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Abstract: Metamaterials and their related research have had a profound impact on many fields,
including optics, but designing metamaterial structures on demand is still a challenging task. In
recent years, deep learning has been widely used to guide the design of metamaterials, and has
achieved outstanding performance. In this work, a metamaterial structure reverse multiple prediction
method based on semisupervised learning was proposed, named the partially Conditional Generative
Adversarial Network (pCGAN). It could reversely predict multiple sets of metamaterial structures
that can meet the needs by inputting the required target spectrum. This model could reach a mean
average error (MAE) of 0.03 and showed good generality. Compared with the previous metamaterial
design methods, this method could realize reverse design and multiple design at the same time,
which opens up a new method for the design of new metamaterials.

Keywords: metamaterials; deep learning; reverse design; multiple design

1. Introduction

As special human-made materials, metamaterials have attracted the attention of a
large number of experts and scholars since they were proposed [1,2]. They allow the
design of specific microstructures to change the transmission characteristics of waves
to achieve special purposes, including perfect absorption [3,4], hyperbolic materials [5],
circular polarization imaging [6,7], and hyperlenses [8]. In addition, based on the chiral
phenomenon found in metamaterials, multiple functions have been realized [9-11]. The
terahertz wave is in the transitional region between electronics and photonics research,
and has many unique properties, such as low photon energy and strong penetrability.
The emergence of metamaterials makes up for the lack of electromagnetic materials in the
terahertz frequency band, and provides an effective way to realize functional devices in the
terahertz frequency band. It is also a hot research topic in the field of metamaterials [12-14].

Although research on metamaterials is in full swing, designing metamaterial structures
on demand is still a challenging task. Researchers must spend a lot of time and computing
resources on calculating the effect that a metamaterial with a specific structure can achieve,
and then reoptimize the structure of the metamaterial. Even highly experienced researchers
cannot easily design a metamaterial structure on demand through traditional methods in a
short time.

As an interdisciplinary field covering life sciences, mathematics, psychology, and
many other subjects, deep learning has attracted much attention since it was proposed [15].
It allows a model to bypass the basic theory and obtain useful parts from a large amount

Nanomaterials 2021, 11, 2672. https:/ /doi.org/10.3390/nano11102672

https://www.mdpi.com/journal /nanomaterials


https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-7363-3488
https://orcid.org/0000-0001-9004-4944
https://doi.org/10.3390/nano11102672
https://doi.org/10.3390/nano11102672
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11102672
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11102672?type=check_update&version=2

Nanomaterials 2021, 11, 2672

20f12

of data to construct the mapping relationship between input and output. Presently, it
has made great achievements in many computer-related fields, including image classifica-
tion [16], natural language processing [17], and feature recognition [18]. At the same time,
there have been many successes in other non-computer-related fields, including many
basic disciplines such as chemistry [19], physics [20], and biology [21].

After applying some simple machine-learning algorithms such as a genetic algo-
rithm [22], linear regression [23], and a Bayesian algorithm [24] to the design of metama-
terials, deep learning has gradually been applied in this field [25-27]. Some researchers
have achieved a reverse design for different structures by using different deep-learning
networks. However, even within the same structure, there may not be only one set of
structural parameters that can achieve the target effect. Therefore, by introducing genera-
tive models, including the Variational Autoencoder (VAE), other researchers can calculate
other structures that can achieve the same purpose through the designed structure [28-30].
However, the method of reverse multistructure design for a certain target effect may be
more practical.

In this article, we innovatively proposed a pCGAN based on the idea of the Con-
ditional Generative Adversarial Network (CGAN) [31]. Compared with the method of
reverse design using CGAN alone, we obtained a faster training speed, used fewer network
parameters, and realized higher accuracy of reverse prediction. The results showed that
the use of this model could achieve the purpose of the reverse multistructure design of
metamaterials, and the final trained model could reach an MAE of 0.028 (12% lower than
for CGANSs), and the model showed good robustness and generalization. By using the
trained model to guide the design of metamaterials, the design cycle of metamaterials can
be effectively shortened. In addition, this model also has high scalability. By only replacing
the dataset with the dataset of another structure, the reverse on-demand design of different
structures and different target curves can be realized.

2. Materials and Methods
2.1. COMSOL Simulation Model

We built a simulation model to verify that our network could realize the multiple re-
verse design of the metamaterial structure. We choose high-resistance silicon (p > 5000 {}-m)
commonly used in the terahertz region as the material to establish a square resonant ring
model with four gaps, and observed its effect on the incident light electromagnetic response.

As shown in Figure 1, the entire metasurface was arranged by meta-atoms with
identical structures. Its height &, square outer side length n, square line width w, and
gap size d were chosen as structural parameters. The left-handed circularly polarized
(LCP) light was incident on this structure perpendicularly, and the frequency-transmittance
curves under different structures were obtained by changing the four structural parameters.
The size of the super unit substrate was 150 pm x 150 pum, the thickness of the substrate
was 50 um, and the gap position was centered.

