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Abstract

Motivation: Repeated cross-sectional time series single cell data confound several sources of vari-

ation, with contributions from measurement noise, stochastic cell-to-cell variation and cell progres-

sion at different rates. Time series from single cell assays are particularly susceptible to confound-

ing as the measurements are not averaged over populations of cells. When several genes are

assayed in parallel these effects can be estimated and corrected for under certain smoothness as-

sumptions on cell progression.

Results: We present a principled probabilistic model with a Bayesian inference scheme to analyse

such data. We demonstrate our method’s utility on public microarray, nCounter and RNA-seq data-

sets from three organisms. Our method almost perfectly recovers withheld capture times in an

Arabidopsis dataset, it accurately estimates cell cycle peak times in a human prostate cancer cell

line and it correctly identifies two precocious cells in a study of paracrine signalling in mouse den-

dritic cells. Furthermore, our method compares favourably with Monocle, a state-of-the-art tech-

nique. We also show using held-out data that uncertainty in the temporal dimension is a common

confounder and should be accounted for in analyses of repeated cross-sectional time series.

Availability and Implementation: Our method is available on CRAN in the DeLorean package.

Contact: john.reid@mrc-bsu.cam.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many biological systems involve transitions between cellular states

characterized by gene expression signatures. These systems are typic-

ally studied by assaying gene expression over a time course to investi-

gate which genes regulate the transitions. An ideal study of such a

system would track individual cells through the transitions between

states. Studies of this form are termed longitudinal. However, current

medium and high-throughput assays used to measure gene expression

destroy cells as part of the protocol. This results in repeated cross-sec-

tional data wherein each sample is taken from a different cell.

This study analyses the problem of variation in the temporal di-

mension: cells do not necessarily transition at a common rate be-

tween states. Even if several cells about to undergo a transition are

synchronized by an external signal, when samples are taken at a

later time point each cell may have reached a different point in the

transition. This suggests a notion of pseudotime to model these sys-

tems. Pseudotime is a latent (unobserved) dimension which meas-

ures the cells’ progress through the transition. Pseudotime is related

to but not necessarily the same as laboratory capture time.

Variation in the temporal dimension is a particular problem in

repeated cross-sectional studies as each sample must be assigned a

pseudotime individually. In longitudinal studies, information can be

shared across measurements from the same cell at different times.

Inconsistency in the experimental protocol is another source of

variation in the temporal dimension. It may not be physically pos-

sible to assay several cells at precisely the same time point. This

leads naturally to the idea that the cells should be ordered by the

pseudotime they were assayed.

The exploration of cell-to-cell heterogeneity of expression levels

has recently been made possible by single cell assays. Many authors
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have investigated various biological systems using medium-

throughput technologies such as qPCR (Buganim et al., 2012;

Chung et al., 2014; Guo et al., 2010; Kouno et al., 2013) and

nCounter (McDavid et al., 2014; Yosef et al., 2013) or high-

throughput technologies such as RNA-seq (Brennecke et al., 2013;

Islam et al., 2011; Pollen et al., 2014; Shalek et al., 2013, 2014;

Tang et al., 2010; Trapnell et al., 2014; Treutlein et al., 2014).

These studies have shown that cellular heterogeneity is prevalent in

many organisms and regulatory systems. The variation in gene ex-

pression underlying this cellular heterogeneity has been attributed to

several causes both technical and biological (Brennecke et al., 2013;

Islam et al., 2011; Kouno et al., 2013; Shalek et al., 2013). While ac-

counting for variation in expression levels, none of these studies

investigated how much is attributable to uncertainty in the temporal

dimension. Conversely, methods such as Monocle and Wanderlust

(described below) have attempted to place cells in a pseudotemporal

ordering but do not explicitly model variation in the data.

Analyses of medium and high-throughput expression assays

often use dimension reduction techniques. Anywhere between 40

and several tens of thousands of gene expression levels may have

been measured in each sample. This high-dimensional data can often

be better analysed after projection into a low (two or three) dimen-

sional latent space. Often this projection results in a natural cluster-

ing of cells from different time points or of different cell types which

can then be related to the biology of the system. Such clusterings

may suggest hypotheses about likely transitions between clusters

and their relationship in time.

