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Divide-and-conquer: machine-learning integrates
mammalian and viral traits with network features
to predict virus-mammal associations

Maya Wardeh® 2% Marcus S. C. Blagrove® 3, Kieran J. Sharkey® 2 & Matthew Baylis® '*

Our knowledge of viral host ranges remains limited. Completing this picture by identifying
unknown hosts of known viruses is an important research aim that can help identify and
mitigate zoonotic and animal-disease risks, such as spill-over from animal reservoirs into
human populations. To address this knowledge-gap we apply a divide-and-conquer approach
which separates viral, mammalian and network features into three unique perspectives, each
predicting associations independently to enhance predictive power. Our approach predicts
over 20,000 unknown associations between known viruses and susceptible mammalian
species, suggesting that current knowledge underestimates the number of associations in
wild and semi-domesticated mammals by a factor of 4.3, and the average potential mam-
malian host-range of viruses by a factor of 3.2. In particular, our results highlight a significant
knowledge gap in the wild reservoirs of important zoonotic and domesticated mammals’
viruses: specifically, lyssaviruses, bornaviruses and rotaviruses.
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housands of viruses are known to affect mammals, with

recent estimations indicating that less than 1% of mam-

malian viral diversity has been discovered to datel. Some of
these viruses have a very narrow host range, whereas others such
as rabies and West Nile viruses? have very wide host ranges
(rabies can theoretically infect any mammal®). Host range is an
important predictor of whether a virus is zoonotic* and therefore
poses a risk to humans. For example, Severe acute respiratory
syndrome-related (SARS-CoV) and Middle East respiratory
syndrome-related (MERS-CoV) coronaviruses are both believed
to have originated in bats, but through a host range that includes
other mammals (e.g. palm civets®, camels®) they have successfully
infected humans. Most recently, SARS-CoV-2 has been found to
have a relatively broad host range, including: bats; cats; ferrets;
and a proposed intermediate host, Malayan pangolins, which may
have facilitated spill-over to humans’. Knowing the potential host
range of viruses is essential for efforts to mitigate the global
burden of viral diseases*8.

However, our knowledge of the host range of viruses remains
limited!#® and the information we have is hugely biased towards
humans and domesticated mammals. For example, there is a
significant gap between the number of known human viruses
(274 species!?), and those of wild primates (e.g. only 5 species in
the toque macaque - Macaca sinica'0, and average of ~7 viruses
per primate host!?) which is largely a result of differential
research effort. Surveillance and research efforts often intensify
during and after significant outbreaks, leading to further biases;
for instance, recent efforts to identify potential reservoirs of
SARS-CoV-2 have led to the identification of two new virus
species in wild pangolins (Manis javanica and Manis
pentadactyla)!l, and a pangolin coronavirus’, thereby doubling
the number of known viruses of pangolins.

Despite these biases, the knowledge accumulated so far pro-
vides a valuable resource which can be exploited to estimate the
extent to which we are under-observing associations between
known viral agents and mammalian hosts. Networks, linking
known viruses with their mammalian hosts, present a global view
of sharing of these viruses amongst mammalian hosts. This
sharing exhibits certain characteristics (e.g. DNA vs RNA
viruses!>13; bats vs rodents!%) which could only be captured at
the global level. Various network topological features have been
exploited to provide significant insight into patterns of pathogen
sharing!4, disease emergence and spill-over events!®, and as
means to predict missing links in a variety of host-pathogen
networks!®17 including helminths!®, and viruses!?-20.

Here, we express the topology of our virus-mammal network in
terms of counts of potential motifs?!. Motifs22 are small sub-
graphs which constitute the building blocks of larger, more
complex networks?3. Motifs express specific functions or topo-
logical features of the underlying network, and have been used to
capture complex and indirect interactions in a variety of systems
including biology?4-2°, ecology?”?8 and disease emergence?®. We
integrate this global view of viral sharing into a machine-learning
driven framework to predict unknown (i.e. either potential or
undocumented/unobserved) associations between known viruses
and their mammalian hosts. The novelty of our framework lies in
its multi-perspective approach whereby each possible virus-
mammal association is predicted three times: 1) from the per-
spective of each of our mammals (e.g. based on the traits of the
viruses known to infect wildcats - Felis silvestris, which other
known viruses could also infect them?); 2) from the perspective
of each of our viruses (e.g. based on the traits of mammalian
species in which West Nile virus has been found to date,
which other mammals can carry this virus?); and 3) from the
perspective of the network linking known viruses with their
mammalian hosts.

Our framework utilises 6,331 associations between 1896 viruses
and 1436 terrestrial mammals, representing 0.23% of all possible
associations between these mammals and viruses. It assesses how
much these associations are underestimated by predicting which
unknown species-level associations are likely to exist in nature (or
do already exist but are yet undocumented). We aggregate these
predictions to enhance estimation of the host-range of known
mammalian viruses, and to highlight variation in the degree of
underestimation at the level of mammalian order (particularly in
wild and semi-domesticated species), and viral group (Baltimore
classification), family, and genus. In addition, we highlight
knowledge gaps in mammalian species susceptible to known zoo-
noses and equivalent viruses in important domesticated mammals.
By investigating this underestimation from three separate points of
view, we enhance the overall predictive performance and capture
local (at the level of a single viral or mammalian species), as well as
global (aggregated) variations in our knowledge gaps.

