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Abstract

The gastrointestinal peptide glucagon-like peptide 1 (GLP-1) is known to regulate consummatory behavior and is
released in response to nutrient ingestion. Analogues of this peptide recently emerged as novel pharmacotherapies
for treatment of type II diabetes since they reduce gastric emptying, glucagon secretion as well as enhance glucose-
dependent insulin secretion. The findings that GLP-1 targets reward related areas including mesolimbic dopamine
areas indicate that the physiological role of GLP-1 extends beyond food intake and glucose homeostasis control to
include reward regulation. The present series of experiments was therefore designed to investigate the effects of the
GLP-1 receptor agonist, Exendin-4 (Ex4), on established nicotine-induced effects on the mesolimbic dopamine
system in mice. Specifically, we show that treatment with Ex4, at a dose with no effect per se, attenuate nicotine-
induced locomotor stimulation, accumbal dopamine release as well as the expression of conditioned place
preference in mice. In accordance, Ex4 also blocks nicotine-induced expression of locomotor sensitization in mice.
Given that development of nicotine addiction largely depends on the effects of nicotine on the mesolimbic dopamine
system these findings indicate that the GLP-1 receptor may be a potential target for the development of novel
treatment strategies for nicotine cessations in humans.
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Introduction

Nicotine addiction, a major health problem, cause a wide
range of serious effects such as cancer, chronic obstructive
pulmonary disease and cardiovascular disease [1].
Development of this chronic and relapsing disease largely
depends on the effects of nicotine on the mesolimbic dopamine
system (for review see [2-4]). By elucidating the complex
neurobiological mechanisms involved in the nicotine-induced
activation of the mesolimbic dopamine system, such as
locomotor stimulation, accumbal dopamine release, expression
of conditioned place preference (CPP) and expression of

locomotor sensitization, new targets for treatment of nicotine
abuse and smoking cessation can be identified. Interestingly, a
novel role for gut-brain signals known to control hunger and
satiation has recently emerged, namely in the regulation of
reward induced by addictive drugs such as nicotine [5].

The gut-brain hormone glucagon-like peptide 1 is secreted in
response to nutrient ingestion [6] from enteroendocrine L-cells
of the intestinal mucosa [7]. It is also produced in the central
nervous system, specifically in neurons in the nucleus tractus
solitarius (NTS) that project throughout the brain to areas such
as the hypothalamus and mesolimbic areas [8-11]. Glucagon-
like peptide 1 is known to regulate food intake as well as body
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weight [12-14] via GLP-1 receptors expressed in the
hypothalamus [15] and the NTS [16]. In addition to the
hypothalamus and NTS, GLP-1 receptors are expressed in
several brain areas such as the reward nodes ventral
tegmental area and nucleus accumbens [8,9], implicating that
GLP-1 may have a role in reward regulation. Interestingly,
GLP-1 neurons in the NTS project directly to the ventral
tegmental area as well as the core and shell of nucleus
accumbens [17]. The findings showing that activation of GLP-1
receptors in these areas reduces the intake of highly-palatable
foods in rodents [17], suggest that these receptors may be
involved in stimulation of the mesolimbic dopamine system.
Given that common mechanisms regulate food and drug
reward [5] we hypothesize that the GLP-1 signaling system, in
addition to homeostatic control of food intake and glucose
control, also could be involved in nicotine-induced reward.
Indeed, it was recently shown that the GLP-1 analogue,
exendin-4 (Ex4), suppressed the alcohol-induced locomotor
stimulation, accumbal dopamine release and CPP for alcohol
as well as reduced alcohol consumption and alcohol seeking
behavior in rodents [18]. Supportively, Ex4 attenuates the
ability of amphetamine as well as cocaine to cause a locomotor
stimulation, accumbal dopamine release and induce a CPP in
mice [19]. The present series of experiments was designed to
evaluate the effects of Ex4 on the well established parameters
reflecting activation of the mesolimbic dopamine system,
namely nicotine-induced locomotor stimulation, accumbal
dopamine release and CPP in mice. Furthermore, the effects of
Ex4 on nicotine-induced expression of locomotor sensitization
were investigated. The results of the presented experiments
herein may be of clinical interest especially in view of that FDA-
approved GLP-1 analogues, such as exenatide and liraglutide,
are approved for the treatment of diabetes type II and thus
tentatively could be used as novel treatments of nicotine
addiction.

