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Abstract: Although power conversion efficiencies of organic-inorganic lead halide perovskite solar
cells (PSCs) are approaching those of single-crystal silicon solar cells, the working device stability due
to internal and external factors, such as light, temperature, and moisture, is still a key issue to address.
The current world-record efficiency of PSCs is based on organic hole transport materials, which are
usually susceptible to degradation from heat and diffusion of dopants. A simple solution would be to
replace the generally used organic hole transport layers (HTLs) with a more stable inorganic material.
This review article summarizes recent contributions of inorganic hole transport materials to PSC
development, focusing on aspects of device performance and long-term stability. Future research
directions of inorganic HTLs in the progress of PSC research and challenges still remaining will also
be discussed.

Keywords: metal halide perovskite; solar cell materials; hole transport layers; photovoltaics

1. Introduction

Photovoltaic (PV) technology research has been mainly focused on high efficiencies
with low-cost materials and fabrication processes, but the high stability of working devices
is also crucial for commercialization. Perovskite solar cells (PSCs) have impressively in-
creased their unit-cell efficiency from 3.8% to 25.5% within about a decade [1], approaching
single-crystal silicon solar cell efficiency values. Organometallic halide perovskites are
based on the chemical formula of AMX3, where A is organic or metal cations, such as
formamidinium ((NH2)2CH+ (FA+)), methylammonium (CH3NH3

+ (MA+)), or Cs+, M is
metal ions such as Pb2+ or Sn2+, and X is halogen ions, such as I−, Br−, or Cl−. Organometal-
lic halide perovskites exhibit features of an ideal light absorber material, including high
absorption coefficients (~10−4 cm−1), long carrier diffusion lengths (>1 µm), ambipolar
charge transport capabilities, and low exciton binding energy (20–50 meV) [2].

Despite the remarkable growth in efficiency enhancement, compared to silicon solar
cells, the working device stability still needs improvement. Degradation in PSCs can occur
from both internal and external factors. Internal degradation factors include ion migration
in the perovskite, lattice relaxation at interfaces, and diffusion of HTL dopants, while
external degradation factors include exposure to light, heat, bias, moisture, and oxygen [3].

Perovskite solar cell device structures normally consist of the perovskite layer in
between an HTL and electron transport layer (ETL), with a transparent conducting oxide
(TCO), such as fluorine-doped tin oxide (FTO) or indium tin oxide (ITO), on top of a
glass substrate and a metal, such as silver (Ag), gold (Au), or aluminum (Al), as the top
contact [4]. Depending on the sequence of the transport layer type, the device structure is
called n-i-p for the n-type ETL on the bottom (on top of the TCO) and the p-type HTL on
top of the light-absorbing perovskite layer (below the top metal contact), and p-i-n for the
HTL on the bottom and ETL on top of the light-absorbing layer.

The conventional HTL is based on organic materials, which are susceptible to elevated
temperatures, and diffusion of HTL dopants into the perovskite layer can also cause degra-
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dation of PSC devices. Conventional n-i-p structures usually use poly[bis(4-phenyl)(2,5,6-
trimethylphenyl)amine] (PTAA) and 2,2′,7,7′-tetrakis-(N,N-di-4-methoxyphenylamino)-
9,9′-spirobifluorene (spiro-OMeTAD) as the HTL [5,6], whereas conventional p-i-n struc-
tures normally use poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)
and PTAA [7–9]. Both spiro-OMeTAD and PTAA normally have dopants, such as lithium
bis(trifluoromethanesulfonyl)imide and 4-tert-butylpyridine, to improve the conductivity
of the HTLs. However, such dopants easily migrate out of the HTL diffusing into the
perovskite layer, which leads to degrading the PSCs. PEDOT: PSS-based PSCs are known to
suffer from stability issues due to the hygroscopic and acidic characteristics of PEDOT:PSS.

Suitable HTL materials should (i) possess suitable band alignment with the light
absorber layer for effective transfer of the photoexcited holes from the perovskite to the
HTL, (ii) have high carrier mobility to enhance the fill factor by reducing series resistance,
(iii) exhibit a wide optical bandgap so that there will be no contribution as a second light
absorber layer, (iv) possess high transparency to minimize optical losses, (v) show adequate
hydrophobic nature to tolerate long-term exposure to humidity, (vi) have low materials and
fabrication costs, (vii) be environmentally friendly, and (viii) show good stability against
light and heat [10–12].

While much effort has been made to modify the perovskite layer to enhance device
stability [13–16], another straightforward approach to enhance the working stability of
PSCs would be to replace these organic HTLs with inorganic materials. In this review, the
recent progress of inorganic HTLs in PSCs is summarized based on device performance
and stability in Section 2. Inorganic HTL materials covered include nickel oxide (NiOx),
copper thiocyanate (CuSCN), Cu-based delafossite materials, such as CuAlO2, CuCrO2,
CuGaO2, and CuFeO2, copper oxide (CuOx), copper iodide (CuI), copper sulfide (CuS),
cobalt oxide (CoOx), chromium oxide (CrOx), molybdenum oxide (MoOx), vanadium
oxide (VOx). Section 2 will also discuss the long-term stability of the inorganic HTL-based
PSCs. Progress in the photovoltaic performance and device stability are summarized in
Tables 1 and 2, respectively. Conclusions along with future directions will be discussed in
Section 3.
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Table 1. Summary of inorganic HTL-based perovskite solar cells.