Results
Our framework to predict unknown associations between known
viruses and potential mammalian hosts or susceptible species
comprised three distinct perspectives: viral, mammalian and
network. Each perspective produced predictions from a unique
vantage point (that of each virus, each mammal, and the network
connecting them respectively). Subsequently, their results were
consolidated via majority voting. This approach suggested that
20,832 (median, 90% CI = [2,736, 97,062], hereafter values in
square brackets represent 90% CI) unknown associations poten-
tially exist between our mammals and their known viruses,
(18,920 [2,440, 91,517] in wild or semi-domesticated mammals).
Number of unknown associations predicted by each perspective
individually were as follows: mammalian only = 41,537 [4,275,
23,8971], viral only = 21,352 [2,536, 95,630], and network only =
76,081 [27,738, 20,5814]. Our results indicated a ~4.29-fold
increase ([~1.43, ~16.33]) in virus-mammal associations (~4.89
[~1.5, ~19.81] in wild and semi-domesticated mammals).

Additionally, we trained an independent pipeline including
only the 3534 supported by evidence extracted from meta-data
accompanying nucleotide sequences, as indexed in EID2 (55.82%
of all associations - see Methods section and Supplementary
Results 8). Our sequence-evidence pipeline indicated that 15,721
(median, 90% CI =[1,603, 88,553]) unknown associations could
potentially exist (13,930 [1,298, 83,043] in wild or semi-
domesticated mammals).

In the following subsections we first illustrate the mechanism
of our framework via an example, then further explore the pre-
dictive power of our approach for viruses and mammals.

Example. Our multi-perspective framework generates predictions
for each known or unknown virus-mammal association
(2,722,656 possible associations between 1,896 viruses and 1,436
terrestrial mammals). We highlight this functionality using two
examples (Fig. 1). West Nile virus (WNV) a flavivirus with wide
host range, and the bat Rousettus leschenaultia (order: Chir-
optera). We first consider each of our perspectives separately, and
then showcase how these perspectives are consolidated to pro-
duce final predictions.

1) The mammalian perspective: our mammalian perspective
models, trained with features expressing viral traits (Table 1),
suggested a median of 90 [17, 410] unknown associations
between WNV and terrestrial mammals could form when
predicting virus-mammal associations based on viral features
alone - a ~2.61-fold increase [~1.3, ~8.32]. Similarly, our results
indicated that 64 [4, 331] new associations could form between
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Fig. 1 Example showcasing final and intermediate predictions of West Nile Virus (WNV), and Rousettus leschenaultii. Panel A Top 60 predicted

mammalian species susceptible to WNV. Mammals were ordered by mean probability of predictions derived from mammalian (all models), viral (WNV
models) and network perspectives, and top 60 were selected. Circles represent the following information in order: 1) whether the association is known
(documented in our sources) or not (potential or undocumented). Hosts are omitted for known associations. 2) Mean probability of the three perspectives
(per association). 3) Median mammalian perspective probabilities of predicted associations. These probabilities are obtained from 3000 models

(50 replicate models for each mammal), trained with viral features - SMOTE class balancing. 4) Median viral perspective probabilities of predicted
associations (50 WNV replicate models trained with mammalian features - SMOTE class balancing). 5) Median network perspective probabilities of
predicted associations (100 replicate models, balanced under-sampling). 6) Taxonomic order of predicted susceptible species. Orders are shortened as
follows: Artiodactyla (Art), Carnivora (Crn), Chiroptera (Chp), primates (Prm), Rodentia (Rod), and Others (Oth). Panel B Top 50 predicted viruses of R.
leschenaultii. Viruses were ordered by mean probability of predictions derived from mammalian (R. leschenaultii models), viral (all models) and network
perspectives. Circles as per Panel A. Baltimore represents Baltimore classification. Panel € Median probability of predicted WNV-mammal associations in
each of the three perspectives per mammalian order. Points represent susceptible species predicted by voting (at least two of the three perspectives - n =
137). Median ensemble probability is computed in each perspective (50 replicate models for each virus/mammal, 100 replicate network models).
Predictions derived from each perspective at 0.5 probability cut-off. Supplementary Data 1 presents full WNV results. Panel D Median probability of virus-
R. leschenaultii associations in the three perspectives per Baltimore group. Points represent susceptible species predicted by voting (at least two of the three
perspectives - n = 64), predictions are derived as per panel C. Supplementary Data 2 lists full results for R. leschenaultii. Supplementary Fig. 7 illustrate the

results when research effort into viruses and mammals is included in mammalian and viral perspectives, respectively.

our selected mammal (R. leschenaultia) and our viruses — a ~4.37-
fold increase [~1.21, ~18.42] (Supplementary Results 4).

(2) The viral perspective: our viral models, trained with features
expressing mammalian traits (Table 2), indicated a median of 48
[0, 214] new hosts of WNV (~1.86- fold increase [~1, 4.82]).
Results for our example mammal (R. leschenaultia) suggested 18
[3, 76], existing viruses could be found in this host (~1.95-fold
increase [~1.16, ~5.00]) - Supplementary Results 5).

(3) The network perspective: Our network models indicated a
median of 721 [448, 1,317] (~13.88 [9, 24.52] fold increase)
unknown associations between WNV and terrestrial mammals,
and that 246 [91, 336] existing viruses could be found in our
selected host (R. leschenaultia), equivalent to a ~13.95 [~5.79,
~18.68] fold increase (Supplementary Results 6).
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Considering that each of the above perspectives approached the
problem of predicting virus-mammal associations from a different
angle, the agreement between these perspectives varied. In the case
of WNV: mammalian and viral perspectives achieved 92.3%
agreement [72.6%-98.5%]; mammals and network perspectives
had 55.3% agreement [33.4%-69.5%]; and viruses and network had
52.9% agreement [19.8%-68.7%]. In the case of R. leschenaultia
these numbers were as follows: 96.15% [82.44%, 99.58%], 87.24%
[76.37%, 95.04%], and 87.61% [75.90%, 95.25%)], respectively. The
agreements between our perspectives across the 2,722,656 possible
associations were as follows: 98.04% [90.36%, 99.73%] between
mammalian and viral perspectives, 96.71% [88.62%, 98.92%]
between mammalian and network perspectives, and 97.11%
[91.57%, 98.95%)] between viral and network perspectives.
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Table 1 Viral traits & features used to build our mammalian models.

