimensionality reduction of the RNA-Seq data. In the end, we employed 
“JackStraw” analysis to identify significant PCs and selected the top 15 PCs with the smallest p-value based on the 
proportion of variance for cell clustering analysis. The consolidated data were clustered using the functions 
“FindNeighbors” and “FindClusters”, and cell subsets were displayed via UAMP plot. The “SingleR” R package was 
used to annotate various cell subsets.42

Cell Culture and Treatment
HBE cells, an SV40-transformed, normal HBE cell line, were obtained from Chi Scientific (Jiangsu, China). THP-1 cells 
were purchased from the National Collection of Authenticated Cell Cultures. THP-1 cells were treated with 10 µM PMA 
for 48 h to form THP-1 macrophages (THP-M cells), and THP-M cells were seeded in a six-well plate at a density of 
1×106 cells per well. HBE cells were treated with 5% CSE for 24 h before they were cocultured with THP-M cells on 
24 mm diameter inserts with 0.4 μm pores (#3412, Corning, USA).43

Preparation of CSE
CSE was prepared as previously reported with some modifications.43 Briefly, the smoke of a Da Qian Men (10 mg tar and 
0.8 mg nicotine/cigarette, Shanghai, China) was bubbled through 10 mL of serum-free DMEM. The resulting suspension 
was adjusted to pH 7.4 and then filtered through a 0.22 μm pore filter (Merck Millipore, USA) to remove bacteria and 
large particles. The CSE was standardized by measuring the absorbance at 320 nm and defined as 100% CSE. The CSE 
was diluted to the desired concentration with medium and used in experiments within 30 min.

Determination of Cell Viability
Cell viability was assessed according to the instructions for Cell Counting Kit-8 kits (Beyotime, China). In short, 5000 
cells per well were seeded in 96-well plates. 0, 2, 5, 10% CSE were added, and the preparations were incubated at 37°C 
and 5% CO2 for 0, 6, 12, 24, 48, 72 h. CCK-8 solution (10 μL) was added to each well, and, after incubation for 2 h, the 
absorbance was measured at 450 nm. For following experiments, we exposed HBE cells to 5% CSE for 24 h based on the 
outcome (Supplementary Figure 1).

RNA Extraction and Real-Time PCR
Total RNA was isolated by use of RNAiso Plus (9108/9109, Takara, Japan). Total RNA (1 μg) was transcribed into 
cDNA by use of PrimeScriptTM RT reagent kit with gDNA eraser (RR047A, Takara, Japan). The RT-PCR assay was 
performed with TB Green™ Premix Ex Taq™ II (RR820A, Takara, Japan) and ABI 9600 real-time PCR detection 
system (Applied Biosystems). GAPDH served as internal control for mRNA. Fold changes in expression of each gene 
were calculated by a comparative threshold cycle (Ct) method using the formula 2-ΔΔCT. The primer sequences are as 
follows (Table 1).

Western Blot Assay
Total lysates were prepared according to the manufacturer’s recommendations (Beyotime Institute of Biotechnology, 
Shanghai, China). Protein concentrations were measured with the BCA protein assay (Beyotime Institute of 
Biotechnology, Shanghai, China). Equal amounts (20 μg) of protein were separated by 10% sodium dodecyl sulphate– 
polyacrylamide gel electrophoresis and were transferred to polyvinylidene fluoride (PVDF) membranes (Millipore, 
Billerica, MA). Membranes were incubated overnight at 4°C with mouse anti-GAPDH antibody (ab8245, Abcam), 
goat anti-CLEC5A antibody (AF2384, R&D systems), rabbit anti-FTL antibody (10,727-1-AP, Proteintech) and rabbit 
anti-SLC2A3 antibody (ab41525, Abcam). After several washing steps, the membrane was incubated with secondary 
horseradish peroxidase (HRP)-conjugated antibody at room temperature for one hour. Detection was performed with the 
Immobilon ECL system (Millipore, S.p.A., Italy). The densitometric analyses of the bands were performed with ImageJ 
software.
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Immunohistochemical Staining
The lung tissues were fixed with paraformaldehyde, then were embedded in paraffin and sectioned into sections. The lung 
sections were deparaffinized and rinsed at room temperature. The primary antibody used was the same as in Western 
Blot. After incubated with the appropriate HRP-conjugated secondary antibodies, the samples were incubated with 
a 3.39-diaminobenzidine-4HCl (DAB; Sigma, Missouri, USA)-H2O2 solution to visualize immunolabeling. The lung 
sections were mounted with a coverslip and observed under a microscope.