Dimension reduction has a large literature and there are many

available methods. Here, we give a few examples of some that have

been used in single cell expression analyses.

Principal components analysis (PCA) is prevalent in analyses of

expression data (Islam et al. 2011; Pollen et al. 2014; Shalek et al.

2014; Tang et al. 2010). PCA finds linear transformations of the

data that preserve as much of the variance as possible. In one ex-

ample typical of single cell transcriptomics, Guo et al. (2010)

studied the development of the mouse blastocyst from the one-cell

stage to the 64-cell stage. They projected their 48-dimensional

qPCR data into two dimensions using PCA. Projection into these

two dimensions clearly separated the three cell types present in the

64-cell stage.

Multi-dimensional scaling (MDS) is another popular dimension

reduction technique. MDS aims to place each sample in a lower di-

mensional space such that distances between samples are conserved

as much as possible. Kouno et al. (2013) used MDS to study the dif-

ferentiation of THP-1 human myeloid monocytic leukemia cells into

macrophages after stimulation with PMA. Their primary MDS axis

explained the temporal progression through the differentiation, their

secondary MDS axis explained the early-response of the cells to the

stimulation they had undergone.

Independent components analysis (ICA) projects high dimen-

sional data into a latent space that maximizes the statistical inde-

pendence of the projected axes. Trapnell et al. (2014) used ICA to

investigate the differentiation of primary human myoblasts. The la-

tent space serves as a first stage in their pseudotime estimation algo-

rithm Monocle (see below).

Gaussian process (GP) latent variable models (GPLVMs) are a

dimension reduction technique related to PCA. They can be seen as

a non-linear extension (Lawrence, 2005) to a probabilistic interpret-

ation of PCA (Tipping and Bishop, 1999). Buettner et al. (2014) and

Buettner and Theis (2012) used GPLVMs to study the differenti-

ation of cells in the mouse blastocyst. They used qPCR data from

Guo et al. (2010) who had analysed the expression of 48 genes in

cells spanning the 1- to 64-cell stages of blastocyst development.

Buettner et al. were able to uncover subpopulations of cells at the

16-cell stage, one stage earlier than Guo et al. had identified using

PCA.

The latent space in all of the methods above is unstructured:

there is no direct physical or biological interpretation of the space

and the methods do not directly relate experimental covariates such

as cell type or capture time to the space. The samples are placed in

the space only to maximize some relevant statistic, although the ana-

lysis often reveals some additional structure. For example, one axis

may coincide with the temporal dimension of the data, or cell types

may be clearly separated. In these cases, the structure has been

inferred in an unsupervised manner. However, there is no guarantee

that the methods above will uncover any specific structure of inter-

est, for example, a pseudotime ordering.

Here, we propose to impose an a priori structure on the latent

space. In the model presented in this article, the latent space is one-

dimensional and the structure we impose on the space relates it to

the temporal information of the cell capture times. That is the latent

space represents the pseudotime.

A number of methods have been proposed to estimate pseudo-

times in gene expression time series. €Aijö et al. (2014) proposed a

temporal scaling method DyNB to estimate pseudotimes. DyNB

shifts the observed time by a multiplicative factor representing speed

of transition through the process. It is applicable to longitudinal ra-

ther than repeated cross-sectional time series. €Aijö et al. modelled

RNA-seq count data from human Th17 cell differentiation using a

negative binomial distribution with a time-varying mean. For each

of three biological replicates, they analysed subpopulations of cells

at given time points resulting in three time series of longitudinal

data. The time-varying mean was fit using a GP over the scaled pseu-

dotime space. They compared this pseudotime based model favour-

ably with a similar model that only used the capture time points.