Materials and Methods

Animals
Adult post-pubertal age-matched male NMRI mice (8-12

weeks old and 25-40 g body weight; Charles River, Sulzfeld,
Germany) were used. All mice were group housed and
maintained at a 12/12 hour light/dark cycle (lights on at seven
am). Tap water and food (Normal chow; Harlan Teklad,
Norfolk, England) were supplied ad libitum, except during the
experimental setups. The study was carried out in strict
accordance with the recommendations in the Swedish Animal
Welfare Act and all experiments were approved by The
Swedish Ethical Committee on Animal Research in
Gothenburg. All efforts were made to minimize animal
suffering, and to reduce the number of animals used. All
animals were allowed to acclimatize at least one week before
the start of the experiments.

Drugs
Nicotine ditartrate (Sigma-Aldrich; Stockholm, Sweden) was

dissolved in vehicle (0.9% sodium chloride solution), and
sodium bicarbonate was added until the pH was natural. The

selected dose of nicotine, 0.5 mg/kg, was based on a previous
dose response study where this dose increased the locomotor
activity in mice [20]. Nicotine was administered (IP) fifteen
minutes prior to initiation of the experiment. Exendin-4 (Tocris
Bioscience, Bristol, UK) is a peptide with the amino acid
sequence HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSS
GAPPPS. Exendin-4 has previously been established as a
GLP-1 receptor agonist [21] and distribution studies show that
the CNS binding of Ex4 is identical to GLP-1 [22]. The Ex4
dose used in the alcohol related experiments conducted in
mice was selected based on the results from previous
locomotor experiments, where 2.4 μg/kg was the highest dose
that did not affect locomotor activity per se and this dose
blocked the rewarding properties of alcohol in mice [18]. The
selected dose of Ex4 did not affect the gross behavior of the
mice in any of the experiments preformed. Exendin-4 was
dissolved in vehicle (0.9% sodium chloride) and stored in
aliquots at -20 degrees C before use. The Ex4 was
administered intra peritoneal (IP) 10 minutes prior to the start of
each experiment. A balanced or within subject design was
used for all drug challenges.

Locomotor activity experiments
Locomotor activity was recorded as described previously

[23]. In brief, locomotor activity was registered in eight sound
attenuated, ventilated and dim lit locomotor boxes (420 x 420 x
200 mm, Kungsbacka mät- och reglerteknik AB, Fjärås,
Sweden). Five by five rows of photocell beams, at the floor
level of the box, creating photocell detection allowed a
computer-based system to register the activity of the mice.
Locomotor activity was defined as the accumulated number of
new photocell beams interrupted during a 60-minute period.

The mice were allowed to habituate to the locomotor activity
box one hour prior to drug challenge. The effects of Ex4 (2.4
μg/kg, IP) on nicotine-induced (0.5 mg/kg, IP) locomotor
stimulation were investigated. This dose of Ex4 was previously
determined as the highest dose with no effect per se [18]. Ex4
was administered ten minutes prior to nicotine and the activity
registration started fifteen minutes thereafter. Each mouse
received one treatment combination creating the following
treatment groups vehicle-vehicle (Veh-Veh), Ex4-vehicle (Ex4/
Veh), vehicle- nicotine (Veh-Nic) or Ex4-nicotine (Ex4-Nic) (n=8
per treatment combination). Each mouse was only subjected to
one experimental trial.

