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Abstract

Reactome is a free, open-source, open-data, curated and peer-reviewed knowledgebase

of biomolecular pathways. One of its main priorities is to provide easy and efficient access

to its high quality curated data. At present, biological pathway databases typically store

their contents in relational databases. This limits access efficiency because there are per-

formance issues associated with queries traversing highly interconnected data. The

same data in a graph database can be queried more efficiently. Here we present the ratio-

nale behind the adoption of a graph database (Neo4j) as well as the new ContentService

(REST API) that provides access to these data. The Neo4j graph database and its query

language, Cypher, provide efficient access to the complex Reactome data model, facili-

tating easy traversal and knowledge discovery. The adoption of this technology greatly

improved query efficiency, reducing the average query time by 93%. The web service

built on top of the graph database provides programmatic access to Reactome data by

object oriented queries, but also supports more complex queries that take advantage of

the new underlying graph-based data storage. By adopting graph database technology

we are providing a high performance pathway data resource to the community. The Reac-

tome graph database use case shows the power of NoSQL database engines for complex

biological data types.

Author summary

To better support genome analysis, modeling, systems biology and education, we now

offer our knowledgebase of biomolecular pathways as a graph database. We have devel-

oped a tool to migrate the Reactome content from the relational database used in curation
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to a graph database during each quarterly release process. The new graph database has

two main advantages; higher performance and simpler ways to perform complex queries.

Reactome has already adapted its software infrastructure to benefit from this growing in

popularity storage technology, significantly improving query efficiency, by reducing the

average query time by 93%. We strongly believe that the successful adoption of a graph

database by Reactome demonstrates the positive impact this new technology could poten-

tially have in the field and could provide a practical example for other community projects

with similar complex data models to move their storage to a graph database while retain-

ing their data models.

This is a PLOS Computational Biology Software paper.

Introduction

Reactome (https://reactome.org) is a free, open-source, open-data, curated and peer-reviewed

knowledgebase of biomolecular pathways. Reactome annotates processes in a consistent path-

way model to create an online resource for researchers as a core reusable pathway dataset for

systems biology approaches. Reactome provides infrastructure and intuitive bioinformatics

tools for search, visualisation, interpretation and analysis of pathways [1].

Reactome contains a detailed representation of cellular processes, as an ordered network of

molecular reactions, interconnecting terms to form a graph of biological knowledge. Like

most biomolecular pathway knowledgebases, Reactome has relied on a relational database to

store its content. Although widely used among pathway knowledgebases for data management,

relational databases are not always the best fit to deal with today’s performance requirements

and increasing data complexity [2, 3]. Relational databases cope well with modeling and stor-

ing complex pathway information, but the final product is very likely to contain many inter-

mediate tables to represent many-to-many relationships. As a result, database queries across a

network of highly interconnected pathway data are often difficult to formulate and require a

high number of join operations, ultimately resulting in degradation of performance and exces-

sive response times.

The Reactome data model naturally forms a large interconnected network that can be seen

as a directed graph, which consists of a set of nodes and a collection of directed edges connect-

ing ordered pairs of nodes [4]. Storing Reactome pathway data in its natural form has multiple

benefits. Most significantly, it does not require any transformation of data into a flat or denor-

malised table format. As a result, data can be persisted as originally designed, reducing the

complexity of the database and thus allowing a more straightforward access to the Reactome

knowledgebase [3].

Here we describe the motivation behind our adoption of a graph database and show how

Reactome benefits from this change in the underlying storage technology to overcome the pre-

viously mentioned limitations imposed by relational databases. The main target audiences for

this manuscript are bioinformatics developers, who might be inspired to apply a graph data-

base in a similar domain, and bioinformaticians involved in pathway analysis, who might ben-

efit from using our graph database directly. While users of the Reactome web interface take

advantage of the described gains in performance, features, and stability, the Reactome web

interface is described in detail in [1].

Reactome graph database: Efficient access to complex pathway data
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Design and implementation

The Reactome data model

Reactome uses a frame-based knowledge representation [5]. The data model (https://

reactome.org/content/schema) consists of classes (frames) that describe different concepts like

reaction or entity. Classes have attributes (slots) that hold properties of the represented class

instances, like names or identifiers. The value types contained in the slots can be primitive

(string, numbers, or boolean) or references to other class instances. Therefore, knowledge in

Reactome is captured as instances of these classes with their associated attributes.