Trapnell et al. (2014) have developed the Monocle pseudotime

estimation algorithm. Monocle is a two-stage procedure: first, it

uses the ICA dimension reduction algorithm to map gene expression

data into a low-dimensional space; second, it finds the minimal

spanning tree (MST) over the samples’ locations in this space. This

spanning tree is used to assign a pseudotime to each cell. Trapnell

et al. show how Monocle can be used to identify pseudotemporal

ordering, switch-like changes in expression, novel regulatory factors

and sequential waves of gene regulation.

Shin et al. (2015) have developed the Waterfall pseudotime esti-

mation algorithm that is closely related to Monocle. Waterfall re-

duces the dimension of the data to 2 using PCA, uses k-means

clustering in this space to group the data and calculates a MST over

the cluster centroids to induce a pseudotime trajectory. After esti-

mating the pseudotime, Waterfall uses a hidden Markov model

(HMM) to infer when genes switch on and off.

Campbell et al. have a body of work investigating pseudotime es-

timation. They developed the Embeddr R package (Campbell et al.,

2015) that uses a similar approach to Monocle but with some sig-

nificant differences. They use Laplacian eigenmaps for dimensional-

ity reduction instead of ICA and fit pseudotime trajectories using

principal curves rather than MSTs. Dissatisfied with the point esti-

mates of pseudotimes such an approach generates they subsequently

developed a fully Bayesian probabilistic model using GPs (Campbell

and Yau, 2015).

Wanderlust is a graph-based pseudotime estimation algorithm

developed by Bendall et al. (2014). Wanderlust arranges the high-

dimensional input data into a nearest neighbour graph wherein cells

that have similar expression profiles are connected. Wanderlust then
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applies a repetitive randomized shortest path algorithm to assign an

average pseudotime to each cell. Bendall et al. used Wanderlust to

analyse human B cell lymphopoiesis.

The Monocle, Waterfall, Embeddr and Wanderlust algorithms

do not make a connection between the cell capture times and the

estimated pseudotime explicitly. This has two effects: first, in the in-

ference of the pseudotime, nonsensical results are possible such as

pseudotimes whose order is far from the capture times; second, the

estimated pseudotimes are not on the same scale as the capture

times, they are quantified in arbitrary temporal units.

Oscope (Leng et al., 2015) is a method for detecting groups of

oscillatory genes. When a group is detected Oscope uses an extended

nearest insertion algorithm to place the cells in pseudotime order.

2 Approach

Gaussian processes are Bayesian models that are well suited to

model expression profiles and capture the uncertainty inherent in

noisy data. Bayesian inference in GPs can be performed analytically

and provides posterior mean estimates with a full covariance struc-

ture. A GP is parameterized by a mean and a covariance function.

For more details, Rasmussen and Williams (2006) have published a

comprehensive review.

GPs have been used extensively to model time series and other

phenomena in biological systems: Stegle et al. (2010) designed a

two-sample test for differential expression between time series using

GPs; Honkela et al. (2010) used GPs to model expression profiles of

transcription factors in an ODE based model of gene regulation;
€Aijö and L€ahdesm€aki (2009) used GP models of regulatory functions

to infer gene networks and Kirk et al. (2012) used GPs to model

time series in a multiple dataset integration method.

3 Methods

3.1 Data
Our method has been designed to analyse single cell data but there is

no technical reason why each sample must be from a cell. The model

itself and notion of pseudotime would suit many repeated cross-

sectional datasets. Indeed one of the datasets used in our results sec-

tion is from whole leaf microarray assays. However, for consistency

of explanation, we refer to each sample as a cell in this article.

Our method works on data with a simple structure. First, it ex-

pects gene expression data on a logarithmic scale, such as Ct values

from qPCR experiments or log transformed counts from RNA-seq

experiments. Second, it requires a capture time for each cell. This

specifies at which time point that cell was sampled. We assume the

data has already been adjusted for cell size (see Supplementary

Materials).

Our notation for the data is: G is the number of genes assayed; C

is the number of cells sampled; xg;c is the expression level of gene g

in cell c where 1 � g � G and 1 � c � C; the capture time of cell

c is kc where kc 2 fj1;j2; . . . ; jTg and T is the number of distinct

capture times.