Material Method Structure Device Stack JSC
(mA/cm2)

VOC
(V)

FF
(%)

η
(%) Institute, Year [Ref]

NiO Sputtering n-i-p FTO/TiO2/MAPbI3−xClx/NiOx/Ni 17.9 0.77 53.0 7.3 TMU, 2015 [17]
NiO Spin Coating n-i-p FTO/bl-TiO2/mp-TiO2/MAPbI3−xClx/NiOx/Au 19.5 0.88 53.1 9.1 Peking, 2017 [18]
NiO PLD p-i-n ITO/NiOx/MAPbI3/PCBM/LiF/Al 20.2 1.06 81.3 17.3 KRICT, 2015 [19]
NiO Solution Process p-i-n ITO/NiOx/MAPbI3/C60/Bis-C60/Ag 21.8 1.03 78.4 17.6 Hong Kong UST, UW, 2016 [20]

Li,Mg:NiOx Spray Coating p-i-n FTO/Li,Mg:NiOx/FAPbI3/PCBM/TiOx/Ag 23.1 1.10 81.4 20.7 NIMS, 2017 [21]
NiO Spatial ALD p-i-n ITO/NiOx/FA0.2MA0.8PbI3/PC61BM/Al 23.0 1.08 81.0 17.1 Cambridge, 2018 [22]
NiO ALD p-i-n FTO/NiO/Cs0.05MA0.95PbI3/PCBM/BCP/AZO/Ag/Al2O3 22.5 1.03 80.8 18.8 SKKU, 2018 [23]
NiO PEALD p-i-n ITO/NiO/Cs0.05(FA0.83MA0.17)Pb(I0.83Br0.17)3/C60/BCP/Cu 21.8 1.07 73.4 17.1 Eindhoven, 2019 [24]

Cu:NiOx Combustion sol-gel p-i-n ITO/Cu:NiOx/MAPbI3/Bis-C60/C60/Ag 22.2 1.05 76.0 17.7 UW, 2015 [25]
Cu:NiOx Spin Coating p-i-n FTO/Cu:NiOx/MAPbI3−xClx/PC61BM/ZrAcac/Al 23.7 1.12 77.1 20.1 CAS, 2017 [26]

Li0.05Mg0.15Ni0.8O Spray Pyrolysis p-i-n FTO/Li0.05Mg0.15Ni0.8O/MAPbI3/Ti(Nb)Ox/Ag 22.8 1.11 77.1 19.6 NIMS, 2017 [27]
Li:NiOx Spin Coating p-i-n ITO/Li:NiOx/MAPbI3−xClx/PCBM/Al 21.8 1.12 73.6 18.0 Los Alamos, 2018 [28]
Cs:NiOx Spin Coating p-i-n FTO/Cs:NiOx/MAPbI3/PCBM/ZrAcac/Ag 21.8 1.12 79.3 19.4 Southern UST, 2017 [29]
Mg:NiOx Sputtering p-i-n ITO/Mg:NiOx/MAPbI3/PCBM/ZnMgO/Al 21.3 1.08 79.0 18.2 Hong Kong UST,2017 [30]
Co:NiOx Spin Coating p-i-n FTO/Co:NiOx/MAPbI3/PCBM/Ag 20.5 1.09 79.8 17.8 NTU, 2020 [31]
CuSCN Doctor blading n-i-p FTO/bl-TiO2/mp-TiO2/(FAPbI3)0.85(MAPbBr3)0.15/CuSCN/Au 21.8 1.10 69.0 16.6 EPFL, 2016 [32]
CuSCN Spin Coating n-i-p FTO/bl-TiO2/mp-TiO2/(FAPbI3)0.85(MAPbBr3)0.15/CuSCN/Au 23.1 1.04 75.3 18.0 UNIST, 2016 [33]
CuSCN Spin Coating n-i-p FTO/bl-TiO2/mp-TiO2/CsFAMAPbI3−xBrx/CuSCN/rGO/Au 23.4 1.14 77.5 20.4 EPFL, 2017 [34]

CuI Rapid Doctor Blading n-i-p FTO/bl-TiO2/MAPbI3/CuI/Graphite 16.7 0.78 57.0 7.5 Monash, 2015 [35]
CuI Spin Coating p-i-n ITO/CuI/MAPbI3/C60/BCP/Ag 22.8 1.01 73.0 16.8 Peking, 2016 [36]

CuI-CuSCN Electrodeposition p-i-n ITO/CuI/CuSCN/MAPbI3/PC61BM/C 20.3 1.10 78.0 20.4 Allagappa, 2021 [37]
CuOx Spin Coating p-i-n ITO/CuOx/MAPbI3/C60/BCP/Ag 23.2 0.99 74.4 17.1 Peking 2016 [38]
CuOx Spin Coating p-i-n FTO/CuOx/MAPbI3−xClx/PCBM/C60/BCP/Ag 22.5 1.11 75.8 19.0 Peking, 2016 [39]
CuOx Spin Coating p-i-n ITO/CuOx/MAPbI3/PC61BM/ZnO/Al 22.4 1.03 76.0 17.4 Zhejiang, 2017 [40]

Cu2O QD Spin Coating n-i-p FTO/bl-TiO2/Cs0.05FA0.81MA0.14PbI2.55Br0.45/Cu2O/Au 22.2 1.15 74.2 18.9 Southern UST, 2019 [41]
Cu2O-CuSCN Spin Coating n-i-p ITO/SnO2/Cs0.05(FA0.85MA0.15)0.95PbI2.55Br0.45/Cu2O-CuSCN/Au 23.2 1.05 78.4 19.2 SNU, 2020 [42]