Category Viral Feature Data type Reason for inclusion

Host-driven Mean phylogenetic distance Continuous Capturing phylogenetic and ecological distances between
between hosts each virus’ known hosts and each mammal in our study.

Mean ecological distance

between hosts

Maximum phylogenetic breadth# Greater phylogenetic breadth indicates more generalist
potential of the virus.

Virus genome & capsid RNA Binary RNA viruses mutate/adapt faster®>, and are generally
deactivate quickly when exposed to the environment.

Retro-transcribing Retroviruses are generally very conserved®®, have to enter
the nucleus®’ and insert into the genome. Additional steps
may require specificity and limit range.

Negative sense/positive sense Sense affects replication cycle and range of host enzymes
needed.

Circular/linear Circular/linear genome affects enlisting host enzymes for
replication and translation®8.

Monopartite/segmented Segmented viruses can undergo recombination if two strains
of the same virus infect a cell®. This can lead to host range
changes of segments of the genome.

Enveloped Envelopes are derived from the host cell membrane, so can
affect specific-host immune activation. Enveloped viruses
deactivate rapidly in the external environment (often
requiring direct transfer). The envelope will change upon
infection of a new host”©.

GC-content Continuous High GC content usually leads to higher thermo-stability of
the genome’".

Genome size Genome size is indicative of many aspects of the virus such

Virus replication, release, and Cytoplasm Binary as complexity, DNA/RNA, and replication type.

cell entry Replication site is linked to RNA/DNA genome - if a virus
has a DNA stage it must replicate in the nucleus and
overcome additional cell barriers.

Release Categorical Affects rate of virus production, cell life-span and means of
presentation to the immune system?’2,

Cell entry Availability of receptors influences potential host range.

Transmission routes 8 main transmission routes Binary for Route(s) of transmission affected by structure/stability of
each route virus and nature of interaction between potential hosts.

We trained a suite of models for each mammalian species with two or more known viruses (n = 699). Each model comprised the below described features (response variable =1 if the virus is known to

associate with the focal mammalian species, O otherwise - methods section provides further details). Full description of these features, their sources and justification are listed in Supplementary Note 2.

After voting, our framework suggested that a median of 117
[15, 509] new or undetected associations could be missing
between WNV and terrestrial mammals (~3.45-fold increase
[~1.3, ~12.2]). Similarly, our results indicated that R. leschenaul-
tia could be susceptible to an additional 45 [5, 235] viruses that
were not captured in our input (~1.37-fold increase [~1.26,
~13.37]). Figure 1 illustrates top predicted and detected
associations for WNV (Supplementary Data 1) and R. lesche-
naultia (Supplementary Data 2). Supplementary Results 1
illustrate results with research effort into viruses, and mammals
included as a predictor in our mammalian and viral perspective
models, respectively. Predictions with and without research effort
incorporated into models trained in these perspectives broadly
agreed.

Relative importance of viral features. Our multi-perspective
approach trained a suite of models for each mammalian species
with two or more known viruses (n = 699, response variable = 1
if the virus is known to associate with the focal mammalian
species, 0 otherwise). This enabled us to assess the relative
importance (influence) of viral traits (Table 1) to each of our
mammalian models. This in turn showcased variations of how
these viral traits contribute to the models at the level of individual
species (e.g. humans), and at an aggregated level (e.g. by order or
domestication status). The results, highlighted in Fig. 2A, indicate
that mean phylogenetic (median =95.4% [75.6%, 100%]) and

mean ecological (90.90% [43.50%, 100%]) distances between
potential and known hosts of each virus were the top predictors
of associations between the focal host and each of the input
viruses. Maximum phylogenetic breadth was also important (74.7
0%, [16.60%, 100%]).

Mammalian host range. Our results suggested that the average
mammalian host range of our viruses is 14.33 [4.78, 54.53]
(average fold increase of ~3.18 [~1.23, ~9.86] in number of hosts
detected per virus). Overall, RNA viruses had the average host
range of 21.65 [7.01, 82.96] hosts (~4.00- fold increase [~1.34,
~14.15]). DNA viruses, on the other hand, had 7.85 [2.81, 29.47]
hosts on average (~2.43 [~1.14, ~6.89] fold increase). Table 3 lists
the results of our framework at Baltimore group level and selected
family and transmission routes of our viruses. Figure 2 illustrates
predicted mammalian host range of our viruses (Fig. 2B, Sup-
plementary Data 3), and the increase in predicted number of
viruses per species in species-rich mammalian orders of interest
(Fig. 2C, Supplementary Data 4).

Relative importance of mammalian features. We trained a suite
of models for each virus species with two or more known
mammalian hosts (n = 556, response variable = 1 if the mammal
is known to associate with the focal virus species, 0 otherwise).
This allowed us to calculate relative importance of mammalian
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Category Mammalian feature

Table 2 mammalian traits & features used to build our viral models.

Reason for inclusion

Phylogeny Mean phylogenetic distance to known hosts.
Evolutionary distinctiveness
Order & family

Domestication

Taxonomy &
domestication

Ecological traits Morphological traits (body mass)

maturity, activity cycle, and migration)
Reproductive traits (gestation period length,
litters per year, litter size and weaning age)
Habitat utilisation

Diet (proportional use of 10 categories)
Mean ecological distance

Geo-spatial features Geographical range (area size)

Climate (mean temperature & precipitation)

Natural land cover diversity/Agriculture and
farming diversity

Mammalian biodiversity
Urbanisation/human population

Life-history traits (Maximum age, age at sexual

Linked to sharing of viruses between mammals#73.74,

Can correlate negatively with pathogen species richness’>.

Can affect host-pathogen’®, particularly viral, associations?.