3.2 Model
The primary latent variables in our model are the pseudotimes. The

model assigns a pseudotime to each cell such that the induced gene

expression profiles over the latent pseudotime space have low noise

levels and are smooth.

Our model captures several aspects of the data: first, the data are

noisy which we model in a gene-specific fashion; second, we expect

the expression profiles to be smooth; third, we expect the pseudo-

time of each cell not to stray too far from its capture time.

The model can be split into several parts: one part represents the

gene expression profiles; another part represents the pseudotimes

associated with each cell and another part links the expression data

to the profiles.

3.3 Gene expression profiles
The expression profiles are modelled using GPs. The expression pro-

file yg of gene g is a draw from a GP

yg � GPð/g;RgÞ (1)

where /g is a (constant) gene-specific mean function estimated from

the data and Rg is a gene-specific covariance function. The expres-

sion profiles are functions of pseudotime and as such the covariance

function relates two pseudotimes.

Rgðs1; s2Þ ¼ wgRsðs1; s2Þ þxgds1 ;s2
(2)

Here, Rs is a covariance function that defines the covariance structure

over the pseudotimes. Rs imposes the smoothness constraints that are

shared across genes; wg parameterizes the amount of temporal vari-

ation this gene profile has and xg models the noise levels for this gene.

Log-normal priors for the wg and xg are parameterized as

log wg � Nðlw; rwÞ (3)

log xg � Nðlx; rxÞ (4)

For data with many cells, we use a sparse GP approximation

(Snelson and Ghahramani, 2006) which has a computational com-

plexity of OðGCM2Þ where M� C is a parameter of the approxi-

mation. This is a significant improvement on the OðGC3Þ
complexity of the exact model. The details of the approximation are

in the Supplementary Materials as are running times for the results

in this article.

3.4 Pseudotimes
The pseudotime sc for cell c is given a prior centred on the time the

cell was captured. We use a normal prior as it reflects our beliefs

well. There are no conjugacy issues in our inference scheme and it

would be straightforward to use any prior distribution.

sc � Nðkc;rsÞ (5)

Each sc is used in the calculation of the covariance structure over

pseudotimes Rs. Rs is taken to be a Matern3=2 covariance function.

Our experience shows that this function captures our smoothness

constraints well although any reasonable covariance function could

be used.

Rs s1; s2ð Þ ¼Matern3=2 r ¼ js1 � s2j
l

� �
¼ 1þ

ffiffiffi
3
p

r
� �

exp �
ffiffiffi
3
p

r
h i

(6)

where l is a length-scale hyperparameter shared across the genes.

For cyclic data such as from the cell cycle or circadian rhythms,

we expect the expression profiles to be periodic. We can model this

explicitly by a transformation of r in Equation (6). We replace r by rX

rX ¼
X
2

sin
pr

X
(7)

This has the effect of restricting the GP prior to periodic func-

tions with period X.
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3.5 Expression data
The model links the expression data to the expression profiles by

evaluating the profiles at the pseudotimes.

x0g;c ¼ ygðscÞ (8)

3.6 Relationship to other models
Briefly, our model can be interpreted as a one-dimensional GPLVM

with a prior structure on the latent pseudotime space. The GPLVM

model is a non-linear version of probabilistic PCA. In probabilistic

PCA, the locations of the data in the latent space are given a

Gaussian prior with zero mean and unit covariance. In our model,

the analogous latent variables are the pseudotimes. Our model gives

the pseudotimes a structured prior rather than a standard normal:

that is, we relate the latent pseudotimes to the capture times of the

cells using a Gaussian prior.

3.7 Inference
All of the hyperparameters lw;rw; lx; rx are estimated by an empir-

ical Bayes procedure (see Supplementary Materials). The hyperpara-

meters l; rs are supplied directly by the user of our method.