In vivo microdialysis and dopamine release
measurements

For measurements of extracellular dopamine levels, mice
were implanted unilaterally with a microdialysis probe
positioned in the nucleus accumbens. The surgery was
conducted two days prior to measurements of dopamine and
was performed as described in detail previously [23]. In brief,
the mice were anesthetized with isofluran (Isofluran Baxter;
Univentor 400 Anaesthesia Unit, Univentor Ldt., Zejtun, Malta),
placed in a stereotaxic frame (David Kopf Instruments;
Tujunga, CA, USA) and kept on a heating pad to prevent
hypothermia. The skull bone was exposed and one hole for the
probe and one for the anchoring screw were drilled. The probe
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was randomly alternated to either the left or right side of the
brain. The coordinates of 1.5 mm anterior to the bregma, ±0.7
lateral to the midline and 4.7 mm below the surface of the brain
surface was used for the nucleus accumbens [24]. The
exposed tip of the dialysis membrane (20 000 kDa cut off with
an o.d./i.d. of 310/220 μm, HOSPAL, Gambro, Lund, Sweden)
of the probe was 1 mm. All probes were surgically implanted
two days prior to the experiment. After surgery the mice were
kept in individual cages (Macrolon III) until the day of actual
microdialysis experiment.

The effect of systemic administration of Ex4 (2.4 μg/kg, IP)
on nicotine-induced (0.5 mg/kg, IP) accumbal dopamine
release was investigated using microdialysis in freely moving
mice. On the day of the experiment the probe was connected
to a microperfusion pump (U-864 Syringe Pump; AgnThós AB)
and perfused with Ringer solution at a rate of 1.5 μl/minute.
After one hour of habituation to the microdialysis set-up,
perfusion samples were collected every 20 minutes. The
baseline dopamine level was defined as the average of three
consecutive samples before the first drug/vehicle challenge,
and the increase in accumbal dopamine was calculated as the
percent increase from baseline. After the baseline samples (-40
minutes until 0 minutes), mice were injected with Ex4 or vehicle
(at 5 minutes), which was followed by a nicotine or vehicle
injection (at 20 minutes). Following these drug administrations
an additional eight 20 minute samples were collected. The
following treatment groups (n=8 in each group) were tested:
vehicle-vehicle (Veh-Veh), vehicle-nicotine (Veh-Nic), Ex4-
vehicle (Ex4-Veh) and Ex4-nicotine (Ex4-Nic) (n=8 in each
group).

The dopamine levels in the dialysates were determined by
HPLC with electrochemical detection. A pump (Gyncotec
P580A; Kovalent AB; V. Frölunda, Sweden), an ion exchange
column (2.0 x 100 mm, Prodigy 3 μm SA; Skandinaviska
GeneTec AB; Kungsbacka, Sweden) and a detector (Antec
Decade; Antec Leyden; Zoeterwoude, The Netherlands)
equipped with a VT-03 flow cell (Antec Leyden) were used. The
mobile phase (pH 5.6), consisting of sulfonic acid 10 mM, citric
acid 200 mM, sodium citrate 200 mM, 10% EDTA, 30% MeOH,
was vacuum filtered using a 0.2 μm membrane filter (GH
Polypro; PALL Gelman Laboratory; Lund, Sweden). The mobile
phase was delivered at a flow rate of 0.2 ml/minute passing a
degasser (Kovalent AB), and the analyte was oxidized at +0.4
V.

After the microdialysis experiments were completed, the
mice were decapitated, and probes were perfused with
pontamine sky blue 6BX to facilitate probe localization. The
brains were mounted on a vibroslice device (752M Vibroslice;
Campden Instruments Ltd., Loughborough, UK) and cut in 50
μm sections. The location of the probe was determined by
gross observation using light microscopy. The exact position of
the probe was verified [24] and only mice with correct
placements were used in the statistical analysis (Figure 1).