Might influence sharing of viruses between host groups. Domesticated
mammals and human might share more viruses with each other than
related wild species.

A key feature in terms of metabolism and adaption to environment.
Potentially relevant in terms of within-host dynamics of viruses.

Similar habitat utilisation might correlate with contact with similar
viruses.

Similar dietary habit might associate with similar viral assemblage.
Indicates if a potential host species is ecologically close to or distant from
the virus' preferred host range. We based this distance on a generalised
form of Gower's distance matrices’”:”8 incorporating all ecological traits.
Might lead to exposure to larger number or more diverse viruses.
Climate has been shown to influence a number of human and domestic
mammal pathogens’.80,

These factors have been found to influence certain categories of host-
pathogen associations8!. Supplementary Note 3 lists further details of
mammalian geo-spatial feature extraction.

Note 3.

We trained a suite of models for each virus species with two or more known mammalian hosts (n = 556). Each model comprised the below described features (response variable =1 if the mammal is
known to associate with the focal virus species, O otherwise - methods section provides further details). Full description of these features, their sources and justification are listed in Supplementary

traits (Table 2) to our viral models. We were also able to capture
variations in how these features contribute to our viral models at
various levels (e.g. Baltimore classification, or transmission route)
as highlighted in Fig. 3A. Our results indicated that distances to
known hosts of viruses were the top predictor of associations
between the focal virus and our terrestrial mammals. The
breakdown was: 1) mean phylogenetic distance - all viruses =
98.75% [93.01%, 100%], DNA = 99.48% [96.03%, 100%], RNA =
[91.93%, 100%]; 2) mean ecological distance all viruses = 94.39%
[71.86%, 100%], DNA =96.36% [80.99%, 100%], RNA =
[69.48%, 100%]. In addition, life-history traits significantly
improved our models, in particular: longevity (all viruses = 60.9%
[12.12%, 98.88%], DNA = 68.03% [11.22%, 99.69%], RNA =
[13.55%, 96.37%]); body mass (all viruses =62.92% [5.4%,
97.65%], DNA = 72.75% [18.49%, 100%], RNA = 57.45% [4.32%,
95.5%]); and reproductive traits (all viruses =53.37% [5.67%,
95.99%]%, DNA =59.46% [8.27%, 99.32%], RNA =50.17%
[4.85%, 92.17%]).

Wild and semi-domesticated susceptible mammalian hosts of
viruses. our framework indicated ~4.28 -fold increase [~1.2,
~14.64] of the number of virus species in wild and or semi-
domesticated mammalian hosts (16.86 [4.95, 68.5] viruses on
average per mammalian species). These results indicated an
average of 13.45 [1.73, 65.04] unobserved virus species for each
wild or semi-domesticated mammalian host (known viruses that
are yet to be associated with these mammals). Our framework
highlighted differences in the number of viruses predicted per
order (Table 4). Figure 3 illustrates the predicted number of
viruses in wild or semi-domesticated mammal by mammalian
host range (Fig. 3B, Supplementary Data 5), and the top 18 virus
genera (per number of host-virus associations) in selected orders
(Fig. 3C, Supplementary Data 6). Supplementary Results 1 lists
the results with the inclusion of research effort into mammalian
species in our viral perspective models.

Network perspective - Potential motifs. We quantified the
topology of the network linking virus and mammal species by
means of counts of potential motifs?!. Figure 4 illustrates how
potential motifs are captured in our network. Briefly, for each
virus-mammal association for which we want to make predictions
(n=2,722,656, of which 6,331 are supported by our evidence, see
methods section), we “force insert” this focal association into our
network (Fig. 4A, B) and enumerate all instances of 3 (n=2), 4
(n=6), and 5-node (n=20) potential motifs in which this
association might feature if it actually existed?! (Fig, 4C visualises
these different motifs). Following this process, a features-set is
generated comprising the counts potential motifs for all included
associations. Figure 4D illustrates the count of motifs (logged)
grouped by mammalian order and virus Baltimore classification.

Relative importance of network (motif) features. Figure 4E
illustrates that M4.1 was the most important feature in our network
models: median =100% [90.19%, 100%)]. Followed by: M5.1 =
97.84% [89.19%, 99.93%], M5.7 = 98.8 97.22% [87.7%, 98.77%] and
M4.6 =96.75% [86.13%, 100%)]. Research effort of viruses and
mammals had relative importance =90.26% [82.94%, 95.36%],
88.42% [78.38%, 94.87%] respectively. Overall, 5-node motif-fea-
tures had median relative influence =75.06% [1.21%, 98.14%];
whereas 3 and 4-node motif-features had relative influence =
71.69% [55.76%, 85.34%], and 61.06% [27.14%, 100%], respectively.
Supplementary Fig. 29 illustrate the partial dependence of network
perspective models on each of our network features.