As with many hierarchical models, the parameters can have sev-

eral posterior modes. For instance, much of the variation in typical

single cell assay data could be explained by smooth expression pro-

files with high noise levels. Alternatively, the same data could also

be explained by rough expression profiles with low noise levels. Our

model aims to balance these conflicting explanations and find par-

ameters to fit the data with reasonable noise levels and expression

profiles that are neither too smooth nor too rough. Selecting suitable

hyperparameters for the parameter priors is important to avoid un-

realistic regions of parameter space. We have found an empirical

Bayes approach useful in this regard (see Supplementary Materials).

Our model is coded using the Stan probabilistic modelling lan-

guage (Carpenter,B., et al., 2016.). The Stan package provides vari-

ous inference algorithms. In this work, we have used the No-U-Turn

Hamiltonian Markov chain Monte Carlo sampler (NUTS)

(Hoffman and Gelman, 2014) and the ADVI variational Bayes algo-

rithm (Kucukelbir et al., 2015). In theory using the NUTS sampler

gives us samples from the full posterior of the model. However, the

model is multimodal with respect to the pseudotime assignments

and sometimes this makes it difficult for the sampler to mix samples

from the full posterior. The multimodality occurs as there may be

many pseudotemporal orderings of the cells that give smooth ex-

pression profiles. Moving between these modes is difficult for the

sampler since in order to change the order of cells they must pass

each other in pseudotime. If the cells’ expression profiles are suffi-

ciently different the likelihood of the sampler passing this configur-

ation can be very low. In these cases, the sampler may only visit a

few modes of the posterior. This difficulty in mixing is not unique to

our model. Many other models such as k-means clustering exhibit

similar behaviour. In these models, it is common practice to use a

single sample as a point estimate of the latent variables. Typically,

the sample with the highest probability under the model is selected.

The Stan NUTS sampler provides bR statistics that give confidence in

the mixing over pseudotime (Brooks and Gelman, 1998). These stat-

istics can be evaluated on a dataset-by-dataset basis and a point esti-

mate or the full posterior can be used for further analysis. The

NUTS sampler is slower than the approximate inference provided

by the ADVI algorithm which we use when the problem size is large.

In order to further mitigate the pseudotime mixing problem, we

use naive heuristics to initialize our MCMC chains and ADVI start-

ing points (see Supplementary Materials).

3.8 Validation methods
In the results section, we analyse specific datasets and validate the

inferences from our model in several biological contexts. However,

we also wished to validate our model technically. We base this tech-

nical validation on the smoothness of expression profiles induced on

held-out genes. The held-out genes are not used during model fitting

and are only used in the validation stage. To evaluate the smooth-

ness, we developed a basic statistic to capture this concept. Given

expression values x0g;c for a held-out gene g over cells 1 � c � C,

pseudotimes s1; . . . ; sC and an ordering z1; . . . ; zC such that

sz1
� . . . � szC

we define the roughness of the gene in terms of the differences of

consecutive expression measurements under the ordering given by

the pseudotimes

RgðzÞ ¼
1

rg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

C� 1

XC�1

c¼1

ðx0g;zc
� x0g;zcþ1

Þ2
vuut (9)

where rg is the standard deviation of the expression measurements.

Clearly, low Rg values should correlate with smooth profiles and

high Rg values should correlate with rough profiles.

One benefit of defining Rg in terms of the pseudotime ordering

rather than the pseudotime itself is that it is easy to generate random

orderings under a suitable null hypothesis. The null hypothesis we

use is that the cells are ordered by capture time but within a capture

time are equally likely to have any order. That is, we generate ran-

dom orderings that respect the capture times. We use a one-sided t-

test to determine if the mean of the roughness of the pseudotime

orderings is less than the mean of the roughness of orderings drawn

under the null hypothesis. Defining Rg in terms of the ordering ra-

ther than the actual pseudotime also allows us to use it to compare

the roughness of orderings from other methods such as Monocle.

4 Results and discussion

We used our model to analyse three sets of data from three different

organisms assayed using three different technologies: whole leaf

Arabidopsis thaliana microarrays (Windram et al., 2012); nCounter

single cell profiling of a human prostate cancer cell line (McDavid

et al., 2014) and single cell RNA-seq of mouse dendritic cells

(Shalek et al., 2014).