CuAlO2 Sputtering p-i-n ITO/CuAlO2/PEDOT:PSS/MAPbI3−xClx/PCBM/Ag 22.0 0.88 75.0 14.5 Soochow, 2016 [43]
CuCrO2 Spin Coating p-i-n ITO/CuCrO2/MAPbI3/PCBM/BCP/Ag 21.9 1.07 81.0 19.0 City Univ. Hong Kong, 2018 [44]
CuCrO2 Spin Coating n-i-p FTO/bl-TiO2/mp-TiO2/Cs0.05(MA0.15FA0.85)0.95Pb(I0.85Br0.15)3/CuCrO2/ Au 23.2 1.04 69.0 16.7 Mehmetbey, 2018 [12]

Mg: CuCrO2 Spin Coating p-i-n FTO/Mg: CuCrO2/MAPbI3/PCBM/BCP/Ag 18.4 1.00 71.3 13.1 SKKU, 2018 [45]
Mg: CuCrO2 Spin Coating p-i-n ITO/Mg: CuCrO2/MAPbI3/C60/BCP/Ag 19.4 1.01 71.9 14.1 UT Dallas, 2019 [46]

CuGaO2 Spin Coating n-i-p FTO/bl-TiO2/MAPbI3−xClx/CuGaO2/Au 21.7 1.11 77.0 18.5 UW, 2017 [47]
CuGaO2 Spin Coating p-i-n FTO/NiOx/mp-CuGaO2/CsFAPb(I,Br)3/PC61BM/BCP/Ag 22.2 1.13 80.0 20.0 Shanxi Normal Univ., 2018 [48]
CuFeO2 Spin Coating n-i-p FTO/bl-TiO2/mp-TiO2/CsFAMA/CuFeO2/Au 23.6 1.01 65.0 15.6 KMU, 2019 [49]

CuS Spin Coating p-i-n ITO/CuS/MAPbI3/C60/BCP/Ag 22.3 1.02 71.2 16.2 BNL, 2016 [50]
CoOx Spin Coating p-i-n ITO/CoOx/MAPbI3/PCBM/Ag 20.3 0.95 75.5 14.5 Hokkaido Univ., 2016 [51]
Co3O4 Screen Printing n-i-p FTO/bl-TiO2/mp-TiO2/ZrO2/MAPbI3/Co3O4/C 23.4 0.88 64.0 13.3 NTU, 2018 [52]
LiCoO2 Sputtering p-i-n ITO/LiCoO2/MAPbI3/C60/BCP/Ag 22.5 1.06 80.0 19.1 NCU, 2018 [53]

Cu:CrOx Spin Coating p-i-n FTO/Cu:CrOx/MAPbI3/PCBM/BCP/Ag 21.4 1.08 76.0 17.7 Wuhan Univ., 2018 [54]
MoOx Thermal Evaporation p-i-n ITO/MoO3/MAPbI3/PCBM/Ag 18.8 0.99 71.0 13.1 NTUT, 2016 [55]

Ti:MoO2 Spin Coating n-i-p FTO/bl-TiO2/mp-TiO2/MAPbI3/Ti:MoO2/Au 20.1 1.02 77.3 15.8 Kyung Hee Univ., 2017 [56]
MoOx:RGO Spin Coating p-i-n ITO/MoOx:RGO/MAPbI3/PCBM/BCP/Ag 21.0 1.12 77.0 18.2 NU, 2020 [57]

VOx Post-Treatment n-i-p FTO/bl-TiO2/mp-TiO2/ZrO2/MAPbI3/VOx/C 24.2 0.95 68.5 15.8 Huazhong UST, 2019 [58]
Cs:VOx Spun-Cast p-i-n ITO/Cs:VOx/MAPbI3/PC61BM/BCP/Ag 20.7 0.92 76.5 14.5 South China Univ. Tech.,

2018 [59]
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Table 2. Summary of stability of inorganic HTL-based perovskite solar cells.

HTL Device Stack Encapsulated Conditions Continuous 1 SUN
Illumination? Duration η

Maintained Institute, Year [Ref]

NiOx FTO/NiOx/MAPbI3/PCBM/CNT:PEI Y 60 ◦C, 60% N 500 h 85% Tsinghua, 2018 [60]
NiOx ITO/NiO/Cs0.17FA0.83Pb(Br0.17I0.83)3/LiF/PC60BM/SnO2/ZnSnOx/ITO/LiF/Ag N 35 ◦C, 40%, MPPT Y 1000 h 100% Stanford, 2017 [61]
NiOx FTO/NiOx/Cs0.05MA0.95PbI3/PCBM/BCP/ ALD-AZO/Ag Y RT, 20–60%,/85 ◦C, MPPT Y 500 h 99.5/87% SKKU, 2018 [23]

Li,Mg:NiOx FTO/Li,Mg:NiOx/FAPbI3/PCBM/TiOx/Ag Y RT, MPPT Y 500 h >85% NIMS, 2017 [21]
CuSCN FTO/bl-TiO2/mp-TiO2/CsFAMAPbI3–xBrx/CuSCN/rGO/Au N 60 ◦C, N2, MPPT Y 1000 h >95% EPFL, 2017 [34]

CuI ITO/CuI/MAPbI3/C60/BCP/Ag N 25%, RT N 300 h 93% Peking, 2016 [36]
CuOx ITO/CuOx/MAPbI3/C60/BCP/Ag N Air N 200 h ~90% Peking, 2016 [38]

Cu2O QD FTO/bl-TiO2/Cs0.05FA0.81MA0.14PbI2.55Br0.45/Cu2O/Au N 30%, Air N 720 h >90% Southern UST, 2019 [41]
Cu2O-CuSCN ITO/SnO2/Cs0.05(FA0.85MA0.15)0.95PbI2.55Br0.45/Cu2O-CuSCN/Au Y 85 ◦C, 85% N 720 h >90% SNU, 2020 [42]

CuCrO2 ITO/CuCrO2/MAPbI3/PCBM/BCP/Ag N Ar Y 1000 h ~95% City Univ. Hong Kong,
2018 [44]