Validation. We validated our framework in three ways: 1) against
a held-out test set; 2) by systematically removing selected known
viral-mammalian associations and attempting to predict them;
and 3) against external data source, comprising viral-mammalian
associations extracted using an exhaustive literature search tar-
geting wild mammals and their viruses®30.
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Fig. 2 Results (viruses). Panel A Variable importance (relative contribution) of viral traits to mammalian perspective models. Variable importance is
calculated for each constituent ensemble (n=699) of our mammalian perspective (median of a suite of 50 replicate models, trained with viral features,
with SMOTE sampling), and then aggregated (mean) per each reported group (columns). Panel B - Number of known and new mammalian species
associated with each virus. Rabies lyssavirus was excluded from panel B to allow for better visualisation. Top 40 (by number of new hosts) are labelled.
Species in bold have over 150 predicted hosts (Supplementary Data 3 lists details of these viruses including CI). Panel € Predicted number of viruses per
species of wild and semi-domesticated mammals (group by mammalian order). Following orders (clockwise) are presented: Artiodactyla, Carnivora,
Chiroptera, Perissodactyla, Primates, and Rodentia. Source of the silhouette graphics is PhyloPic.org. (Supplementary Data 4 lists aggregated results per
mammalian order). Circles represent each mammalian species (with predicted viruses > 0), coloured by number of known viruses previously not
associated with this species. Boxplots indicate median (centre), the 25th and 75th percentiles (bounds of box) and inter quantile range (whiskers) and are
aggregated at the order level. Large red circles with error bars (90% Cl) illustrate the median number of known viruses per species in each order. Number
of species presented (n) is as follows: All = 1293 (Artiodactyla =104, Carnivora =177, Chiroptera = 548, Perissodactyla =11, Primates = 171, and Rodentia =
282); Group | =666 (94, 109, 156, 10, 160, 137); Group Il =371 (32, 120, 111, 1, 54, 53); Group Il = 410 (87,62,123,9,51,78); Group IV =739 (98, 102, 221,
9,148, 161); Group V =1129 (87,173, 528, 8,107, 226); Group VI =358 (55, 64, 30, 6, 139, 64); and Group VII =110 (3,2,53,1,43,8). Supplementary Fig. 8
presents results derived with research effort into mammalian hosts and viruses included in the constituent models trained in the viral and mammalian

perspectives, respectively.

Our held-out test set comprised 15% of all data (randomly
selected, n = 407,265; 954 known virus-mammal associations, see
methods below). We removed this set from our network,
computed network features (motifs), and trained constituent
models in each perspective with the remainder data. We then
estimated our framework performance metrics against the held-
out test set. Our framework achieved overall AUC=0.938
[0.862-0.959], F1-Score = 0.284 [0.464-0.124], and TSS =0.876
[0.724-0.918], when trained without including research effort in
its mammalian and viral perspectives. When research effort was
included in these perspectives, performance metrics were as
follows: AUC =0.920 [0.823, 0.944], F1-Score =0.272 [0.526,
0.093], and TSS = 0.840 [0.646, 0.888].

The performance of our voting approach was better than any
individual perspective, or combination of perspectives (Sup-
plementary Tables 8-11). The most significant improvement
was in Fl-score, where individual perspectives scores were as
follows: network =0.104 [0.210-0.051], mammalian =0.115

[0.009-0.064] (0.131 [0.284-0.035] with research effort), and
viral = 0.181 [0.374-0.074] (0.196 [0.373-0.067]).

Additionally, we conducted a systematic test to predict
removed virus-mammal associations. In this test, we system-
atically removed one known virus-mammal association at a time
from our framework, recalculated all inputs (including from
network) and attempted to predict these removed associations.
Our framework succeeded in predicting 90% of removed
associations (90.70% for associations removed for viruses,
89.92% for associations removed from mammals, Supplementary
Results 3).

Finally, our framework predicted 84.02% [77.69%, 89.60%] of
the externally obtained viral-mammalian associations (with
detection quality > 0) where both host and virus were included
in our pipeline, and 77.82% [68.46%, 86.51%] (any detection
quality). When including research effort in our mammalian and
viral perspectives, these results were: 84.47% [78.15%, 89.60%],
and 78.41% [68.83%, 86.37%], respectively.
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Table 3 Predicted range of susceptible mammal

Family

Baltimore classification

Predicted range (~fold increase)

Predicted range (~fold increase)

71 [15.5, 293.25] (~9.51 [~2.08, ~42.22])
60.25 [15, 196.5] (-7.76 [-1.62, ~27.191)

Group | (dsDNA) 8.63 [3, 30.43] (~2.59 [~1.16, ~6.94]) Bornaviridae

Group Il (ssDNA)
Group Il (dsRNA)

Orthomyxoviridae
Rhabdoviridae

5.47 [2.19, 24.88] (-2.04 [-1.07, ~6.56])

52.8 [23.68, 149.09] (-7.33 [-1.81, ~24.03])

27.15 [7.96, 93.11] (-4.04 [-1.41, ~11.94])

70.67 [25.33, 220] (~6.67 [~2.49, ~15.54])
31.75 [7, 155.62] (~5.77 [-1.3, ~25.371)

vV

17.64 [5.34, 65.29] (-3.49 [-1.26, ~10.9]) Hepeviridae

Group IV ((+)ssRNA)
Group V ((—)ssRNA)

Filoviridae

24.91 [8.36, 100.53] (~4.44 [-1.39, ~18.081)

48.5 [12.45, 161.65] (~5.71 [~1.52, ~16.95])

%
vV
VI

26.68 [10.26, 94.58] (~4.99 [~1.54, ~15.36]) Togaviridae

Group VI (ssRNA-RT)
Group V (dsDNA-RT)

40.59 [11.26, 131.77] (~5.09 [-1.37, ~16.14])

Flaviviridae

19.29 [7.29, 109.43] (~2.53 [~1.35, ~14.55])

26.68 [10.26, 94.58] (~4.99 [-1.54, ~15.36])

Retroviridae

22.86 [6.23, 94.89] (-4.81 [~1.44, ~17.85])

vV

Coronaviridae
Poxviridae

Transmission route

Direct

23.22 [7.76, 88.76] (~4.77 [-1.39, ~15.74])
32.5[9.39, 111.21] (~4.56 [~1.49, ~13.71])

26.28 [9.39, 98.79] (-4.46 [~1.61, ~14.4])

14.67 [5.07, 55] (~3.29 [~1.25, ~10.49])

Reoviridae

18.26 [6.05, 60.05] (~3.18 [-1.27, ~9.171)

Direct sexual

Paramyxoviridae
Phenuiviridae

20.26 [6.81, 68.79] (~3.44 [-1.31, ~10.48])
20.02 [7.35, 71.38] (~3.41 [~1.27, -11.471)