Statistical Analysis
All statistical analyses were performed in R (version 4.2.1). The predictive power of immune cells and the efficacy of the 
diagnostic model were assessed using receiver operating characteristic (ROC) curves. The Wilcoxon analysis is used to 
analyze the differences between the two groups, including the comparison of 22 immune cells and candidate signatures 
between COPD patients and healthy controls. Statistical significance was identified based on P < 0.05.

Results
Identification of Important Immune Cells in COPD
In order to explore immune microenvironment landscapes in healthy controls and COPD patients, we used the 
“CIBERSORT” algorithm to quantify the relative proportion of infiltrating immune cells in GSE20257 and GSE10006 
(Figure 1A and B). The correlation between immune cells may provide clues to better understand the composition of the 
immune microenvironment in COPD (Supplementary Figure 2A, B). In GSE20257, the fraction of resting dendritic cells 
and M0 macrophages were significantly higher in the COPD patients than those in healthy controls, but lower proportion 
of M2 macrophages was found in COPD patients (Figure 1C, P < 0.05). In GSE10006, we found the healthy controls had 
a higher immune infiltrating level of plasma cells, follicular helper T cells, and gamma delta T cells compared to those in 
COPD patients, while lower proportions of M0 macrophages and resting dendritic cells were found in healthy controls 
(Figure 1D, P < 0.05). Obviously, the expression of M0 macrophages and resting dendritic cells was consistent 
throughout the two cohorts. In addition, receiver operating characteristic (ROC) curve showed that M0 macrophages 
had high predictive accuracy in GSE20257 (Figure 2A, AUC > 0.7). In GSE10006, plasma cells, follicular helper T cells, 
M0 macrophages, and resting dendritic cells all had good predictive values (Figure 2B, AUC > 0.7). However, as shown 
in Figure 1, M0 macrophages accounted for a significantly larger proportion of infiltrating immune cells than dendritic 
cells, follicular helper T cells, etc. Therefore, M0 macrophages were considered to be the most important immune cells of 
COPD in this work.

Determination of Key Modules Associated with Important Immune Cells
The R package “limma” was utilized to analyze differential expression genes in the metadata cohorts (GSE20257 and 
GSE10006). As shown in Figure 2C, 773 up-regulated and 726 down-regulated DEGs were identified in GSE20257. In 
GSE10006, 348 up-regulated genes and 449 down-regulated genes were visualized by volcano plot (Figure 2D). Next, 

Table 1 Primer Sequences Used

Genes Sequence (5’to 3’)

M-CLEC5A-F ATTTTATCAAGCAAGATGTTTTTT
M-CLEC5A-R CTTCAGTTTCTCTGGCGTGT

M-FTL-F GCTCACTCTCAAGCACGACT

M-FTL-R AAGCTGCCTATTGGCTGGAG
M-SLC2A3-F GTGGCTGCTTTATGGGACTG

M-SLC2A3-R GCAGGGCAGTAGGCGAGA

M-GAPDH-F CTCCTCCTGGCCTCGCTGT
M-GAPDH-R GCTGTCACCTTCACCGTTCC

Abbreviations: M, homo sapiens; F, forward; R, reverse.
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Figure 1 Immune microenvironment of airway tissues in healthy controls and COPD patients. (A) Relative proportions of infiltrating immune cells in GSE20257. (B) 
Relative proportions of infiltrating immune cells in GSE10006. (C) Differences of immune cells composition between healthy controls and COPD patients in GSE20257. (D) 
Differences of immune cells composition between healthy controls and COPD patients in GSE10006. Blue represents healthy controls; red represents COPD patients. ns, 
no significance; *P < 0.05, **P < 0.01.
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we took advantage of the above DEGs to determine the key modules associated with important immune cells in two data 
sets, respectively. When the soft threshold power β was 8, scale-free topology fitting index R2 reached 0.9 in GSE20257, 
then we acquired 6 modules using the “merged dynamic” algorithm (Figure 3A and C). We found that the green module 
had a good correlation with M0 macrophages (Figure 3E, cor = 0.41, P < 0.001). Similarly, in GSE10006, we chose β = 7 
as the optimal β and acquired 5 modules (Figure 3B and D). The brown module was highly correlated with M0 
macrophages among the modules (Figure 3F, cor = 0.67, P < 0.001). Hence, the green module in GSE20257 and the 
brown module in GSE10006 were chosen as key macrophage M0-related modules.