CuCrO2 FTO/bl-TiO2/mp-TiO2/Cs0.05(MA0.15FA0.85)0.95Pb(I0.85Br0.15)3/ CuCrO2/ Au N RT, N2, MPPT Y 500 h 88% Mehmetbey, 2018 [12]
CuGaO2 FTO/NiOx/mp-CuGaO2/CsFAPb(I,Br)3/PC61BM/BCP/Ag N 85 ◦C, N2, N 1000 h >80% Shanxi Normal Univ.,

2018 [48]
CuGaO2 FTO/bl-TiO2/MAPbI3−xClx/CuGaO2/Au N 25 ◦C, 30–55%, N 720 h >90% UW, 2017 [47]
CuFeO2 FTO/bl-TiO2/mp-TiO2/CsFAMA/CuFeO2/Au N N2, MPPT Y 1000 h 85% KMU, 2019 [49]

CuS ITO/CuS/MAPbI3/C60/BCP/Ag N Air N 260 h >90% BNL, 2016 [50]
LiCoO2 ITO/LiCoO2/MAPbI3/C60/BCP/Ag N 90 ◦C, Inert Atmosphere N 120 h >90% NCU, 2018 [53]

Cu:CrOx FTO/Cu:CrOx/MAPbI3/PCBM/BCP/Ag N 20 ◦C, 30%, N 190 h >70% Wuhan Univ., 2018 [54]
Cs:VOx ITO/Cs:VOx/MAPbI3/PC61BM/BCP/Ag N RT, 50–70%, Air N 720 h 94% South China Univ. Tech.,

2018 [59]
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2. Device Performance and Stability of Inorganic Hole Transport
Materials-Based PSCs
2.1. Nickel Oxide

Nickel oxide has already been used in dye-sensitized solar cells (DSSCs) and organic
photovoltaics (OPV) as the p-type HTL before being applied in PSCs [62,63]. NiOx exhibits
high transparency from its wide bandgap (3.6 eV), deep valence band (−5.2 to −5.4 eV),
and high carrier mobility (0.1 cm2/Vs) while having suitable stability against light, heat,
and moisture, making it a suitable HTL candidate for PSCs [64]. NiOx has been applied
to PSCs in both n-i-p and p-i-n structures. There are more considerations required when
applying NiOx on top of the perovskite layer in n-i-p structures, as sputtering, water, or
polar organic solvents can damage the underlying perovskite layer. NiOx was applied in
n-i-p structured PSCs by dc magnetron sputtering [17]. The efficiency was only 7.3%, but
the unencapsulated device remained stable for 60 days in a 25 ◦C ambient atmosphere with
28 ± 2% relative humidity without light soaking. Chlorobenzene-dispersed NiOx HTL can
also be directly deposited on the perovskite films without decomposing the perovskite,
resulting in efficiencies over 9% [18].

For p-i-n configurations, power conversion efficiencies (PCEs) of 17.3% [19] and
17.6% [20] were achieved by pulsed laser deposition, by controlling the deposition time and
oxygen partial pressure, and by solution processing, respectively. Vertical recrystallization
of the perovskite layer and co-doping the NiOx with lithium (Li) and magnesium (Mg)
resulted in a PCE over 20%, and the device stability maintained over 85% of its initial
PCE under maximum power point tracking (MPPT) conditions for over 500 h, as shown
in Figure 1 [21]. Li-doping increases the p-type conductivity, whereas Mg-doping adjusts
the valence band energy level. Previous reports demonstrate NiOx-based PSCs maintain-
ing 85% of its initial PCE at 60% humidity and 60 ◦C for 500 h for encapsulated devices
(Figure 2) [60], and 100% of its initial PCE under 1 SUN at 40% humidity and 35 ◦C for
1000 h under MPPT conditions for devices without encapsulation (Figure 3) [61].

Application of NiOx by atmospheric pressure spatial atomic layer deposition (s-ALD)
system, a more rapid method than conventional ALD [65,66], in p-i-n structured PSCs has
been demonstrated. Employing high-quality and high-uniformity NiOx HTLs in PSCs
resulted in PCEs over 17% with negligible hysteresis and fill factors over 80% [22,67].
Perovskite films with improved efficient collection of charge carriers and intrinsic electronic
quality were enabled from the high uniformity of NiOx, resulting in PSC devices with
reduced interfacial trapping and improved open-circuit voltage (VOC). NiO has also
been applied to p-i-n PSCs using plasma-enhanced ALD (PEALD), resulting in PSCs over
17% [24]. For p-i-n structured PSCs, atomic layer deposition (ALD) of NiO employed in
PSCs resulted in efficiencies of over 18% [23]. The ALD NiO-based PSCs maintained over
99% of their initial PCE at room temperature conditions and 87% at 85 ◦C under 1 SUN,
MPPT, as shown in Figure 4.
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photovoltaic performance parameters as a function of time at room temperature and (d) at a constant
temperature of 60 ◦C. Reproduced from the work of [60], with permission from the American
Chemical Society, 2018.
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Nature Publishing Group, 2017.
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Figure 4. NiOx-incorporated PSC: (a) Schematic illustration of the device structure. (b) Illuminated
J-V scans of the champion device with various ETLs. (c) Efficiency evolution over 500 h for devices
passivated with 50 nm of Al2O3 under continuous 1 SUN illumination with a 420 nm cutoff UV filter
at room temperature in ambient air (20–60% relative humidity). (d) Efficiency evolution over 500 h
for PSC with AZO and 50 nm of Al2O3 near the MPPT under 1 SUN illumination with a 420 nm
cutoff UV filter at 85 ◦C in ambient air. Reproduced from [23], with permission from Wiley, 2018.