While implementing its relational database, Reactome opted for a physical design that

favoured flexibility over performance. Simply put, the relational database incorporated an

increased level of abstraction in its physical design resulting in easier adoption of new concepts

but at the same time heavily impacting the complexity and execution time of its queries. How-

ever, since the graph database natively stores Reactome content in a graph following its model,

this trade-off between flexibility and performance is no longer needed.

The Event and PhysicalEntity (PE) classes hold prominent positions in the Reactome

model. Events are the building blocks used in Reactome to represent biological processes and

are further subclassed into Pathways and ReactionLikeEvents (RLE). RLEs are single-step

molecular transformations. RLE includes Reaction among other types like FailedReaction,

Polymerisation, Depolymerisation, and BlackBoxEvent. Examples discussed here all involve

transformations of the “Reaction” type but all types are handled in the same way with the same

results. Pathways are ordered groups of RLEs that together carry out a biological process. PEs

are the participants in these events. PE types include SimpleEntity for chemicals, Entity-

WithAccessionedSequence for proteins, Complex for multi-molecular structures and EntitySet

for PEs grouped together on the basis of their shared function.

Moving from a relational to a graph database

Persistence of a model, like the one described above, can be achieved with flat files, a relational

database, or a non-relational database (e.g. a graph database). The selected underlying storage

mechanism determines how data are physically stored and accessed. Consequently, each of

these options comes with both advantages and disadvantages in terms of performance and

scalability. Until recently, Reactome relied on a relational database (MySQL) for both storing

its content during curation and accessing it in its production phase. Among the factors that

contributed to this decision were that (1) Protégé (http://protege.stanford.edu) was used as the

curator tool during Reactome’s nascent years with a Perl script processing the Protégé files to

store content into a MySQL database, which was modeled according to the Protégé schema,

(2) at the time a relational database met Reactome’s needs for data integrity and consistency,

and (3) relational databases were well established for biological data whereas graph based solu-

tions were hardly used in the field [6, 7].

It was not until recently that graph databases became a popular technology in different

areas of computational biology. Henkel et al. proposed the concept of graph databases for stor-

age and retrieval of computational models of biological systems [7]. Summer et al. developed a

Cytoscape application that takes advantage of the Neo4j database to perform server-side analy-

sis of large and complex biological networks [8]. In [9] the authors explored the potential of

using a graph database to facilitate data management and analysis to provide biological context

to disease-related genes and proteins. Toure et al. developed a Java-based framework that

transforms biological pathways represented in SBGN format into the Neo4j graph database,

enabling more powerful management and querying of complex biological networks [10].

Reactome graph database: Efficient access to complex pathway data
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Balaur et al. demonstrated that advanced exploration of highly connected and comprehensive

genome-scale metabolic reconstructions can benefit from an integrated graph representation

of the model and associated data [11]. Swainston et al. described biochem4j that enables com-

plex queries by linking a number of widely used chemical, biochemical and biology resources

within a graph database [12].

Reactome has gradually introduced a Neo4j graph database (https://neo4j.com/) to store

and query its content in the production phase since July 2016 (version 57). Neo4j is an open

source, transactional and ACID (Atomicity, Consistency, Isolation, and Durability) compliant

graph database [13]. Native graph databases, such as Neo4j, naturally store, manage, analyze,

and use data within the context of connections to improve performance and flexibility when

handling highly interconnected data compared to that in SQL. Neo4j’s greatest advantage and

probably its most defining feature is Cypher: a declarative, pattern matching query language,

specifically designed for dealing with graph data structures [14, 15].

The Reactome knowledgebase has many use cases, like the one in Fig 1, where the use of a

graph model together with a query language like Cypher can greatly improve response times

and simplify the code necessary to access the data. For instance, recursively retrieving all reac-

tions of a pathway, retrieving the participants of a reaction or a pathway, deconstructing a

complex or a set into its participating molecules, or enumerating the chain of consecutive reac-

tions that lead to the formation of a signalling complex are typical use cases that benefit greatly

from traversing the graph version of the Reactome knowledgebase.

Fig 1 provides a simplified example where reactions only contain lists of reactants and

products, instances of the PE class. In the relational use case, two junction tables, Reaction-

input and Reaction-output, are required to model these many-to-many relationships (Fig 1A).