Windram et al. (2012) examined the response of Arabidopsis

thaliana to infection by the necrotrophic fungal pathogen Botrytis

cinerea. They generated high-resolution time series over 48 h for an

infected condition and a control condition. We investigated if our

model could estimate the correct order for the samples if their exact

capture times were withheld.

4.1 The model correctly estimates withheld sample

times
Windram et al. (2012) measured expression levels every 2 h resulting

in 24 distinct capture time points. We grouped these 24 time points

into four low-resolution groups, each consisting of six consecutive

time points. We then asked our model to estimate the pseudotimes

associated with each sample but only provided it with the low-

resolution group labels. We fit 100 of the 150 genes mentioned in
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the text of Windram et al.’s publication. We used the remaining 50

genes as held-out data to validate the fit.

We used the ADVI variational Bayes algorithm to estimate pseu-

dotimes for each sample in the infected condition (see Fig. 1). The

profiles induced by the inferred pseudotimes were smooth (see

Supplementary Materials).

The Spearman correlation between estimated pseudotimes from

the posterior and the true capture times was high (posterior mean

q ¼ :996) (see Fig. 2 top left). The correlation for the best posterior

sample had Spearman correlation q ¼ :996.

4.2 Our model fits the data better than Monocle
We also used the Monocle algorithm to predict pseudotimes for the

same 100 genes (see Supplementary Materials). Monocle was unable

to recover the capture times for cells from the first low resolution

group (see Fig. 2). The Spearman correlation between Monocle’s

estimated pseudotimes and the true capture times was not as high

(q ¼ 0:927) as that for our estimates. Monocle’s difficulty in resolv-

ing the correct ordering can be explained by its inability to use prior

information that could resolve the first two groups of cells.

4.3 The pseudotimes induce smooth profiles on held-

out genes
We calculated roughness statistics Rg (see Section 3) for the 50 genes

that we had not used to fit the model and averaged over genes. We

did the same for 1000 pseudotime orderings sampled under the null

hypothesis. The posterior mean of the Rg of the pseudotimes esti-

mated by our model were significantly smaller than those from the

null hypothesis (p < 10�15 one-sided t-test). We calculated the

roughness statistic for the pseudotime ordering estimated by

Monocle. This was significantly higher than the roughnesses in our

posterior (see Supplementary Materials).

McDavid et al. (2014) were interested in the effect of the cell

cycle on the single cell gene expression. They assessed this effect by

assaying the expression levels of 333 genes in 930 cells across three

human cell lines using nCounter single cell profiling (Geiss et al.,

2008). Based on these data, they concluded that the cell cycle ex-

plains just 5–17% of expression variability.

CycleBase (Santos et al., 2015) is a database of cell cycle related

genes and time series expression data. It contains metadata including

the time in the cell cycle at which expression peaks for cell cycle

related genes. To evaluate our model, we assessed how closely the

peaks in the expression profiles estimated by our model from

McDavid et al.’s (2014) data matched the CycleBase peak times.

Additionally, as a baseline, we compared peaks estimated from the

raw expression data by a naive algorithm to the Cyclebase peak times.

We also used Oscope to estimate pseudotimes (see Supplementary

Materials) and compared the peaks to the CycleBase peaks.

4.4 The model recovers cell cycle peak times
We used ADVI to fit our model to the 361 cells from the PC3 human

prostate cancer cell line and chose the top 56 differentially expressed

Fig. 1. Pseudotime estimates for the samples from the Windram et al.’t (2012)

Arabidopsis data. (Top) Boxplots of the full pseudotime posteriors. The esti-

mated pseudotimes are in good agreement with the true capture times. The

model tends to spread the samples out around the 20-h mark in pseudotime.

Presumably the expression profiles vary the most at this point. In addition, the

samples are spread out more broadly in pseudotime (between -20 and 60 h)

compared to the true capture times. (Bottom) The pseudotimes estimated by

the best sample from the posterior plotted against the true capture times

Fig. 2. A comparison of the performance of our method and the Monocle al-

gorithm. (Top) Pseudotimes predicted by the Monocle algorithm (q ¼ 0:927).