Researchers have found various methods to dope NiOx to improve conductivity, and
thus, the PSC device performance. Copper-doped NiOx (Cu:NiOx) resulted in efficiencies
over 17.8% using a low-temperature combustion process, outperforming the conventional
sol-gel-derived high-temperature Cu:NiOx PCE of 15.5% [25]. Despite the reduced process
temperature Cu:NiOx prepared by this combustion process has a tendency to be better
than the conventional high-temperature sol-gel process in terms of optical transparency,
crystallinity, and electrical conductivity. Yue et al. further improved Cu:NiOx-based PSCs
by doping the methylammonium lead halide perovskite with chlorine to improve the open-
circuit voltage, modifying the aluminum cathode with zirconium acetylacetonate (Zracac),
and employing fluorine-doped tin oxide (FTO), which resulted in a PCE of 20.5% [26].
Doping of NiOx with lithium (Li) and magnesium (Mg) in PSC has also been demonstrated,
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resulting in PCEs of 18% [28] and 18.5% [30], respectively. Li-doped NiO surface by a hot-
casting method enabled highly crystalline MAPbI3, resulting in hysteresis-free, efficient,
and photostable PSCs. Limitations of poor fill factor and short-circuit current density in
sputtered NiOx-based PSCs can be overcome through introducing Mg at a low oxygen
partial pressure deposition condition. Doping NiOx with Li and Mg have also demonstrated
devices with PCEs of above 20.7% with suitable stability for 500 h in a light soaking and
thermal aging test [21], and 19.2% with retaining >80% of the initial PCE after light soaking
for 1000 h or thermal exposure at 85 ◦C for 500 h [27]. Doping NiOx with cesium (Cs)
exhibits higher conductivity and higher working function, resulting in improved PCE from
16.0% to 19.4% when applied in PSCs [29]. Doping with cobalt (Co) improved PSC devices
from efficiencies of 16.0% to 17.8% due to less charge accumulation and open-circuit voltage
loss from the improved hole mobility and reduction in interfacial resistance [31]. Thus,
NiOx can be doped by various elements, such as Cu, Li, Mg, Cs, and Co, to improve the
conductivity and enhance the efficiency of the PSC by reducing interfacial resistance at the
HTL/perovskite interface.

2.2. Copper Thiocyanate

Copper thiocyanate (CuSCN) has a wide bandgap of 3.9 eV and appropriate valence
band energy level of −5.3 eV with carrier mobility of 10−2–10−1 cm2/Vs and superior
thermal stability compared to spiro-OMeTAD, making it a suitable HTL candidate for
PSCs [68]. Furthermore, it is solution processable with a low cost, showing potential
in commercialization. CuSCN has been applied to PSCs in mostly n-i-p configurations.
Madhavan et al. demonstrated PCE values of 16.6% from a thick CuSCN layer of 500 nm
fabricated by doctor blading, whereas spin-coated CuSCN films of 30 nm resulted in PSCs
of 15.4% [32]. Jung et al. demonstrated CuSCN-based PSCs with a PCE of 18.0% using a
formamidinium-based lead halide perovskite, (FAPbI3)0.85(MAPbBr3)0.15, which is more
tolerant to thermal stress than MAPbI3 [33]. CuSCN-based PSCs retained 60% of the initial
PCE in air at 125 ◦C with 40% relative humidity for 2 h, while spiro-OMeTAD-based PSCs
retained only 25% of their initial PCE under the same conditions.

Highly conformal CuSCN layers were formed through a fast solvent removal method,
facilitating rapid carrier extraction and collection, resulting in a PCE of 20.4% [34]. Applying
a reduced graphene oxide (RGO) layer before the top Au contact further enhances the
stability by reducing potential-induced degradation from the reaction of Au and SCN−

anions at the CuSCN/Au contact. These PSCs showed excellent thermal stability under
long-term heating. Over 95% of the initial PCE is maintained under 1 SUN, 60 ◦C, in
nitrogen (N2) atmosphere with MPPT conditions after 1000 h surpassing the light stability
of devices based on spiro-OMeTAD, as shown in Figure 5. Light and heat stability of
CuSCN-based PSCs can be greatly enhanced by the insertion of an RGO layer in between
CuSCN and Au to block anion diffusion.
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Figure 5. CuSCN-incorporated PSC: (a) Cross-sectional scanning electron microscopy (SEM) of the
PSC device stack. (b) Illuminated J-V scan of the champion device. The VOC vs. illumination intensity
with an ideality factor of 1.50 (inset). (c) Efficiency evolution of unencapsulated devices at MPPT for
1000 h under 1 SUN at 60 ◦C in nitrogen. Reproduced from the work of [34], with permission from
the American Association for the Advancement of Science, 2017.

2.3. Copper Iodide

Copper iodide (CuI) is a p-type semiconductor with a valence band energy level of
−5.2 eV, a large bandgap of 3.1 eV, and hole mobility of 0.5–2 cm2/Vs [69]. Due to its
hydrophobicity, CuI shows suitable ambient stability compared to PEDOT:PSS. CuI has
already been widely used in OPV and DSSCs as an HTL and is a promising alternative in
terms of low-cost and large-scale industrial commercialization [70]. CuI has been applied to
PSCs in both p-i-n and n-i-p configurations, with PCEs of 7.5% [35] and 16.8% [36], respec-
tively. CuI in the n-i-p structured device was successfully applied in a planar structured
device and displayed significantly reduced hysteresis compared to the conventional devices
based on spiro-OMeTAD. CuI in a p-i-n structured device maintained 93% of its initial PCE
after storage in 25% humidity at room temperature without illumination for 300 h, showing
better air stability than the reference PSC based on PEDOT:PSS, as shown in Figure 6 [36].
Ramachandran et al. reported a two-step electrodeposition method of preparing CuSCN
on top of CuI on ITO with a carbon back electrode, resulting in a PCE of 20.4% [37].
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atmosphere. Reproduced from the work of [36], with permission from the Royal Society of Chem-
istry, 2016.