The above model was constructed using COMSOL Multiphysics 5.5 [32], and the
required dataset by scanning the 4 structural parameters. The scan range of the parameters
d and w was (10, 40), the step size was 10, the scan range of the parameters n and & was
(30, 110), and the step size was 20. Finally, 400 sets of simulation data were obtained.
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Figure 1. Schematic diagram of the structure. The left-handed circularly polarized (LCP) light was incident perpendicularly

to the metasurface to observe its transmittance. The entire super surface was composed of high-resistance silicon.

2.2. The pCGAN Model

When using traditional CGAN for reverse design, neither the generator nor the
discriminator can output the spectrum that the structure can produce, which leads to the
need to repeatedly use simulation methods to operate the output of the generator during
the training process.

On the other hand, the CGAN method is the same as for other Generative Adversarial
Networks (GANSs). As shown in Formula (1), due to its adversarial loss function construc-
tion, the optimal solution requires that the Nash equilibrium be satisfied. The process
of seeking the optimal solution requires that the training process between the generator
and the discriminator be well synchronized, otherwise the model will be difficult to fit. In
addition, when directly using the CGAN method for reverse design, the network training
results cannot be intuitively verified through the network, and it still needs to rely on
traditional simulation methods, which also makes the training more difficult.

min max V(D, G) = Exwpy, (x) 10g(D(x[y)] + E.p. ) log(1 = D(G(=|) )] @)

Therefore, we designed a semisupervised-learning deep neural network based on the
idea of CGAN, and named it pCGAN. This network included a generator for reverse design
and a discriminator for predicting the frequency-transmittance curve that the structure
could match. The generator was the main body to realize multiple backward predictions,
and the training of the generator relied on an excellent discriminator. The discriminator
can be regarded as the loss function of the generator. Therefore, before training the
generator, we needed to train the discriminator in a supervised learning method. When
the discriminator is trained well, the two networks will be connected, and trained in an
unsupervised learning method.

As shown in Figure 2, the discriminator could output the corresponding frequency-
transmittance curve by inputting different structural parameters. The well-trained discrimi-
nator could obtain the corresponding relationship between the structure parameter and the
frequency-transmittance curve. The process of obtaining the frequency-transmittance curve
through the trained discriminator took a very short time, and it could be used alone to
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replace the time-consuming simulation process. Using COMSOL Multiphysics to simulate
the single set of structural parameters of the above-mentioned square split resonator ring
took about 1 h, while the time for using this network to predict the transmittance curve
was only tens of milliseconds. This also allowed the trained discriminator to intuitively
reflect the training results of the generator, which had a significant effect on subsequent
network optimization and verification.

Discriminator
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Figure 2. Schematic diagram of the discriminator. The input of the discriminator was the structural parameter, and the

output was the corresponding frequency-transmittance curve.

As shown in Figure 3, the generator could output structural parameters that could
achieve the required functions by inputting a set of random noise and the required
frequency-transmittance curve. The well-trained generator could reversely design dif-
ferent structural parameters that could reach the target curve according to the required
frequency-transmittance curve and different random noises. Similarly, the time efficiency
of using a trained generator for backward prediction was extremely high.
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Figure 3. Schematic diagram of the generator. The generator input was random noise and the frequency-transmittance
curve, and the output was the structural parameter that could reach the target.
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2.3. Neural Network Method

As shown in Figure 4, the working principle of the neural network is based on the
way the human brain works and learns, and a large number of neural network nodes are
constructed to simulate neurons. Each node is connected to adjacent nodes, and the output
of the node is adjusted by adjusting the link weight. The output of a single node can be

expressed as:
n

L fwix; + bj;)
y=—— @)

n
where f is the activation function, w; is the connection weight between the i-th node of the
previous layer and this node, x; is the output of the i-th node of the previous layer, b; is the
bias term of the node, and 7 is the number of nodes in the previous layer connected to the
j-th node.

Input layer

Hidden layers

Output layer

Figure 4. Schematic diagram of a neural network.

2.4. Data Preprocessing

Due to the different dimensions of the input data, it is difficult to maintain the same
range of input data. In the process of neural network training, the error caused by the larger
input value is usually larger, to avoid the difference between the smaller input value and
the larger input value on the network, it is usually necessary to preprocess the input data.