Enrichment Analysis of Key Genes and Construction of PPI Network
We took the intersection of the genes between the above two modules and ultimately obtained 41 candidate genes (Figure 4A). 
The results of GO enrichment analysis, consist of 240 biological processes (BPs), 9 cellular components (CCs) and 14 

Figure 2 Identification of key immune cells and DEGs. (A) AUCs of three differentially distributed immune cells in GSE20257. (B) AUCs of five differentially distributed 
immune cells in GSE10006. (C) Volcano plot of DEGs in GSE20257. (D) Volcano plot of DEGs in GSE10006.
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molecular functions (MFs), indicated that these candidate genes were mainly involved in immune-related activities, including 
regulation of cytokine production, regulation of immune effector process, regulation of innate immune response, specific 
granule, secretory granule membrane and immune receptor activity (Figure 4B, Supplementary Table 1). The KEGG 

Figure 3 Determination of key modules associated with important immune cells. (A) Scale Independence and average connectivity in GSE20257. (B) Scale Independence 
and average connectivity in GSE10006. (C) Cluster dendrogram in GSE20257. (D) Cluster dendrogram in GSE10006. (E) Heatmap of correlation between modules and 
important immune cells in GSE20257. (F) Heatmap of correlation between modules and important immune cells in GSE10006.
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enrichment analysis exhibited that these genes mostly participated in phagosome, lysosome, neutrophil extracellular trap 
formation, B cell receptor signaling pathway, necroptosis and even ferroptosis (Supplementary Figure 3A, Supplementary 
Table 2). Finally, we explored the interactive relationship among the proteins encoded by candidate genes in STRING 
database, and the hub genes in the network were screened and visualized using “Cytoscape” software. The results existed 29 
nodes and 134 edges in total (Supplementary Figure 3B, Supplementary Table 3).

Construction and Validation of a Macrophage M0-Related Diagnostic Model
Firstly, 41 candidate genes were downscaled by the “Boruta” algorithm to classify them into two categories, including 15 
confirmed genes and 26 rejected genes (Table 2). Next, to obtain higher accuracy, the 41 candidate genes were selected 
after ten cross-validations by the “LASSO” algorithm with an optimal penalty parameter of 0.0038. We selected the 
minimum criteria for building the LASSO classifier and identified 14 feature genes (Figure 4C and D, Table 2). Two 
machine learning yielded 9 genes that were used in our next step of stepwise multivariate logistic regression analysis 
(Table 2). Finally, based on the results of the stepwise multivariate logistic regression analysis, the P-values of three 
genes were less than 0.05, and we constructed a new model based on the expression values of these three genes and the 

Figure 4 LASSO regression analysis for selection of trait genes. (A) 41 candidate genes were acquired via Venn diagram. (B) Donut plot of GO enrichment analyses. (C) Ten 
cross-validations of adjusted parameter selection in the LASSO model. Each curve corresponds to one gene. (D) LASSO coefficient analysis. Vertical dashed lines are plotted 
at the best penalty parameter.
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coefficients of the stepwise multivariate logistic regression analysis. Score = −43.5741 + CLEC5A * 1.5158 + FTL * 
4.7296 - SLC2A3 * 1.4324.