(Bottom) Posterior of the Spearman correlation between estimated pseudo-

times from our model and true capture times. The Spearman correlation of

the Monocle pseudotimes with the true capture times is shown as a dotted

line. The Spearman correlation of the best sample with the true capture times

is shown as a dashed line
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genes according to McDavid et al.’s (2014) differential expression

test. We mapped cells identified by McDavid et al. (2014) as G0/G1,

S and G2/M to capture times of 1, 2 and 3, respectively. We used a

length scale of 5 and set rs ¼ 1
2. To model the cyclic nature of the

cell cycle, we used a periodic covariance function with period X¼3.

This ensured the expression profiles were periodic and transitions

between all the cell cycle phases were consistent. We show expres-

sion profiles from the best sample in Figure 3.

In order to test the fit of our model, we estimated peak times

from the expression profiles fit by the model and compared these to

peak times as defined by the CycleBase database. To quantify this

fit, we calculated the root mean squared error (RMSE) between the

CycleBase defined peak times and our estimates (RMSE¼14.5).

We wished to understand how well our model estimated peak

times compared to naive estimates. We made naive estimates from

the raw expression data as follows. Each cell in McDavid et al.’s

(2014) data had been labelled with one of the cell cycle phases. We

identified the cell with maximal raw expression value for each gene.

The middle of the cell cycle phase with which this cell was labelled

was used as the naive estimate of the gene’s peak time. These esti-

mated peak times had a RMSE of 22.4 which is 54% larger than the

RMSE of our estimated peak times. This demonstrates that our

model’s expression profiles capture information present in the data

at a higher temporal resolution than the raw labels. We also used

Oscope to estimate pseudotimes for the cells (see Supplementary

Materials). The RMSE associated with these estimates was 33.3%.

Shalek et al. (2014) generated repeated cross-sectional time

courses of the response of primary mouse bone-marrow-derived

dendritic cells in three separate conditions using single-cell RNA-

seq. We analysed the data on the lipopolysaccharide stimulated

(LPS) condition using our model.

4.5 The model identifies precocious cells
Shalek et al. (2014) identified a core antiviral module of genes that

are expressed in conditions such as LPS after 2–4 h. They also identi-

fied two cells captured at 1 h that had this module switched on pre-

cociously. Other cells captured at 1 h did not express the genes in

this module. This concept that some cells can progress through pseu-

dotime faster than others is exactly the concept that our model is de-

signed to capture. We were interested to establish if our model could

place these cells at later pseudotimes than other cells captured at

1 h.[AQ7]

We used ADVI to fit our sparse model to 307 cells from the LPS

condition including the two precocious cells captured at 1 h. Shalek

et al. (2014) defined several gene modules in their publication that

show different temporal patterns of expression across the LPS time

course. We selected the 74 genes from the clusters Id, IIIb, IIIc, IIId

with the highest temporal variance relative to their noise levels. We

set rs ¼ 1 and used a length scale of 5.

Figure 4 shows the module scores of the core antiviral genes (as

defined by Shalek et al. (2014)) over pseudotime. The two preco-

cious cells have been fit with a pseudotime in the middle of the 2-h

capture cells. We note that sometimes our model can best fit outly-

ing cells by pushing them to the extremes of pseudotime. For this

reason, we do not necessarily trust the Loess curve estimates of the

module score at these extreme pseudotimes.

4.6 The model identifies smooth expression profiles
We calculated roughness statistics Rg (see Section 3) for 100 genes

that we had not used to fit the model and averaged over genes. We

did the same for 1000 pseudotime orderings sampled under the null

hypothesis. The posterior mean of the Rg of the pseudotimes esti-

mated by our model were significantly smaller than those from the

null hypothesis (p < 10�15 one-sided t-test).