In this work, the transmittance range of different wavelength points in the spectrum
data was the same (0 to 1). However, the value ranges of different parameters in the
structure parameters were different. It was necessary to perform data preprocessing on the
structural parameters. However, after processing them, the structural parameters predicted
by the generator also conformed to the rules after preprocessing, so a data preprocessing
method that was convenient for restoring the data needed to be used. Here, we choose the
Min-Max Normalization data preprocessing method to scale all the original input data xg
to the range (0, 1):

Xp — minxg

X= —— ®)

"~ maxxp — minx

This operation not only could avoid the impact on network training caused by different
dimensions, but it also helped us to restore the reverse prediction data. The restoration
formula is:

Xo = x(maxxp — minxg) + minxg 4)

2.5. Activation Function

To meet the high nonlinearity of the reverse design problem, the Exponential Linear
Units (ELU) function that combines the advantages of the Sigmoid and Rectified Linear
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Unit (ReLU) functions was used as the activation function [33]. The output of the ELU
function can be expressed as:

X, x>0

f(x):{ a(er—1), x<0 ©®)

where x is the original input, and the parameter « ranges from 0 to 1.

As shown in Figure 5, when x < 0, it had better soft saturation, which could make the
network more robust to the input; and when x > 0, the gradient was always 1, which was
beneficial in alleviating the gradient disappearance of the neural network and making the
network easier to converge.

f(x)
S = o= NN oW
$h S h S h <9

n o

Figure 5. The ELU function curve.

2.6. Overfitting Solution

Using a small dataset to train the network will often cause the network to perform
worse on data outside the dataset due to the occurrence of overfitting. In order to improve
the generalization of the network, L2 regularization was used here to process the weight
w, which could make the network learn more features. The regularized output can be
expressed as:

A 2
L—Lo—l—ﬂZw (6)

where Ly represents the original loss function, and the regularization term %Z w? is
added on this basis, where A represents the regularization coefficient, n represents the data
throughput, and w is the weight. After the regularization term is added, the value of the
weight w tends to decrease, and the appearance of excessively large values can be avoided,
so it is also called weight decay. L2 regularization can reduce the weight to avoid large
slope in the fitted curve, thereby effectively alleviating the overfitting phenomenon of the
network and helping to converge.

3. Results
Training of pPCGAN

Firstly, we conducted supervised training on the above-mentioned discriminator, and
the training set was the simulation data obtained through the COMSOL Multiphysics
simulation software. After normalizing the dataset, the order was shuffled, and 10% of it
was extracted as the validation set, and the remaining 90% was used as the training set.

In the case of reaching the lowest error, we chose the network structure with the least
training time. As shown in Figure 6a, the discriminator was composed of one input layer,
one output layer, and three hidden layers. The number of nodes in each layer increased
with the depth of the network. The hidden layer and the output layer used ELU and
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Sigmoid as the activation functions, and the L2 regularization method was used to process
the weights of each layer to eliminate overfitting. The number of network parameters was
45,524, and the average training time was 1.2 s/epoch.

Noise
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Figure 6. The pCGAN structure parameters. The figure in (a) shows the discriminator network
structure, and the figure in (b) shows the generator network structure.

When the discriminator training had been completed, we combined the generator
and discriminator as shown in Figure 7, and set the discriminator to be untrainable. Then
we inputted different random noise and frequency-transmittance curves for unsupervised
training. It should be noted that the input frequency-transmittance curve and the output
frequency-transmittance curve were the same. The noise used a random array that satisfied
the Gaussian distribution; its mean was 0, its variance was 1, and its size was 4.

1
g 1o Discriminator ;
£08 i
£ 06 . i o 10
804 ! 5 £ 0.8/
= 1 S
0.2 \ ! ! £ 056/
= 0.0 - . T . : - — E 0.4
05 1.0 1.5 2.0 25 ! ! g s
1 VA
Frequency(THz) : untrainable | ; ool L=
. ! i 05 10 15 20 25
noise| 0.284,-:,0.523 i Frequency(THz)

Figure 7. The pCGAN training method. The generator and the discriminator were connected in order, and the discriminator
was set to not be trained.
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As shown in Figure 6b, the generator consisted of one input layer, one embedding
layer, one output layer, and four hidden layers that decreased with the depth of the
network. Similarly, the hidden layer and the output layer used ELU and Sigmoid (for
limited the range of output values) as the activation functions. The embedding layer was
responsible for embedding the input noise into the target curve, so that the data of the
input hidden layer not only retained the characteristics of the target curve, but also carried
the characteristics of random noise. Even if the same target curves were inputted, the
generator could still generate different structural parameters according to the different
noise. The network parameter amount was 187,432, and the average training time was
244 ms/epoch.

It is worth noting that the networks mentioned above were all running on computers
equipped with Intel i7-10750H processors and NVIDIA GeForce RTX 2060 graphics cards.