Conditioned place preference
To evaluate the effects of Ex4 on the rewarding effects of

nicotine, CPP tests were performed in mice as previously
described [20,25]. In brief, a two-chambered CPP apparatus,

with 45 lux illumination and distinct visual and tactile cues was
used. One compartment was defined by black and white
striped walls and by a dark laminated floor whereas the other
had a white painted wooden floor and walls of wooden texture.
The procedure consisted of pre-conditioning (day 1),
conditioning (days 2-5), and post-conditioning (day 6). At
preconditioning, mice were injected IP with vehicle and was
placed in the chamber with free access to both compartments
during 20 minutes to determine the initial place preference.
Conditioning (20 minutes per session) was done using a biased
procedure in which nicotine (0.5 mg/kg) was paired with the
least preferred compartment and vehicle with the preferred
compartment. All mice received one nicotine and one vehicle
injection every day and the injections were altered between
morning and afternoon in a balances design. At post-
conditioning, mice were injected with Ex4 (2.4 μg/kg, IP) or an
equal volume of vehicle solution and 10 minutes later placed
on the midline between the two compartments with free access
to both compartments for 20 minutes. The following two
treatment groups were tested; nicotine-Ex4 (Ex4) and nicotine-
vehicle (Veh) (n=8 in each group). Previous control
experiments have shown that neither repeated vehicle
administration nor the selected dose of Ex4 induces a CPP per
se [18].

Conditioned place preference was calculated as the
difference in % of total time spent in the drug-paired (i.e. least
preferred) compartment during the post-conditioning and the
pre-conditioning session. The present experiment was
designed to reflect CPP expression rather than acquisition of
CPP. Interestingly, it has been suggested that pharmacological
agents that are administered only on the test day, as in the
present design, should be considered as being potential
candidates in the treatment of human drug craving (for review
see [26]).

Figure 1.  A coronal mouse brain section showing probe
placements (illustrated by vertical lines) in the nucleus of
mice used in the present study.  The number given indicates
millimeters anterior (+) from bregma.
doi: 10.1371/journal.pone.0077284.g001
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Locomotor sensitization
Repeated administration of addictive drugs causes an

increased locomotor response [27], i.e. a locomotor
sensitization. The present sensitization experiment was
designed in a similar way as reported by others [28] and
investigates expression of nicotine-induced locomotor
sensitization. Interestingly, expression of locomotor
sensitization reflects the neurochemical alterations underlying
important parts of addiction such as craving and compulsive
drug taking [29]. The effects of acute Ex4 (2.4 μg/kg, IP) or an
equal volume of vehicle on nicotine-induced (0.5 mg/kg, i.p.)
locomotor sensitization was investigated. In these experiments
nicotine or an equal volume of vehicle was administered each
day for five subsequent days. At each of these days, the mice
were allowed to habituate in the locomotor activity box for 60
minutes. The drug was thereafter injected and this was
followed by 60-minute access to the locomotor activity box. The
locomotor activity (defined as the cumulated number of new
photocell beams interrupted during a 60-minute period) was
registered the first treatment day (1), but not during treatment
days 2-5. 72 hours following the last injection of the sub-
chronic nicotine treatment (i.e. day 5) Ex4 or vehicle was
administered acutely and the activity of the mice was
investigated in the locomotor activity boxes. The rational for
Ex4 administration following sub-chronic nicotine administration
was to avoid co-administration of Ex4 and nicotine since we in
the initial experiments show that Ex4 blocks the ability of
nicotine to cause a locomotor stimulation. The locomotor
activity was registered in the boxes described above and the
locomotor sensitization was defined as the accumulated
number of new photocell beams interrupted during a 60-minute
period. Each mouse received only one treatment combination
creating the following treatment groups; vehicle-vehicle (Veh-
Veh), nicotine-vehicle (Nic-Veh), vehicle-Ex4 (Veh-Ex4) or
nicotine-Ex4 (Nic-Ex4) (n=8 per treatment combination).