Compared with healthy controls, COPD patients tended to have higher scores in training group (GSE20257) and two 
validation groups (GSE10006 and GSE8545). In other words, a higher score implied the higher expressions of CLEC5A, 
FTL and SLC2A3 and a greater likelihood of suffering from COPD (Figure 5A, D and G). Most of all, the AUC was 
0.916, 0.873 and 0.932 in GSE20257 (Figure 5B), GSE10006 (Figure 5E) and GSE8545 (Figure 5H), respectively, 
indicating our model has an excellent value in diagnosing COPD. In these three GEO cohorts, the expressions of 
CLEC5A, FTL and SLC2A3 in COPD patients were all higher than the healthy controls (Figure 5C, F and I). To broaden 

Table 2 Detailed Results of the Boruta and LASSO Algorithms

Gene Symbol Boruta-Decision LASSO-Coefficient

ALOX5 Rejected 0
ALOX5AP Rejected 0

AMICA1 Rejected 0

ATP6V0D2 Confirmed 0
BCAT1 Confirmed 0

BCL2A1 Confirmed 0

CA8 Confirmed −1.046675708
CCR1 Rejected 0

CD101 Confirmed 0.704255553
CD163 Rejected −0.442485009

CD53 Rejected −2.601613877

CD86 Rejected 0
CLEC10A Rejected 0

CLEC5A Confirmed 1.366898808

CYBB Rejected 0
DNASE2B Confirmed 0

FABP6 Confirmed −1.296499484

FCGR2B Confirmed 0.833548294
FGR Rejected −1.518205942

FN1 Rejected 0

FPR3 Rejected 0
FTL Confirmed 4.300986957

IGSF6 Confirmed 0

ITGAM Rejected 0
LAPTM5 Rejected −1.502324811

MCEMP1 Rejected 0

MLKL Confirmed 2.12993613
MMP12 Confirmed 0.792748381

MRC1 Rejected 0

NRP1 Confirmed 0
PARVB Rejected 0

PIK3AP1 Rejected 0

PRKAG2-AS1 Rejected 0
RETN Rejected 0

SLC2A3 Confirmed 0.022874201

TFEC Rejected 0
TLR8 Rejected 0

TREM2 Rejected 1.005798993

TRPV2 Rejected 0
TUBB6 Rejected 0

VSIG4 Rejected 0
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the applicable value of this model, we used two lung tissue sequencing data (GSE57148 and GSE76925) for external 
verification. The AUCs were 0.675 in GSE57148 and 0.688 in GSE76925 (Supplementary Figure 4A–D). Obviously, our 
model still had certain predictive ability.

Expression Levels of CLEC5A, FTL and SLC2A3 in Single Cell Sequencing Data
Based on the scRNA-seq data of GSE167295, we obtained gene expression profile data of peripheral lung parenchymal tissue 
from three COPD patient samples for further analysis. After stringent quality control filtering to remove low-quality cells, the 
data were removed from batch effects and normalized. We used the “harmony” R package for batch effects (Supplementary 
Figure 5A and B). The PCA method was used to downscale, and the top 15 PCs were selected for further analysis based on 
P-values (Figure 6A). After obtaining each cell cluster, we combined the “singleR” algorithm to annotate cell subpopulations, 
and UMAP was used to display specific cell subpopulations (Figure 6B). The heatmap shows the relative expression of marker 
genes in each cell subpopulation (Figure 6C). The expression of CLEC5A, FTL and SLC2A3 in each cell subpopulation was 
displayed using featureplot function. The results showed that these three genes were indeed expressed in the macrophages 

Figure 5 Identification of a 3-gene signature. Different results and expressions of CLEC5A, FTL and SLC2A3 between high- and low-score groups in GSE20257 (A), 
GSE10006 (D) and GSE8545 (G). AUC of predicted outcome in GSE20257 (B), GSE10006 (E) and GSE8545 (H). Expressions of CLEC5A, FTL and SLC2A3 in COPD 
patients and healthy controls in GSE20257 (C), GSE10006 (F) and GSE8545 (I). ns, no significance; **P < 0.01, ***P < 0.001.
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from lung tissue of COPD patients: the expression level of CLEC5A was very low and was almost only expressed in 
macrophages; although FTL was expressed in all cell subsets, the expression intensity was highest in macrophages; while the 
expression of SLC2A3 was the highest in monocytes (Figure 6D and E).