2.4. Copper Oxide

Copper oxides, such as cuprous oxide (Cu2O) and cupric oxide (CuO), are p-type
semiconductors composed of environmentally friendly and abundant elements with low
cost and suitable heat and ambient stability [71]. CuO has a bandgap of 1.3 eV and a
valence band energy level of approximately −5.4 eV, while Cu2O has a bandgap of 2.1 eV,
valence band energy level of−5.3 to−5.4 eV, and high carrier mobility of ~100 cm2/Vs [72].
Solution-processed CuOx has been applied to p-i-n PSC devices, exhibiting high trans-
parency in the visible region and a smooth surface, resulting in a PCE of 17.1% [38].
Approximately 90% of the initial PCE was maintained after storage in air without encapsu-
lation for 300 h, showing enhanced air stability compared to the conventional PSC device
based on PEDOT:PSS, as shown in Figure 7. Efficiencies were further improved to 17.4% by
applying solution-processed CuOx, which exhibit high optical transmittance, high work
function, and excellent hole-extracting ability [40]. Conventional PEDOT:PSS-based PSC
devices resulted in 12.0% efficiency. The high work function of CuOx enables ohmic contact
at the perovskite/CuOx interface, which reduces open-circuit voltage loss.
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Figure 7. CuOx-incorporated PSC: (a) Schematic illustration of the PSC device structure. (b) Illu-
minated J-V scan of the champion device. (c) Efficiency evolution of unencapsulated devices in
ambient atmosphere. Reproduced from the work of [38], with permission from the Royal Society of
Chemistry, 2016.

Further improvements in CuOx-based PSCs were made by Rao et al. by Cl doping of
the perovskite layer based on a modified one-step fast deposition-crystallization method
leading to a PCE of 19.0% [39]. Cl-doping MAPbI3 perovskite films remarkably improves
the perovskite hole mobility and film morphology, greatly increasing the device recombina-
tion resistance and reducing the intrinsic defects. Quantum dot (QD) Cu2O dispersed in
a nonpolar solvent has been spin-coated on top of the perovskite layer in a mesoporous
n-i-p structure, resulting in a PCE of 18.9% [41]. Surface modification of Cu2O allows
direct deposition on the perovskite film without decomposing the perovskite, resulting in
a significantly higher PCE compared to the unmodified Cu2O, which resulted in a PCE
of 11.9%. The dopant-free method and hydrophobic surface of Cu2O enable excellent
long-term stability maintaining over 90% of the initial PCE for over 1 month when stored
in air without encapsulation with a relative humidity of 30%, as shown in Figure 8. Kim
et al. reported a one-step deposition of Cu2O-CuSCN to produce a nanocomposite HTL
composed of Cu2O nanoparticles (20 nm in size) dispersed in a CuSCN solution with
diethyl sulfide [42]. High mobility of Cu2O placed at the perovskite/CuSCN interface
improved the hole extraction rate and reduced interfacial reaction, improving the PSC
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efficiencies from 17.7 to 19.2%, and encapsulated devices sustained its PCE over 90% under
severe conditions of 85% relative humidity and 85 ◦C for 720 h, as shown in Figure 9.
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temperature, as shown in Figure 10 [12]. In a p-i-n structure, applying CuCrO2 
nanocrystals as the HTL resulted in an efficiency of 19% [44] and retained ~95% of its 
initial PCE after continuous 1 SUN illumination in argon atmosphere for 1,000 h, as shown 
in Figure 11. Here, CuCrO2 nanocrystals function as an HTL as well as a UV-blocking 
underlayer to improve photostability. CuCrO2 has also been doped with Mg, with 
improved conductivity from 1 to 220 S cm−1, resulting in a PCE of 13.1% [45]. The PCE was 
further improved by Zhang et al. to 14.1% [46]. 

Figure 9. Cu2O-CuSCN-incorporated PSC: (a) Schematic illustration of the device architecture.
(b) Illuminated J-V scans of the PSC with various HTLs. (c) Efficiency evolution of encapsulated
devices for over 720 h at 85 ◦C, 85% relative humidity. Reproduced from the work of [42], with
permission from the American Chemical Society, 2020.

2.5. Delafossites

Delafossite materials are based on the chemical formula of ABO2, where A is Cu, Pt, Pd,
or Ag, and B is Al, Ga, Cr, In, Sc, Fe, Y, La, etc. Some common Cu-based delafossite materials
are CuAlO2, CuCrO2, and CuGaO2. CuAlO2 has a bandgap of 3.75–3.86 eV, valence band of
−5.0 to −5.3 eV, and hole mobility of 3.6 cm2/Vs [73,74]. p-Type CuAlO2 has been reported
to exhibit decent thermal, chemical, and ambient stability and optical transparency and
contains non-toxic and cheap, easily accessible elements. Inserting CuAlO2 deposited by
direct current (DC) magnetron sputtering on top of ITO and below PEDOT:PSS in a p-i-n
configuration resulted in a higher PCE of 14.5% compared to the PCE of the reference
device (11.1%) [43]. By inserting 15 nm of CuAlO2, the stability of the device improved by
maintaining 80% of its initial PCE after storage in ambient conditions for 240 h, whereas
the reference device only retained 35% of its initial PCE.