Statistical analysis
Locomotor activity data were evaluated by a one-way

ANOVA followed by Bonferroni post-hoc tests. The
microdialysis experiments were evaluated by a two-way
ANOVA followed by Bonferroni post-hoc test for comparisons
between different treatments and specifically at given time
points. The condition place preference data were evaluated by
an unpaired t-test. The locomotor sensitization data were
analyzed with a two-way ANOVA followed by Bonferroni post-
hoc tests. Data are presented as mean ± SEM. A probability
value of P<0.05 was considered as statistically significant.

Results

Effects of Ex4 on nicotine-induced locomotor
stimulation, accumbal dopamine release and
expression of conditioned place preference in mice

An overall main effect of treatment on locomotor activity was
found in mice following systemic administration of nicotine (0.5
m g/kg) and Ex4 (2.4 μg/kg) (F(3,28)=8.11, P=0.0005; n=8 per
group). As shown in Figure 2A, posthoc analysis revealed that
nicotine significantly increased the locomotor activity compared

to vehicle (P<0.001). This nicotine-induced locomotor activity
was significantly reduced by pre-treatment with a single
injection of Ex4 (P<0.01), at a dose that alone had no
significant effect on locomotor activity compared to vehicle
treatment (P>0.05). There was no difference in locomotor
activity response in vehicle treated mice and Ex4-Nic treated
mice (P>0.05).

Accumbal microdialysis measurements of dopamine in mice
revealed an overall main effect of treatment (F(3,33)=61.15,
P<0.0001) and treatment x time interaction (F(11,252)=3.45,
P<0.0001), but not of time F(11,252)=1.28, P>0.05)(n=8 in

Figure 2.  Exendin-4 attenuates nicotine-induced
locomotor stimulation, accumbal dopamine release and
conditioned place preference in mice.  (A) Nicotine-induced
(0.5 mg/kg IP) locomotor stimulation was attenuated by a
single injection of Ex4 (2.4 μg/kg IP) (n=8 in each group;
**P<0.01 and ***P<0.001, one-way ANOVA followed by a
Bonferroni post-hoc test). (B) First we demonstrated a
significant effect of nicotine (0.5 mg/kg IP) to increase
dopamine release in comparison to vehicle treatment at time
intervals 40-180 minutes (**P<0.01, ***P<0.01, veh-nic
compared to veh-veh treatment). Secondly we showed that
pre-treatment with Ex4 (2.4 μg/kg IP) attenuated the nicotine-
induced increase in dopamine release compared to vehicle
pre-treatment at time interval 40-60 and 100-180 minutes
(+<0.05, ++P<0.01, +++P<0.01, Ex4-nic compared to veh-nic
treatment). There was no difference in response between the
veh-veh and Ex4-nic groups at a dose of Ex4 that had no effect
per se. Arrows represent time points of injection of Ex4, vehicle
and nicotine. Data analyzed with a Two-way ANOVA followed
by a Bonferroni post-hoc test (n=8 in each group) (C) The
nicotine-induced (0.5 m/kg IP) condition place preference
(CPP) was attenuated by an acute single IP injection of Ex4
(2.4 μg/kg IP) in mice (n=8 in each group, *P<0.05, unpaired t-
test). All values represent mean ± SEM. Arrow shows time for
injections.
doi: 10.1371/journal.pone.0077284.g002
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each group). As shown in Figure 2B nicotine increased
accumbal dopamine release relative to vehicle treatment at
time interval 40-100 minutes (P<0.001), 120 minutes (P<0.01)
and 140-180 minutes (P<0.001). This effect was attenuated by
pre-treatment with Ex4 at time interval 40 minutes (P<0.01), 60
minutes (P<0.05), 100 minutes (P<0.001), 120 minutes
(P<0.05) and 140-180 minutes (P<0.001). The selected dose
had no significant effect on accumbal dopamine release
compared to vehicle treatment at any time interval (P>0.05).
There was no difference in accumbal dopamine response in
vehicle treated mice and Ex4-Nic treated mice at any time
interval (P>0.05). Only mice with correct probe placement in
the nucleus accumbens shell were included in the statistical
analysis (Figure 1).