Expression of CLEC5A, FTL and SLC2A3 in vivo and in vitro
To simulate CSE-induced airway immune microenvironment, THP-M cells were differentiated from THP-1 monocytes 
and then co-cultured with 5% CSE-treated HBE cells for 24 h. The consequences of qRT-PCR and Western blot showed 
that the mRNA and protein levels of CLEC5A and SLC2A3 were up-regulated in a time-dependent manner in THP-M 
cells co-cultured with CSE-treated HBE cells, while the expression of FTL in protein level was up-regulated, but there 
was no significant change in mRNA level (Figure 7A–E).

Not only that, but we evaluated CLEC5A, FTL, and SLC2A3 expression levels in the lung tissue of non-smokers, 
smokers, and COPD patients. The expression levels of these three proteins in the lungs of COPD patients, especially 
CLEC5A, were prominently higher than those of non-smokers and smokers (Figure 8A and B). Immunohistochemical 
staining results showed that CLEC5A, FTL and SLC2A3 were expressed in pulmonary macrophages from COPD 
patients with elevated expression levels compared with non-smokers or smokers (Figure 8C).

Discussion
Global initiative for chronic obstructive lung disease (2023 REPORT) first wrote the concept of “preserved-ratio 
impaired spirometry” (PRISm), that is, the one-second rate is normal (FEV1/FVC ≥ 0.7 after inhalation of bronchodi-
lators) but lung ventilation function is impaired (FEV1% and/or FVC%<80% after inhalation of bronchodilators).44 Due 
to the mighty compensatory capacity of human lung and the absence of valuable biomarkers,85% of COPD patients in 
China have had moderate or above airflow limitation at the time of diagnosis. COPD will turn into the third leading cause 
of death in the world by 2030.45 It follows that there is an urgent demand to develop early diagnosis models for COPD. 
Variations in the pulmonary immune microenvironment have been considered to play a crucial role in the immunomo-
dulatory response and the occurrence and development of COPD at present.12,46–48 Therefore, taking immune infiltration 

Figure 6 Analyses of single cell RNA sequencing data from lung tissue of COPD patients. (A) PCA was used for linear dimension reduction and the top 20 PCs were 
selected according to p-value. (B) UMAP plot of 9 cell subgroups shown by different colors. (C) Heat map showed the relative expression of marker genes for the 9 cell 
subgroups. Red represents high expression; blue represents low expression. (D and E) Expression of CLEC5A, FTL and SLC2A3 in the 9 cell subgroups.
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as the starting point, it has broad prospects to search for novel and effective signatures for COPD, which potentially 
consequence means of intervening early in diagnosis and treatment, thereby prolonging the survival of patients.

It is well known that pulmonary inflammation is the core pathogenesis of COPD, and smoking is considered to be the main 
incentive for COPD. Considering that the airway and even the alveolar are the sites directly exposed to cigarette smoke, we 
selected two airway tissue sequencing datasets (GSE20257 and GSE10006) for the study, where GSE20257 only contains 
sequencing data from small airways, while GSE10006 contains data from atmospheric ducts and small airways. We 
determined the infiltration of immune cells in samples from GSE20257 and GSE10006 via the “CIBERSORT” algorithm 
and the LM22 gene set. Through the differential analysis and evaluation of the ROC curve, we found that the fraction of M0 
macrophages increased in COPD patients compared with healthy controls in both cohorts and M0 macrophages had 
satisfactory predictive value. Therefore, we considered M0 macrophages as the critical immune cells in COPD. Many studies 
have demonstrated that macrophages are the major inflammatory cell type in COPD, and the number of macrophages had 
a significant increase in sputum, bronchial biopsies and bronchoalveolar lavage fluid (BALF) of COPD patients.49 

Macrophages are the main effector cells for uptake and processing of respiratory pathogens and inhalable particles. While 
COPD macrophages had defects in activity, adhesion, and phagocytosis, which was likely to promote further pulmonary 
recruitment of macrophages.50,51 Human rhinovirus (HRV) can impair the phagocytosis of COPD macrophages and enhance 
their responses to cytokines via the TLR3/IFN pathway, thereby preventing the resolution of inflammation and leading to 
prolonged exacerbations in COPD.52 Besides, there was also a great difference in the composition of macrophages between 
COPD patients, smokers, and non-smokers; the proportion of M1 macrophages in smokers and COPD patients was lower than 
that of M0 and M2 macrophages.53 The findings above further illustrated the importance of M0 macrophages to COPD. It 
should be noted that the differences in polarized macrophages between COPD patients and healthy controls were not 
statistically significant in this work. We considered that this result may be related to the failure to analyze the COPD patients 
according to age, smoking history, GOLD grade, disease phenotype, presence or absence of acute exacerbation, on account of 
lack of basic information and clinical data.