4. Discussion

After the discriminator had been trained, there was an obvious overfitting phe-
nomenon, which showed that the error on the verification set was far larger than the
error on the training set. This reduced the generalization performance of the discriminator,
and the discriminator could not be further trained. After the regularization coefficient A
had been set to 1 x10~4, the overfitting phenomenon was effectively alleviated. In the end,
the discriminator reached the optimum after 1500 epochs of training, showing close errors
on the training set and the validation set (MAE = 0.033), as shown in Figure 8.

Qeieo ’ —— Train set
0.200 Validation Set

0.175
0.1507 |
2 |
é 0.125
0.100
0.075

0.050

Wb adat
e f},f},._,,;.t,’.,,,;_‘;_;_;-_iw T TP "
i N 1O v A,

0 200 400 600 800 1000 1200 1400
Epoch

Figure 8. The loss history of the discriminator. The blue line represents the loss of the network on the
training set, and the orange line represents the loss of the network on the validation set.

As shown in Figure 9, when we entered the structural parameters shown in the lower
left corner to the discriminator, the network output frequency-transmittance curve basically
coincided with the simulation result. With this as proof, our discriminator was able to
accurately predict the frequency-transmittance curve that the input structural parameters
could represent, and the positions and sizes of the peaks and valleys were highly consistent,
which achieved the expected purpose. Although there was still a subtle error in the details,
it was already within an acceptable range. Using this trained discriminator could effectively
guide the training of the generator.
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Figure 9. The discriminator training results. The lower left corner shows the input structure pa-
rameters, for which the blue line is the corresponding simulation result, and the orange line is the

predicted result of the discriminator.

The training of the generator was non-data-driven unsupervised learning, so there
was no need to consider the impact of overfitting, and it reached the best after 2000 epochs

of training (MAE = 0.028), as shown in Figure 10.

0.101
0.091
0.08 1
M/ 0.07
0.06 1
0.051

0.041

0.034

0 250 500 750 1000 1250 1500 1750 2000
Epoch

Figure 10. The loss history of the pCGAN.

Considering that it was difficult to manually draw a set of frequency-transmittance
curves that could be achieved by this structure, we selected a set of frequency-reflectance
curves in the verification set as the target curve during verification. It is worth noting that
this set of curves was not included in the training set, so it was not used when training
the network. As shown in Figure 11, when inputting the target curve with two different
sets of noise into the generator, the generator could predict two different sets of structural
parameters, and both could reach the optical response reflected by the target curve.
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Figure 11. The generator training results. The blue line is the input target frequency-transmittance curve, the upper-center

four sets of structural parameters are the output, and the orange line is the frequency-transmittance curve predicted by the

discriminator based on the structural parameters output by the generator. The figures in (a,b) are the running results of

inputting the same target curve and different random noises.

In order to verify the reliability of the generator’s predicted results, we entered the two
sets of structural parameters outputted by the generator and the structural parameters that
met the target curve from the simulation results into the COMSOL simulation software, and
verified them through simulation. As shown in Figure 12, the verification result showed
that the effect that our discriminator and generator achieved was remarkable, and achieved
the purpose of a one-to-many reverse design.

1.0
0.8
)
Q
§ 0.6 1
£
2
s 0.4
=~
021 — h=10.26,d=22.7, w=11.89, h = 123.33 (um)
—— h=10.17,d=17.86, w = 11.56, h = 119.47 (um)
— h=10.0,d=10.0, w=10.0, h = 120.0 (um)
0.0

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Frequency(THz)

Figure 12. The simulation verification results. All three curves are from the COMSOL simulation
results. The blue line is the simulation result produced by the structural parameters outputted by
the generator in Figure 11b. The orange line is the simulation result of the structural parameters
predicted by the generator in Figure 11a. The green line is the original simulation data and result
corresponding to the target curve.

The above-mentioned reverse multiple design method of pCGAN had good scal-
ability. This method only needs to replace the data of the training discriminator, and
can be applied to other different structures, and the target curve is not limited to the
frequency-transmittance curve, but can also be applied to the corresponding relationship
between phase, incident angle, and absorptance and reflectance. We attempted to verify
its performance on different structures, and all the results showed good adaptability. In
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theory, if a fixed format dataset can be used to characterize different structures and their
parameters, this method can be applied to the reverse design of all metamaterial structures.
However, because it is not easy to build such a huge dataset, this work is still ongoing.

5. Conclusions

In this article, we were inspired by the ideas of CGAN and designed a metamaterial
reverse design method based on pCGAN. This method could not only realize the reverse
design of the metamaterial structure, but also realized the one-to-many structure design
according to the goal. The generator predicted according to the input target curve, and
outputted a variety of structures or structural parameters that met the requirements, so that
the on-demand design could be solved in this way. Moreover, this method was extremely
scalable, and can be widely used in metamaterial design re-search. Experiments have
proved that this method is feasible and effective, and the time efficiency is unmatched by
traditional design methods.
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