The nicotine-induced (0.5 mg/kg) (Nic-Veh) expression of
CPP was significantly attenuated by an acute single injection of
Ex4 (2.4 μg/kg) (Nic-Ex4) on the post-conditioning day
compared to vehicle injection (P<0.05, n=8 in each group;
Figure 2C).

Effects of Ex4 on nicotine-induced expression of
locomotor sensitization in mice

The locomotor sensitization data revealed an overall main
effect of treatment (F(3,3)=10.57, P<0.0001), time
F(1,42)=20.37, P=0.0005) as well as treatment x time
interaction (F(1,42)=36.75, P=0.0008)(n=8 in each group).

As shown in Figure 3, posthoc analysis revealed that the
locomotor activity is significantly higher in mice treated sub-
chronically with nicotine (0.5 mg/kg) and acutely with vehicle
(Nic-Veh) on the last day (i.e. day 8) as compared to vehicle
(Veh-Veh) treated mice (P<0.001). Acute injection with Ex4 on
the last day (i.e. day 8) blocked this nicotine-induced locomotor
sensitization ((P>0.05) (Nic-Veh vs Nic-Ex4). The selected
dose of Ex4 had no effect on locomotor activity per se (P>0.05)
(Veh-Veh vs Veh-Ex4)..

Discussion

The present study provides novel evidence showing that
GLP-1 receptors regulate nicotine-induced activation of the
mesolimbic dopamine system in mice, suggesting that the
physiological role of GLP-1 extends beyond control of glucose
homeostasis and food intake [10,11]. Indeed, we demonstrate
that the GLP-1 analogue, Ex4, attenuates the nicotine-induced
locomotor stimulation, accumbal dopamine release and
expression of CPP in mice. In accordance we show that Ex4
blocks the nicotine-induced expression of locomotor
sensitization in mice, indicating that GLP-1 analogues deserve
to be evaluated as a potential novel treatment target for
smoking cessation and other nicotine addictions.

Glucagon-like peptide 1 containing-fibers from the NTS
target reward areas expressing GLP-1 receptors such as the
VTA and N.Acc [8,9,17,30].. Given that development of nicotine
addiction partly depends on the effects of nicotine on the
mesolimbic dopamine system (for review see [2-4]) and that we
here show that Ex4 suppresses established nicotine-induced
effects on the mesolimbic dopamine system [26,27,31], we
hypothesize that GLP-1 receptors within these reward nodes

may mediate the rewarding properties of nicotine. Supportively,
local administration of Ex4 into the VTA or N.Acc. reduces
reward induced by and the intake of palatable foods [17,32]
and accumbal administration of GLP-1 receptor antagonists
cause hyperphagia, [33]. The data showing that local
administration of Ex4 into the VTA reduces alcohol intake and
alcohol-induced CPP in rodents [34], suggest that GLP-1
receptors within the VTA may be of importance for drug-
induced reward. Glucagon-like peptide 1 receptors found in the
hypothalamus and NTS have been shown to regulate GLP-1
dependent food intake [15,16] and glucose homeostasis [35],
raising the possibility that GLP-1 receptors in these areas also
could be of importance for nicotine-induced activation of the
mesolimbic dopamine system and thus for reward. Albeit Ex4
crosses the blood-brain barrier [36] the possibility that the
observed effects of Ex4 could be due to peripheral rather than
central effects should be considered. In accordance, the ability
of GLP-1 to reduce spontaneous meal size is dependent on
vagal afferent signaling [37]. However, the exact circuits
through which GLP-1 receptors regulate nicotine-reward needs
to be further elucidated. Even though Ex4 has been suggested
to affect other receptors than the GLP-1 receptor [38-40] the
findings that a GLP-1 receptor antagonist blocks the ability of
Ex4 to reduce the motivation to consume sucrose [32] supports
our hypothesis that the reinforcing properties of rewards such
as nicotine are mediated directly via GLP-1 receptors. The
mechanisms through which GLP-1 receptors regulate the
activity of mesolimbic dopamine neurons are to date unknown
and needs to be investigated.