Forty-one candidate genes were obtained from the intersection of two key modules that are highly correlated with M0 
macrophages. Functional enrichment analysis of these candidate genes revealed that almost all the biological function 
items obtained, such as regulation of cytokine production, regulation of innate immune response, specific granule, 
phagosome, lysosome, ferroptosis, etc., were related to the occurrence and development of COPD. For instance, Kearley 

Figure 7 Expression of CLEC5A, FTL and SLC2A3 in THP-M cells co-cultured with CSE-treated HBE cells for 24 h. (A) Expression of CLEC5A mRNA. (B) Expression of 
FTL mRNA. (C) Expression of SLC2A3 mRNA. (D) Western blots. (E) Relative protein levels of CLEC5A, FTL and SLC2A3 were determined. The data are the mean ± SD 
(n=3). *P < 0.05.
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et al found that after cigarette smoke exposure or viral infection, IL-33 can amplify the function of macrophages, causing 
them to produce more cytokines to aggravate local inflammation.54 CSE-treated neutrophils were effectively recognized 
and non-inflammatory phagocytosed by monocyte-derived macrophages, increased degranulation of which can affect the 
immune response of COPD patients.55 An increased number of alveolar macrophages with abnormal phagosome and 
lysosome functions was defined as a characteristic change in COPD. HRV16 can perturb phagocytosis in macrophages by 
downregulating the expression of Arpin, a key factor in targeted phagocytosis of macrophages.56 Furthermore, when 
macrophages ingested some toxic particles, such as cigarette smoke, it led lysosomes to release excessive proteases and 
other toxic enzymes into the cytoplasm, resulting in dying or dead macrophages.57 Previous study by our research group 
also found that NCOA4-mediated ferroptosis was involved in the polarization of COPD macrophages.43 Obviously, the 
functions of 41 candidate genes were associated with most macrophage M0-associated activities. To sum up, we 
speculated that these candidate genes may be involved in the occurrence and development of COPD through immune- 
related activities, and they may become the potential targets for diagnosing or treating COPD.

Figure 8 Expression of CLEC5A, FTL and SLC2A3 in COPD patients. (A) Western blots. (B) Relative protein levels of CLEC5A, FTL and SLC2A3 in lung were determined. 
Con-NS, nonsmokers without COPD; Con-S, smokers without COPD; COPD, COPD patients. Data are mean ± SD (n = 3). *P < 0.05, ***P < 0.001. (C) 
Immunohistochemical staining for CLEC5A, FTL and SLC2A3 in non-smokers, smokers, and COPD patients. Positive protein staining appeared brown and nuclear staining 
appeared blue. Red arrows pointed macrophages. Scale bar = 50μm, original magnification: ×400.
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Finally, we constructed a predictive gene signature consisting of three genes (CLEC5A, FTL and SLC2A3) based on the 
gene expression profile in GSE20257, using ML approaches and multivariate logistic regression analysis. All three genes were 
highly expressed in COPD patients. C-Type lectin receptor 5A (CLEC5A), a spleen tyrosine kinase- (Syk-) coupled pattern 
recognition receptor to bacterial and viral infections, is involved in the innate immune response. Studies have revealed that 
extracellular vesicles released from activated platelets can amplify the inflammatory signal induced by dengue virus via 
CLEC5A/TLR2 on macrophages and promote macrophages to secrete proinflammatory mediators such as TNF-α and IL- 
6.58,59 Importantly, even under sterile conditions, once CLEC5A on non-inflammatory macrophages was targeted for 
activation, it would elicit a response similar to that against dengue virus and lead to a shift of myeloid cells to 
a proinflammatory phenotype.60 Besides, smoking can increase the expression of CLEC5A in immune cells.61 Wortham 
et al demonstrated that CLEC5A was highly expressed on alveolar macrophages in mouse models of COPD and human long- 
term smokers, while it was almost not expressed in macrophages of healthy controls,62 which was consistent with our findings. 
What’s interesting was that Sung et al found that thrombotic inflammation was attenuated dramatically in clec5a−/− mice,63 