Each junction table contains foreign keys of the Reactions and the associated PEs. The SQL

query to retrieve input and output entities of a given reaction requires two join operations per

junction table (Fig 1B). In the first stage of its execution, each join operation forms the carte-

sian product between the tables and, during the filtering process, all rows of the result set that

are not of interest are discarded.

The same structure of a reaction with inputs and outputs can be modelled in a simpler way

with Neo4j as exemplified by the reaction presented in Fig 1C. The reaction (green node), con-

tains named outgoing relationships to corresponding input and output entities (purple nodes).

Taking advantage of Cypher, the same query, can be written in a shorter but more intuitive

manner thanks to its ASCII-Art syntax [3] to represent patterns (Fig 1D). The query describes

a pattern that includes a Reaction, again identified by its identifier, with its outgoing input and

output relationships. Finally, all nodes matching the specified pattern are returned.

Since their introduction in the 1970’s, relational database engines have been optimised to

provide efficient execution of SQL queries. This is particularly the case with global queries that

aggregate large amounts of data without the need to perform any traversal operations. How-

ever, Reactome data contain many relationships, like those illustrated in Fig 1, and thus many

join tables, so queries generally require traversal operations, a computational intensive task

that tends to result in poor performance compared to graph databases [16]. To address this

issue and improve query performance, some resources have created redundant denormalised

copies of their relational database [17, 18, 19]. Nowadays, graph databases, such as Neo4j, offer

a more appropriate alternative for cases of highly interconnected data.

The new graph database ecosystem

The graph database batch importer (https://github.com/reactome/graph-importer) was devel-

oped to migrate the content from the relational database used in curation, to a graph database

Reactome graph database: Efficient access to complex pathway data
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during each quarterly release process. Although the underlying data storage was changed, the

original data model used by MySQL was kept the same. The conversion was done following a

depth-first approach starting from the top level pathways and traversing all the content, ensur-

ing that each object is processed only once during the conversion. Every object constitutes a

node in the graph and the edges that connect the nodes correspond to the names of the slots as

defined in the domain model (Fig 2). As a result, a Neo4j graph database is generated and con-

tains all the Reactome data. It can be directly used for third parties in order to use Cypher to

retrieve the target data.

Fig 1. A simplified example where reactions only contain reactants and products represented by the class

PhysicalEntity. (a) In the relational use case, two junction tables are required to model these many-to-many

relationships (b) SQL query used to retrieve input and output entities of a given reaction where two join operations are

needed per junction table. (c) The same reaction modelled as a graph. The reaction (green node) contains named

outgoing relationships to corresponding input and output entities (purple nodes). (d) The same query written in

Cypher, in a shorter but more intuitive manner.

https://doi.org/10.1371/journal.pcbi.1005968.g001
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A number of integrity tests have been put in place to ensure that both the graph and rela-

tional database have the same content after conversion. These tests are part of the graph-core

and they are executed after migrating the relational database to the graph database to ensure

that the data has been properly stored. The tests include checks to verify: that the number of

top level pathways present in the graph database corresponds to the number of those present

in the relational database; that a given pathway in the graph database has the same ancestors as

its counterpart in the relational database; that the content of a given complex is the same in

both databases.

Fig 2. Representation of the content migration. The example shows a Reaction class reduced to its inputs, outputs, catalyst and regulators. A model class instance

is converted to a graph database node where (1) slots with primitive value types become node properties and (2) slots allocating instances of another class become

relationships.

https://doi.org/10.1371/journal.pcbi.1005968.g002
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Fig 3 presents a schematic illustration of the new Reactome graph database ecosystem. A

library called graph-core (https://github.com/reactome/graph-core) was developed on top

of the graph database to serve as a data access layer. The aim of the library is to provide

easy access and data persistence as well as to reduce the boilerplate code in third party proj-

ects that require accessing and traversing Reactome content. The graph-core uses Spring

Data Neo4j (SDN) [20] to access the graph content and AspectJ to enable lazy loading [21].

Lazy loading commonly refers to a design pattern, that postpones the retrieval of object

attributes until the point at which they are needed. In our case, AspectJ weaver is used to

intercept the getter methods and run specific code to silently retrieve more data when

needed.

The ContentService (https://reactome.org/ContentService) is a REST based web service

[22], built on top of the graph-core, to provide programmatic access to the Graph Database for

third party developers (https://github.com/reactome/content-service). Implemented on top of

Spring MVC (https://spring.io/), the ContentService utilises the graph-core library and is fully

documented with Open API (https://www.openapis.org/).