Direct vertical

Indirect

26.94 [6.35, 124.18] (~4.25 [~1.23, ~20.34])
20.09 [5.85, 90.45] (~4.15 [~1.39, ~19.03])

Peribunyaviridae
Hantaviridae

10.7 [4M, 39.46] (~2.52 [~1.15, ~7.691)

Ingestion

15.61 [4.83, 77.59] (-3.61 [~1.23, ~17.13D)

14.53 [4.6, 59.87] (~3.29 [-1.24, -11.73])

Inhalation

13.62 [4.45, 52.93] (-3.55 [~1.32, ~10.7])

i\

20.32 [6.25, 82.58] (~3.81 [-1.29, ~14.12] Picornaviridae

Environmental

Vector

28.89 [8.67, 107.56] (-3.47 [~1.18, ~12.781)

Pneumoviridae

30.1[8.38, 117.44] (~4.73 [~1.42, ~18.26])

Results with research effort included into our mammalian and viral perspective models are reported in Supplementary Table 6.

Discussion

Overall, we predict a 5.35-fold increase in associations between
wild and semi-domesticated mammalian hosts and known zoo-
notic viruses (found in humans, excluding rabies virus). Similarly,
our results indicate a 5.20-fold increase between wild and semi-
domesticated mammals and viruses of economically important
domestic species (e.g. livestock and pets). Bats and rodents, which
have been associated with recent outbreaks of emerging viruses
such as coronaviruses’! and hantaviruses®?, are linked with
increased risk of zoonotic viruses®133033 Our results could
potentially enable targeted surveillance of rodents and bats for
known viruses not yet associated with species in these orders: we
predict a 5.55-fold (2.69 per species) and 5.45-fold (3.77)
increases respectively (Fig. 2C, Supplementary Data 6). The fold
increases are higher for zoonotic viruses and viruses observed in
economically important domestic species, where for bats we
predict a 7.42-fold (2.30 per species) and an 8.29-fold increase
(2.42 per species) respectively. Whereas for rodents we predict a
6.43-fold (3.69) and a 7.7-fold increase (2.92), respectively.

The increase in associations indicates a knowledge-gap across
mammalian species that are potentially susceptible to these
viruses. For bats the largest fold increase was in group III viruses
with an 8.72-fold-increase (1.43 per species, group IV had the
highest fold increase per species, 2.26), whereas in rodents the
highest increase was in group V viruses - a 6.23-fold-increase
(3.49 per species).

The largest significant fold increases in included bats were with
the group V Lyssaviruses (excluding rabies), a family of viruses
causing an array of medically and veterinary important rabies-like
diseases in a wide range of mammals3*35, with a 10.4-fold
increase in the number of predicted associations (Fig. 3C, Sup-
plementary Data 6). Group V Bornaviruses, which cause a range
of encephalitic diseases in mammals including the fatal Borna
disease®® (sad horse disease) common in horses and other
domesticated animals, had a 23 and a 12-fold increase in asso-
ciations in bats and rodents, respectively. Finally, group III
Rotaviruses had an 8.11-fold increase in bats — rotaviruses are the
most common cause of diarrhoeal diseases in children and are of
particular concern in developing countries3’.

Analogous to bats and rodents being important hosts of
zoonotic viruses, wild ruminants are key in the maintenance
and circulation of viruses affecting ruminant livestock38. Our
framework highlights this knowledge-gap by predicting a 7.77-
fold increase in number of associations between wild and semi-
domesticated ruminants and known viruses (3.37-fold increase
per species, Fig. 2C, Supplementary Table 14); and a 10.11-fold
increase in associations between these ruminants and observed
zoonotic viruses (2.25-fold per species). Furthermore, our
model predicted a significant increase in the mammalian host
range of important livestock viruses including: a 7.45-fold
increase in range of Venezuelan equine encephalitis virus
(Group 1V, Togaviridae); a 5.33-fold increase in range of
Schmallenberg orthobunyavirus (Group V, Peribunyaviridae);
and a 2.96-fold increase in range of bluetongue virus (Group
III, Reoviridae).

These results demonstrate that our approach can highlight
large numbers of potentially missing associations of medically-
and veterinary-important viruses and their potential hosts. For
instance, we predicted 13 genera of viruses in three species of lynx
(lynx canadensis, lynx rufus and lynx pardinus) which were not
associated with the lynx in our input data, including Nipah virus.
Such information can be used to better understand the risk to
people and livestock from these hosts. There are several reasons
for which virus-mammal associations may have been dis-
proportionately under-described, which can be categorised as
follows:
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Fig. 3 Results (Mammals). Panel A Variable importance (relative contribution) of mammalian traits to viral perspective models. Variable importance is
calculated for each constituent model (n=556) of our viral perspective (trained with mammalian features), and then aggregated (median) per each
reported group (columns). Panel B Number of known and new viruses associated with each mammal. Labelled mammals are as follows: top 4 (by number
of new viruses) for each of Artiodactyla, Carnivora, Chiroptera, Primates, Rodentia, and other orders. Species in bold have 100 or more predicted viruses
(Supplementary Data 5). Panel € Top 18 genera (by number of predicted wild or semi-domesticated mammalian host species) in selected orders (Other
indicated results for all orders not included in the first five circles). Each order figure comprises the following circles (from outside to inside): 1) Number of
hosts predicted to have an association with viruses within the viral genus. 2) Number of hosts detected to have association. 3) Number of hosts predicted
to harbour viral zoonoses (i.e. known or predicted to share at least one virus species with humans). 4) Number of hosts predicted to share viruses with
domesticated mammals of economic significance (domesticated mammals in orders: Artiodactyla, Carnivora, Lagomorpha and Perissodactyla). 5)
Baltimore classification of the selected genera (Supplementary Data 6). Supplementary Fig. 9 presents results derived with research effort into mammalian
hosts and viruses included in the constituent models trained in the viral and mammalian perspectives, respectively.