based on which we dared to speculate that perhaps the high expression of CLEC5A is a major risk factor for embolism in 
COPD patients. Ferritin light chain (FTL) has a powerful immunomodulatory function, which can prevent organ injury caused 
by excessive inflammatory response by inhibiting NF-κB activation.64 Meanwhile, FTL played a protective role in PM- 
induced lung injury by maintaining the stability of lysosomal function in macrophages.65 Tumor cells would produce FTL-rich 
vesicles to affect the recruitment of macrophages in hypoxic environment, so as to better escape host immunity.66 The 
encoding product of SLC2A3 gene (GLUT3) is a member of glucose transporter (GLUT) family, which is widely distributed 
in various human cells and closely related with glycometabolism. Numerous studies have confirmed that GLUT3 was highly 
expressed in pulmonary inflammatory diseases.67–69 Hochrein et al found that GLUT3 controlled T helper 17 cell-mediated 
inflammatory responses via glycolytic-epigenetic reprogramming.70 These results further emphasize the vital function of FTL 
and SLC2A3 in inflammation and immunity. Our macrophage M0-related diagnostic model achieved high AUCs in both the 
training set and the validation sets derived from airway tissue sequencing but was not well represented in the validation set 
from lung tissue. We considered that this may be related to the excessive complexity of cell groups in lung tissue and the small 
proportion of immune cells. To make the model more convincing, we further successfully demonstrated that CLEC5A, FTL 
and SLC2A3 are indeed expressed in the macrophages from COPD patients and at higher levels compared with smoking or 
non-smoking healthy controls by single-cell data analysis and experiments in vitro and in vivo. Overall, the three genes that 
make up our diagnostic model are able to serve as biomarkers to identify COPD patients.

Although the concept of M0/M1/M2 macrophages seems outdated in the omics era, the LM22 signature we used as 
a basis for the CIBERSORT algorithm to identify cell types does not include certain cell subsets that are known to play 
a role in COPD according to literature (like MDSCs) because it is derived from sorted human blood immune populations. 
We expect that more sophisticated concepts and analytical methods will emerge to construct relevant genetic models in 
the future. In addition, notwithstanding our model provides a method for the diagnosis of COPD that is different from 
lung function and imaging examination, the combination of genetic diagnosis model and analysis of important clinical 
data can effectively improve the sensitivity and specificity of disease identification.71 Limited by its lack of relevant 
information, our model should be further validated in large-scale clinical data to ensure the stability of the results and to 
determine whether it can be applied to the early diagnosis of COPD. As previous research has indicated that cigarette 
smoke can have a significant impact on the transcriptomics of tracheal epithelium. Notably, HBE cell lines are non- 
differentiated, and it would be valuable if we could continue to explore the impact of CSE on the expression of CLEC5A, 
FTL, and SLC2A3 in differentiated epithelium and compare it to undifferentiated epithelium (basal cells) in subsequent 
studies.72 Additionally, differences in gene expression between males and females in response to chronic injury in the 
airway epithelium could have implications on disease susceptibility, both in COPD and other respiratory diseases.73 

Considering that there are certain differences in the therapy of COPD patients with different phenotypes.74,75 Our 
subsequent research will also focus on applying ML to the early differentiation of COPD phenotypes and assessing the 
sensitivity to glucocorticoid therapy in COPD patients with different phenotypes. At present, deep learning has been 
applied to drug development and vaccine design,76 and we should also keep an eye on this in order to find potential drugs 
that can benefit COPD patients. Finally, although we have discovered that CLEC5A, FTL, and SLC2A3 help to identify 
COPD, the specific mechanisms by which these three genes impact COPD remain to be explored.
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Conclusion
To sum up, our study clearly revealed the relationship between COPD and immune cells, in which M0 macrophages were 
essential. More than anything, we constructed and validated a novel macrophage M0-associated diagnostic model with 
satisfactory predictive value. Immunoinfiltration has always been a research hotspot of novel therapies for COPD. 
CLEC5A, FTL and SLC2A3 are expected to be promising targets of immunotherapy in COPD.
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