CuCrO2 has a bandgap of 2.9–3.1 eV while maintaining high transmittance in the
wavelength region above 400 nm, valence band energy level of−5.3 eV, and carrier mobility
of 0.1–1 cm2/Vs with suitable light stability [75]. CuCrO2 spin-coated on top of the
perovskite layer in an n-i-p structure resulted in a PCE of 16.7%, and retained around
88% of its initial PCE after 500 h under 1 SUN, MPPT in a nitrogen atmosphere at room
temperature, as shown in Figure 10 [12]. In a p-i-n structure, applying CuCrO2 nanocrystals
as the HTL resulted in an efficiency of 19% [44] and retained ~95% of its initial PCE after
continuous 1 SUN illumination in argon atmosphere for 1000 h, as shown in Figure 11.
Here, CuCrO2 nanocrystals function as an HTL as well as a UV-blocking underlayer to
improve photostability. CuCrO2 has also been doped with Mg, with improved conductivity
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from 1 to 220 S cm−1, resulting in a PCE of 13.1% [45]. The PCE was further improved by
Zhang et al. to 14.1% [46].
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Figure 10. CuCrO2-incorporated PSC: (a) Schematic illustration of the device architecture and band
energy levels. (b) Illuminated J-V scans of the champion cells with various HTLs. (c) Efficiency
evolution of unencapsulated devices for over 60 days under ambient conditions at room temperature
and >40% relative humidity. Reproduced from the work of [12], with permission from the Royal
Society of Chemistry, 2018.
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CuGaO2 has a bandgap of 3.6 eV, a valence band energy level of ~−5.3 eV, and hole
mobility of 10−2–10−1 cm2/Vs [76–78]. CuGaO2 has suitable heat and ambient stability
compared to spiro-OMeTAD. CuGaO2 spin-coated on top of the perovskite layer in an
n-i-p configuration resulted in a PCE of 18.5% and retained over 90% of its initial PCE after
storage in ambient air at 25 ◦C and 30–55% relative humidity for 30 days without encap-
sulation, which is superior to the spiro-OMeTAD-based PSCs, as shown in Figure 12 [47].
A mesoporous CuGaO2 coated on top of NiOx on FTO resulted in a PCE of 20%, which
is superior to that of the planar cell (16.7%) [48], and maintained over 80% of its original
PCE after 1000 h in a nitrogen atmosphere at 85 ◦C of unencapsulated devices, as shown in
Figure 13.
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Figure 12. CuGaO2-incorporated PSC: (a) Energy band diagram with respect to the vacuum level.
(b) Illuminated J-V scans of the champion cells with various HTLs. (c) Normalized efficiency evolution
of unencapsulated devices under ambient atmosphere (25 ◦C, 30–55% relative humidity). Reproduced
from the work of [47], with permission from Wiley, 2017.

CuFeO2 is also a cost-effective and highly light, moisture, and thermally stable ma-
terial for an HTL candidate. PSCs with CuFeO2 exhibit suitable thermal, moisture, and
photostability compared to PSCs based on spiro-OMeTAD [49]. Unencapsulated devices
with CuFeO2 retained about 85% of their initial PCE under 1 SUN at MPPT for over 1000
h in nitrogen, whereas spiro-OMeTAD devices dropped to 10%, as shown in Figure 14.
Thermal and humidity stability tests show that CuFeO2-based devices retained 80% of
their initial PCE after exposure to 70 ◦C for 120 h and retained over 90% of their initial
PCE after exposure to 80 ± 5% relative humidity for 300 h. Among the delafossite-based
PSCs, devices with CuCrO2 and CuGaO2 reported high efficiencies above 19%. PSCs with
CuCrO2 show suitable light stability, while CuGaO2-based devices show suitable heat and
ambient stability compared to spiro-OMeTAD-based devices.
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Figure 13. Mesoporous-CuGaO2-incorporated PSC: (a) Energy band diagram with respect to the
vacuum level. (b) Illuminated J-V scans of the champion cells with different HTLs. (c) Normalized
efficiency evolution of unencapsulated devices at 85 ◦C in a nitrogen atmosphere. Reproduced from
the work of [48], with permission from Wiley, 2018.
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2.6. Copper Sulfide

Copper sulfide (CuS) is a p-type semiconductor, which has also been used in the fields
of gas sensors, catalysis, and nonlinear optical materials [79,80]. CuS has been investigated
to replace PEDOT:PSS in OPV, exhibiting decent performance compared to devices based
on PEDOT:PSS [81]. CuS nanoparticles were coated on top of ITO in a p-i-n configuration
PSCs, which resulted in a PCE of 16.2% [50], and maintained over 90% of its initial PCE in
air without encapsulation for 260 h, shown in Figure 15. CuS nanoparticles can modify the
surface of ITO by tuning the surface work function, reducing the interfacial carrier injection
barrier, and enabling the hole extraction efficiency between the ITO and perovskite layers,
but not ruin the transmittance and surface roughness of ITO.
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2.7. Cobalt Oxide

Cobalt oxide (CoOx) has a favorable valence band energy level of −5.3 eV. Co3O4
applied by screen printing to an n-i-p configuration of a ZrO2 scaffold resulted in a PCE of
13.3% for carbon-based PSCs [52]. CoOx spin-coated on top of ITO in a p-i-n configuration
resulted in a PCE of 14.5% [51]. Shalan et al. reported that according to photoluminescence
decays of perovskite deposited on various HTLs, CoOx had a faster hole-extracting time of
2.8 ns compared to PEDOT:PSS (17.5 ns) and NiOx (22.8 ns). CoOx-based PSC retained 90%
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of its initial PCE after storage in a nitrogen atmosphere for 1000 h. Lithium cobalt oxide
(LiCoO2) prepared by radio frequency (RF) magnetron sputtering in a p-i-n structured
device resulted in a PCE of 19.1%, with high efficiency stable up to 90 ◦C, and 60% of the
initial PCE was retained after continuous thermal stress at 100 ◦C for 5 days in an inert
atmosphere, showing higher stability than the PEDOT:PSS-based device (Figure 16) [53].
UV-ozone-treated LiCoO2 exhibits a super-hydrophilic surface that can be wetted eas-
ily by the perovskite precursor solution and made wetting of a large-area substrate of
10 cm × 10 cm possible.
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2.8. Chromium Oxide