5 Conclusion

We have presented a principled probabilistic model that accounts

for uncertainty in the capture times of repeated cross-sectional time

series. We have fit our model to three separate datasets each using a

different biological assay (microarrays, single cell nCounter and sin-

gle cell RNA-seq) in three organisms (human, mouse and

Arabidopsis). Our model provided plausible estimates of pseudo-

times on all the datasets. We validated these estimates technically by

evaluating the smoothness of the expression profiles of held-out

genes in two of the datasets. These profiles are significantly

smoother than expected under the null model. In addition, we vali-

dated the estimates biologically using obfuscated capture times (in

Fig. 3. Expression profiles over pseudotime from the McDavid et al. (2014)

cell cycle data. The pseudotimes are those from the best sample. Note the cir-

cular x axis: the first and last labels are both for the G2/M stage. The genes

were selected based on high ratios of temporal variance to noise. Each point

represents the expression of the given gene in a cell. The points are coloured

by the cell cycle stage with which the cell was labelled by McDavid et al. The

dark grey line represents the posterior mean of the expression profile for the

gene and the shaded grey ribbon represents two standard deviations either

side of this mean. The vertical dotted lines are the peak times as defined by

the CycleBase database

Fig. 4. The module score (as defined by Shalek et al.) of core antiviral genes

over pseudotime. The two precocious cells captured at 1 h are plotted as tri-

angles. These two cells have been placed at a later pseudotime than the other

cells captured at 1 h. A Loess curve has also been plotted through the data
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the Arabidopsis dataset), data from separate experiments (cell cycle

peak times) and independent analyses (identification of precocious

cells). Overall these results demonstrate that uncertainty in the tem-

poral dimension should not be ignored in repeated cross-sectional

time series of single cell data and that our method captures and cor-

rects for these effects.

Our method has a number of attractive attributes. It explicitly es-

timates pseudotimes in contrast to methods such as Monocle and

Wanderlust which estimate orderings of cells. The pseudotimes are

on the same scale as the experimental capture times. The orderings

estimated by Monocle and Wanderlust have no scale. In our model,

consecutive cells that have diverse expression profiles are placed fur-

ther apart in pseudotime than similar cells. Thus, our pseudotime es-

timates quantify the rate of change of the system. For example, in

the Arabidopsis example, we analysed the cells are spread out in

pseudotime around the 20-h mark (Fig. 1) suggesting changes in ex-

pression levels in response to the infection are greatest at this time

point.

Our method uses GPs which are a natural framework to model

noisy expression profiles. GPs are well established probabilistic

models for time series. They provide more than just point estimates

of the profiles, they also provide a measure of posterior uncertainty.

This is useful in downstream analyses such as regulatory network in-

ference. A GP model is characterized by its covariance function and

associated parameters and the covariance functions in our model

have interpretable parameters: gene-specific temporal variation and

noise. We have also demonstrated how a GP framework is suitable

for modelling periodic expression profiles such as cell cycle expres-

sion profiles. The primary limitation of GPs for our model is that in-

ference complexity scales cubically in the number of samples. For

this reason, our method is not applicable to data from many hun-

dreds or thousands of cells like Monocle and Wanderlust.

Inference in our model is performed using Markov chain Monte

Carlo. This technique provides a full posterior distribution over the

model parameters. However, mixing over the pseudotime param-

eters in our model can be difficult and we found that our model did

not mix well when fit to the cell cycle dataset. In this case, we ana-

lysed expression profiles from the sample with highest log probabil-

ity and found they estimated cell cycle peak times well.

Single cell assays give us an exciting opportunity to explore het-

erogeneity in populations of cells. As the technology develops and

the cost of undertaking such assays drops, they are destined to be-

come commonplace. In addition, high-throughput longitudinal stud-

ies remain impractical and for the foreseeable future the majority of

such time series will be repeated cross-sectional in nature. Until this

changes, there will be challenges associated with estimating uncer-

tainty in the capture times and variation in the rate of progress of in-

dividual cells through a system. Our method explicitly models these

effects and is a practical tool for analysis of such repeated cross-

sectional time series. Furthermore, in contrast to Wanderlust, our

method only depends on open-source software and is available

under a liberal open-source license.
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