Figure 3.  Exendin-4 blocks the nicotine-induced
locomotor sensitization in mice.  In the present experiment
nicotine or vehicle for five days. 72 hours following this sub-
chronic treatment Ex4 or vehicle was administered. Sub
chronic nicotine treatment induced (0.5 mg/kg) a significant
sensitization and this effect was attenuated by a single injection
of Ex4 (2.4 μg/kg) (n=8; * ***P<0.001, two-way ANOVA
followed by a Bonferroni post-hoc test). All values represent
mean ± SEM.
doi: 10.1371/journal.pone.0077284.g003
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Our present findings show for the first time an involvement of
the GLP-1 receptor in nicotine-induced activation of the
mesolimbic dopamine system as measured by locomotor
stimulation, accumbal dopamine release and expression of
CPP. In addition we showed that Ex4 blocks the nicotine-
induced expression of locomotor sensitization in mice. Given
that expression of locomotor sensitization has been suggested
to reflect the neurochemical alterations underlying important
parts of addiction such as craving and compulsive drug taking
[29], GLP-1 receptors may have an important role in the
development of addiction. To further investigate the role of
GLP-1 receptors for nicotine addition the effect of Ex4 on
nicotine self-administration should be investigated. In support
of a role of GLP-1 receptors in addiction are the findings
showing that Ex4 suppresses alcohol-induced locomotor
stimulation, accumbal dopamine release as well as CPP in
mice and reduces alcohol consumption and alcohol seeking
behavior in rats [18], findings that have been corroborated by
others [34]. Moreover, the findings that Ex4 attenuates
amphetamine-induced locomotor stimulation, cocaine-induced
CPP as well as psychostimulant-induced locomotor stimulation,
accumbal dopamine release and CPP in rodents [19,41,42] are
in line with the preset findings. Given that Ex4 also reduces the
motivation to consume sucrose [32] it may be suggested that
GLP-1 receptors have an important role for reward induced by
addictive drugs as well as natural reward. Clinically available
GLP-1 receptor analogues, such as exenatide and liraglutide,
are approved for treatment of type II diabetes since they
reduce gastric emptying, glucagon secretion as well as
enhance glucose-dependent insulin secretion [43-46]. The
present results indicate that these pharmaceutical agents
deserve to be investigated as treatments of nicotine addiction,
an entirely novel indication.

Albeit previous studies have shown that Ex4, at a dose range
similar to what was used in the present study, induces a

condition taste aversion [47] the possibility that our results are
due to aversion rather than reduced reward appears however
less likely. Thus, repeated Ex4 treatment does not induce a
conditioned place aversion in rodents [18,42], indicating that
the Ex4 dose used is not aversive or induces nausea [48].
Moreover, Ex4 targets reward related parameters such as
locomotor stimulation, accumbal dopamine release, CPP and
locomotor sensitization not only for nicotine as shown in the
present study, but also for alcohol, amphetamine and cocaine
as shown elsewhere [18,19,41,42].

The present data support the hypothesis that common
mechanisms, such as gut-brain hormones, regulate both food-
and drug-induced activation of the mesolimbic dopamine
system [5]. Previous studies show that the hunger hormones
ghrelin and galanin are required for reward induced by nicotine
[20,49]. Moreover, the plasma level of the anorexigenic peptide
leptin is associated with nicotine craving in humans and a
cholecystokinin antagonist reduces nicotine withdrawal in mice
[50,51]. This raises an important question regarding the
physiological role of gut–brain signals and metabolic regulators
and their ability to influence not only food intake but also having
a broader role in modulating reward related processes. In
conclusion, our present results showing that Ex4 attenuates
nicotine-induced locomotor stimulation, accumbal dopamine
release, expression of CPP as well as expression of locomotor
sensitization in mice, indicate that GLP-1 receptors may
provide a unique target for the development of new treatments
for smoking.
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