Results and discussion

Among its main advantages, this new solution is faster and less computationally intensive than

the previous one based on the relational database. Performing queries against the graph data-

base constitutes a more scalable approach, resulting in higher throughput and, ultimately, to a

more robust ContentService able to cope with an always increasing number of requests. Addi-

tionally, the resulting product is easier to maintain as most new methods can be added by sim-

ply writing the respective Cypher queries, avoiding writing complex algorithms in a given

programming language (Fig 1B).

Fig 3. A schematic diagram of the new ecosystem. The relational database is converted to a graph database via the batch importer that relies on the Domain Model.

Spring Data Neo4j and AspectJ are two main pillars for the graph-core, which also rests on the Domain Model. Users access services or use tools that make direct use

of the graph-core as a library that eliminates the code boilerplate for data retrieval and offers a data persistency mechanism. Finally, export tools take advantage of

Cypher to generate flat mapping files.

https://doi.org/10.1371/journal.pcbi.1005968.g003
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The use cases above are available as methods in the ContentService API (https://reactome.

org/ContentService/). Fig 4 emphasises how queries of Reactome data have been simplified by

the adoption of the graph database. The query in Fig 4A shows how to retrieve the participat-

ing molecules for a pathway. The reverse query, identifying pathways where a molecule partici-

pates, is shown in Fig 4B, which follows a similar pattern to Fig 4A, but fixes the end-bound

and leaves the upper-side open for traversing results. Based on feedback provided by people

contacting our help desk (help@reactome.org) and attending our training sessions, the new

way of querying Reactome is easy and intuitive to learn, and researchers, who are interested in

performing queries against Reactome data, can learn to write them in Cypher in a relatively

short amount of time.

To assess the improvement we designed a set of stress tests to measure the impact of adopt-

ing the graph database in Reactome. All stress tests were executed on a standard laptop featur-

ing an Intel Core i7 at 2.6 GHz, 16 GB of DDR3 memory at 1,600 MHz, and 256 GB of flash

storage. The tests do not aim to compare the two storage technologies (MySQL and Neo4j) but

instead their usage by Reactome. The stress tests were run against the web services build on

top of each storage technology and included two scenarios: (1) simulation of one user sequen-

tially querying 5,000 reactions for Homo sapiens and (2) simulating an increasing set of users

simultaneously performing the previous task. In each case the resulting data for every reaction

had to be marshalled as an instance of the correspondent model class. The test comprised four

executions; two against the previous web service running on top of the relational database and

the other two accessing the new web service running on top of the graph database through the

newly created graph-core library (https://github.com/reactome/graph-core). The reactions

were accessed in a sequential fashion to ensure that caching did not provide any sort of advan-

tage for any of the approaches, because a queried object would never be retrieved again in the

same test. It should be mentioned that prior to any stress test’s execution, both Neo4j and

MySQL databases were configured to allocate 50% of the available physical memory (8GB).

As illustrated in Fig 5, querying the data stored in the relational database resulted in signifi-

cantly longer response times. In particular, in the case of the relational implementation of the

Reactome knowledgebase the average query time was 173.11 ms (±25.81) while in the case of

the graph implementation, the average response time dropped to 12.56 ms (±2.94),a 93%

Fig 4. Examples of frequent use cases that can be answered using Cypher queries. a) Retrieving the participating molecules for “Interleukin-4 and 13 signalling”

pathway. b) Retrieving the pathways in which CCR5 participates.

https://doi.org/10.1371/journal.pcbi.1005968.g004
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reduction in the average query time. The new implementation supported higher throughput,

in terms of transactions per second (TPS), reaching 79.5 TPS compared to 5.8 TPS. As a result

of this boost in performance, all 5,000 queries to the graph database were performed in 63 sec-

onds while the relational implementation required more than 14 minutes for the same task.

A second stress test simulated a more realistic scenario where multiple users perform con-

current database queries (Fig 6). Once again, querying the Reactome knowledgebase in its rela-

tional implementation resulted in significantly longer response times. For instance, in case of

10 concurrent threads performing queries to the relational implementation of the Reactome

knowledgebase the average response time was 1,516 ms while in the case of the graph imple-

mentation, the average response time dropped to 49.05 ms. In addition, the new implementa-

tion achieved higher throughput reaching 203.6 TPS compared to 6.6 TPS. Consequently, the

graph implementation of Reactome provides higher scalability enabling Reactome to handle

larger volumes of user requests.