1. Public health, food security and economically driven 2. Practical limitations: infectious agents of endangered and

research biases: Most of our current knowledge of infectious
agents, including viruses, is centred upon humans. Second
to humans (37.1% of captured mammalian research effort),
agricultural and companion animals tend to receive
significantly more research effort (~15% of captured
mammalian research effort). Examples include the well-
studied microbiome of domestic cats (Felis catus, 57 known
virus species) compared with the understudied microbiome
of wild felines (e.g. Felis silvestris, 13 known viruses — these
expanded to 51 using our framework). Linked to this is
wealthier countries producing a larger research volume, and
hence interactions common within or of importance to
such countries are more likely to be described.

rare mammalian species, and mammalian species found
predominantly in remote regions, we suspect, are less likely
to be characterised due to difficulties in sampling these
mammals in their natural habitats. The same likely applies
to viruses that are less common in mammals (e.g. avian
pathogens). Nevertheless, our approach can capture and
expand associations of both rare viruses (found in one or
two species), and understudied mammalian species, due to
separation of perspectives. If a virus is rare, our approach
would capture potentially susceptible mammals via the
network and mammalian perspectives. Similarly, if a
mammalian species is rarely studied, then we would still
capture viruses potentially found in this mammalian species
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Table 4 Predicted number of viruses per top 15 orders by fold increase in number of viruses predicted in wild or semi-
domesticated mammalian hosts (per species).

Order/sub-order Included species Fold increase/species Virus range/species New viruses/species
Tylopoda (part Artiodactyla) 6 ~12 [~1.75, ~30.45] 31.5 [4, 125] 29 [1.5, 122.5]
Ruminantia (part Artiodactyla) 99 ~9.12 [~1.69, ~23.53] 41.45 [10.92, 126.55] 36 [5.61, 121.07]
Primates 172 ~7.12 [-1.48, ~20.88] 34.46 [10.24, 114.62] 27.77 [3.86, 107.89]
Suina (part Artiodactyla) 13 ~7.12 [~0.88, ~28.01] 21.83 [3.33, 112.83] 18.92 [1.33, 109.83]
Perissodactyla 14 ~5.74 [~1.67, ~17.78] 2518 [8, 97.09] 20.64 [3.73, 92.55]
Cingulata 1 ~5.67 [-1.67, ~27] 17 [5, 107] 14 [2,104]
Lagomorpha 13 ~5.27 [-1.9, ~16.43] 18 [5.25, 74.83] 15.08 [2.42, 71.92]
Rodentia 287 ~4.79 [-1.18, ~18.72] 15.22 [3.54, 74.84] 12.65 [1.26, 72.22]
Carnivora 180 ~3.91 [~1.23, ~14.84] 18.3 [5.99, 78.38] 14.11 [1.94, 74.15]
Hippopotamidae (part Artiodactyla) 2 ~3.00 [~1.00, ~10.5] 311, 20] 2 [0, 19]
Chiroptera 548 ~2.79 [~1.08, ~9.5] 9.51 [3.11, 41.66] 7.11 [0.84, 39.24]
Scandentia 3 ~2.15 [~0.73, ~10.34] 11 [4.33, 55.33] 5.67 [1, 50]
Didelphimorphia 5 ~2.13 [-0.93, ~8.57] 4.6 [1.6, 27] 3 [0, 25.2]
Eulipotyphla 44 ~2.04 [~0.86, ~13.78] 7.14 [2.45, 55] 4.73 [0.36, 52.45]
Pilosa 5 ~1.84 [-0.6, ~17.98] 7.8 [3.8, 68.4] 3.4 [0, 63.8]
Results are ordered by descending fold increase. Values are derived per species and averaged per order. Results with research effort included into our mammalian and viral perspective models are
reported in Supplementary Table 7.

via the network and viral perspectives. Overall, our voting
framework was able to expand the host range of rare viruses
(known hosts <2, n=1450) from 1,619 to 4,174 (~2.16
average increase per rare virus). Virus range of rare
mammals (known viruses <2, n=954) was also increased
from 1150 to 4318 (~3.21 average fold increase per
mammal).

3. Biological reasons: virus-mammal associations which
produce more visible or marked effects are more likely to
have been studied®. For instance, fertility or physically
observable interactions are more likely to be over-studied,
whilst potentially important asymptomatic interactions, or
interactions where a cross-immunity from related viruses
masks observable symptoms, may potentially remain
unnoticed and hence understudied. Furthermore, co-
evolution between virus and primary host often results in
a less severe phenotype®’, whilst the same virus in an
incidental host may result in more marked and hence more
studied disease. Examples include Ebola viruses presenting
minimal symptoms in bats but severe disease with high
mortality in humans*!; analogous interactions where the
former host may have been unobserved are likely to be
plentiful. For example, our framework indicated that
34 species of bats could be susceptible Ebolaviruses.
Recently, advances in metagenomics have enhanced viral
discovery in hosts, enabling cheap and rapid identification
and sequencing of host viromes. This approach mitigates
many historical ‘top-down’ limitations mentioned above,
enabling simple identification of e.g. asymptomatic
infections®42. However, whilst this methodology is likely
to be increasingly used in future, it is currently in its infancy
and a large proportion of current viral knowledge is still the
result of potentially biased top-down approaches.