Chromium oxide (CrOx) has also been investigated to replace organic HTLs in PSCs.
Cu doping of CrOx can suppress the surface hydroxylation and hexavalent chromium
ions, which are harmful to the interface stability of PSCs. Cu-doped CrOx in p-i-n PSC
devices resulted in a PCE of 17.7%, and maintained over 70% of its original PCE after 190 h
in 30% humidity 20 ◦C without encapsulation, as shown in Figure 17, whereas undoped
CrOx-based PSCs resulted in a PCE of 14.8% and maintained less than 10% of its initial
PCE [54]. PSCs with Cu-doped CrOx shows superior ambient stability than PSCs with
undoped CrOx.
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Figure 17. Cu:CrOx-incorporated PSC: (a) Cross-sectional SEM of PSC device stack. (b) J-V scans of
the champion cells with various HTLs. (c) Normalized PCE evolution of unencapsulated devices as
a function of storage in a dry box with 30% relative humidity at 20 ◦C. Reproduced from the work
of [54], with permission from Elsevier, 2018.

2.9. Molybdenum Oxide

Molybdenum oxide (MoO3) is an n-type semiconductor with a deep conduction
band energy level, making it an appropriate HTL. Due to its suitable energy alignment
properties, MoO3 has already been used in OPV [82]. Thermally evaporated MoOx on ITO
in a p-i-n configuration resulted in a PCE of 13.1% [55]. UV-ozone treatment of MoOx was
required to increase the wettability of the perovskite formation process. Titanium-doped
MoO2 nanoparticles by a scalable solvothermal cracking process applied to an n-i-p PSC
configuration resulted in a PCE of 15.8% [56]. Titanium-doping in MoO2 nanoparticles
produces stronger Mo-O bonding and thus, enhances the stability against humidity. Xie et al.
reported that reduced graphene oxide (RGO) doping is an effective method to make MoOx
a promising HTL [57]. Conductive MoOx:RGO can facilitate perovskite crystallization and
reduce the VOC loss, resulting in a PCE of 18.2% and VOC of 1.12 V.

2.10. Vanadium Oxide

Vanadium oxide (VO2) is also an n-type semiconductor with a deep conduction band
energy level, making it an appropriate HTL [82,83]. VOx on top of the perovskite layer
using a ZrO2 scaffold resulted in a PCE of 15.8% [58]. VOx was applied by post-treatment
of the perovskite/carbon interface to facilitate the charge transfer from the high work
function of VOx while not sacrificing the conductivity of carbon. A low-temperature
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solution-processed Cs-doped VOx was applied on top of ITO in a p-i-n structure resulted
in a PCE of 14.5% [59], and maintained 94% of its initial PCE value after 720 h in the air
(50–70% humidity) without encapsulation, showing suitable ambient stability, as shown
in Figure 18. Introducing Cs to VOx improved the electrical conductivity and can change
the phase separation pattern and microstructural film morphology. The enlarged surface
roughness resulted in enhanced interfacial adhesion between the HTL and perovskite layer.
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7b01944 accessed on 15 December 2021), with permission from the American Chemical Society, 2018.
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3. Conclusions

In summary, the recent progress of inorganic HTL-based PSCs and the roles of the
inorganic HTLs on device performance and stability against heat, humidity, bias, and
light are discussed. The efficiencies of inorganic HTL-based PSCs reported so far are over
20% for Cu:NiOx, Li,Mg:NiOx, CuSCN, CuI-CuSCN, and CuGaO2, which is lower but
still approaching the efficiencies for organic HTL-based PSCs. Superior device stability of
inorganic HTL-based PSCs to organic HTL-based PSCs has been reported, showing the
potential of inorganic HTLs to replace organic HTLs in PSC devices. Further investigation
on increasing the PCEs of inorganic HTL-based PSCs and a better understanding of the
degradation and working mechanisms are still required.

The general criteria for selecting potential HTL candidates are also discussed. The
valence band energy levels should be close to that of the perovskite layer to facilitate efficient
carrier transport and appropriate conduction band energy levels to impede recombination
at the HTL/perovskite interface. The carrier mobility should be high to reduce resistance
and loss during transport, while the transparency should be high enough to reduce input
solar radiation loss. In a p-i-n structure, the nucleation and wettability of the perovskite
solution on the HTL surface become important. In an n-i-p structure, the stability of the
HTL becomes important because of its contact with humidity and oxygen.

Although this review focused on single-junction unit-cell perovskite solar cells, large-
area coating methods and tandem configurations, which consist of wide-bandgap per-
ovskite solar cells on top of lower bandgap materials, such as silicon, Cu(In,Ga)Se2, and
tin-related materials [15,84–88], need to be considered for commercialization [89]. Thus,
inorganic HTL incorporated into tandem perovskite solar cells and coating methods for
large-area devices are future directions to be taken. There may be temperature or fabrication
limitations of the inorganic HTL in these tandem configurations, depending on the bottom
cell. Especially, flexible tandem solar cells will have a limit on the processing temperatures
of the layers. Obtaining highly uniform pinhole-free films of the inorganic HTL over a large
area will also be important to consider for commercialization.
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