Fig 7 presents a comparison between the throughputs achieved by both systems against the

number of users performing concurrent queries. The graph implementation achieved a higher

number of transactions per second that reached a plateau after the point where the number of

active threads becomes equal to the available processor cores; in this case 4. On the other hand,

the measured throughput in case of the relational implementation is stable and does not seem

to take advantage of any concurrency.

Many users choose to download the Reactome graph database and access the data through

Cypher queries directly in their computers. Our usage statistics show that a growing number

of users have downloaded the Reactome graph database and, based on the questions gathered

by our help desk service, we believe that they have used it to perform local queries against the

Fig 5. Comparison of the response and elapsed time for one user sequentially retrieving 5,000 reaction instances from the graph and relational databases (blue and

orange respectively). The graph database software ecosystem achieved a 93% average improvement in performance compared to that of the relational database.

https://doi.org/10.1371/journal.pcbi.1005968.g005
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complete Reactome knowledgebase. In particular, during the first year that Reactome provided

the graph database, there were 2,385 downloads by 912 unique users. 118 of those users down-

loaded the graph database after each data release. It is worth mentioning that during writing of

this manuscript, the size of the Reactome relational database in its current data release (v62) is

around 2.0GB while the size of the graph database is approximately 1.8GB. Fig 8 provides a

summary of the graph database.

With a tool so powerful at managing highly connected data sets and complex queries at our

disposal, Reactome is providing faster and more stable services to researchers around the

world. In the near future, Reactome plans to upgrade its services and leverage the full potential

of Cypher in order to provide answers to questions that require diving deeper into our data. In

particular, the integration of a graph database lowers the complexity of problems that require

traversing of our knowledgebase, such as identifying causal interactions or revealing all possi-

ble paths between two molecules.

Future development in Reactome is not likely to be affected by the fact that Neo4j is by

nature schema-less, mainly because the rigid schema of our relational database with all the

applied constraints is used to ensure data consistency during the curation phase. Currently,

data are migrated to Neo4j during each quarterly release process and are used to speed up que-

ries in production.

In conclusion, through the adoption of the Neo4j graph database, and by harnessing the

power of its query language, Reactome provides efficient access to its pathway knowledgebase.

As a result of this shift in the underlying data storage technology, the average query time has

been reduced up to 93%. In addition, the graph-core library and the ContentService leverage

Fig 6. Response time versus an increasing set of users simultaneously performing queries for 5,000 reaction instances. Starting with one and scaling up to 20

concurrent users, the relational database performance drops while the graph database keeps a low response time and a good throughput as the number of active threads

increases.

https://doi.org/10.1371/journal.pcbi.1005968.g006
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these benefits of this shift and can be used by third party applications to efficiently access

Reactome.

Reactome’s successful use case constitutes a strong argument in favour of the positive

impact this new technology can have in the field. By following Reactome’s use case, other com-

munity projects with similar complex models could benefit from moving their storage to a

graph database while keeping their data model. While we have demonstrated the major impact

of moving the Reactome public database to a graph database in terms of usability, stability, and

response time, we think this is only a milestone in the growing ecosystem of network-oriented

biomolecular data resources that will enable entirely new functionalities through moving to

modern database technology that better reflects the graph-like structure of their source data.

While we will work directly with internal and external resources to move along that path, we

would also like to invite the community to use the open data Reactome graph database to

develop their own novel uses of Reactome data.

Availability and future directions

The Reactome graph database is freely available at: https://reactome.org/dev/graph-database.

The API for the ContentService is available at https://reactome.org/ContentService with docu-

mentation and tutorials available at: https://reactome.org/dev/content-service. The source

code, in Java, is freely available at: https://github.com/reactome (See the graph-core, graph-

importer and content-service repositories).

Future development will focus on updating the version of SDN and integrating interaction

data from IntAct (http://www.ebi.ac.uk/intact/) directly to the Reactome graph database.

Fig 7. Throughput measured in transactions per second, versus the number of users concurrently performing queries for 5,000 reaction instances in Homo sapiens.

https://doi.org/10.1371/journal.pcbi.1005968.g007
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