The novelty of our approach lies in the separation of per-
spectives - by isolating the viral, mammalian and network per-
spectives we were able to further our understanding of
mammalian hosts of known viruses in a number of ways. Firstly,
our framework integrated local (mammalian and viral) and global
(network) approaches. Our locally trained mammalian and viral
models enabled the exploration of the effect, by means of variable
importance, of a comprehensive set of mammalian and viral
traits. We were able to measure the relative influence each of our

mammalian features had on each multi-host virus; and con-
versely, the influence each of our viral features had on each
mammal (with two or more known viruses). This facilitated the
aggregation of variable importance by, for instance, viral or
mammalian taxonomy, which in turn illustrated differences in
how these features influenced our models. For example, when
aggregated at genus level, we found that body mass and a larger
proportion of plants in the diet had higher influence on our
models for Orbiviruses, which are known to infect ruminants and
horses (7 species, median values = 90.97 and 86.83, respectively);
whereas longevity, and weaning age were more influential to
Ebolavirus models (5 species, 94.82 and 91.42, respectively).
Uniquely, we incorporated geospatial features extrapolated from
an extensive collection of global data on climate, environmental,
agricultural, and mammalian diversity variables. The importance
of these varied across our viral models. For instance, in cor-
onaviruses, mean human population was more important for
Beta-coronaviruses (83.38) than Alpha-coronaviruses (65.65).
From the mammalian perspective, phylogenetic and ecological
distances to known hosts were the most influential across all
models. The importance of maximum phylogenetic breadth
varied across families within the same taxonomic order. For
instance, in rodents, it ranged from 89.08 (median) in Sciuridae
(14 species) to 48.83 in Muridae (37 species). Local, species-level
variable importance further enhances the utilisation of our
approach to targeted surveillance, by enabling flexible aggregation
of results from individual species to entire groups and orders.
Secondly, we consolidated these viral and mammalian traits
with network topological features, expressed in terms of counts of
potential motifs. We measured variable importance of our
topological features and found that the likelihood of an associa-
tion increased the more it featured in motifs linking its mam-
malian host with a virus with a wide host range (M4.1 and M5.1).
Similarly, an association was more likely to be predicted by our
network perspective models the more it featured in motifs linking
a mammal with a wide range of viruses (M4.6 and M5.20), but
the influence of these motif-features was not as high as the pre-
vious two. More complex motif-features (e.g. M4.4, M5.5, M5.9,
M5.12, and M5.19) had a negative influence: the more an asso-
ciation featured in them, the less likely it was to be predicted by
our models. This could be because these motifs indicate a
separation between the known host range of the focal virus and
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features (counts of potential motifs per each focal association) in our bipartite network, grouped by mammalian order and Baltimore classification. The
counts are logged to allow for better visualisation. E Variable importance (relative contribution) of motif-features (variables) to our network perspective
models (SVM-RW). Motifs (subgraphs) are coloured by the number of nodes (K= 3, 4, 5). Boxplots indicate median (centre), the 25th and 75th
percentiles (bounds of box) and inter quantile range (whiskers). Points represent variable importance in individual runs (n =100). Research effort into both
viruses and mammals is included as independent variables in our network models (coloured in yellow).
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the focal mammal, and vice versa. For instance, higher counts of
M5.19 suggest that, in general, there are no indirect pathways
between the focal virus and mammal, despite the mammal fea-
turing in several such pathways. Thus, higher counts of M5.19
might indirectly indicate that the focal virus is known to affect
different types of hosts (e.g. different taxa).

Thirdly, our voting approach, despite being more conservative
than its components (Supplementary Results 2, 4-6), was able to
bridge a significant gap in our knowledge of mammalian hosts
susceptible to included viruses (>18,000 associations between wild
and semi-domesticated mammalian species and known viruses).
Furthermore, our voting approach outperformed each of its
constituent perspectives, and any combination of two perspec-
tives, across all included metrics. The estimated improvements in
performance metrics are essential, particularly for the application
of our approach to targeted surveillance, because they indicate
that in addition to its ability to detect documented associations
very well, we have more confidence in predicted novel (unknown)
associations (better F1-score) compared with results derived from
any individual perspective, or by joining any two perspectives.
Additionally, the results of our approach align with recent
advances in the field of predicting novel hosts of known viruses,
which all predict an increase in the host range>*+17:20,33,43,44 For
instance, we predict 44 novel associations between bats and
Filoviruses (total of 60), which is a more conservative estimate
than recent studies*3. For flaviviruses, we predict 85 species of
primates to be hosts to both zika and yellow fever viruses
(20 species when voting with the 90th percentile across our 3
perspectives, we predict 20 primates to be hosts of both viruses)
compared to 21 predicted in recent work#4. Despite the large
number of predicted, potentially novel, associations, the fact that
our predictions can distilled to the level of individual virus or a
mammalian species, makes our approach suitable for targeted
surveillance per host or virus, or groups therein.

There remains, however, key areas for further improvement.
We differentiate between two types of unknown virus-mammal
associations: 1) associations between a known virus and a
potentially susceptible mammalian host of this virus: known-
unknowns; and 2) completely unknown viruses associated with a
host but are not yet discovered: unknown-unknowns. Our
approach aimed at the first type: we included as much informa-
tion as available on known viruses and their susceptible mam-
malian species to predict associations between wild and semi-
domesticated species and our viruses. In the case of species-rich
mammalian orders containing sufficiently studied species (e.g.
Primates, Carnivora), a higher proportion of their currently
known viruses are likely to have been found. Hence, our approach
was able to make predictions for wild and semi-domesticated
(medium to under-studied) species in those orders. However, for
mammalian orders with fewer species, and where those species
are under-studied, there are more likely to be more unknown-
unknowns, therefore a larger proportion of their viruses would
not be predictable by our approach or other approaches.

Our approach also has limitations with regards to known-
unknowns; we acknowledge that it does not entirely ameliorate
the impact of research effort (Supplementary Figs. 10-14). Whilst
our models did not necessarily over predict for heavily studied
mammalian species, particularly humans and economically
important domesticated animals, it predicted more known-
unknowns for well-researched mammals (Supplementary
Figs. 10-11, 14). The effect of research effort into viruses is more
prominent, with our approach predicting significantly more
potentially susceptible mammalian species for heavily studied
viruses such as Influenza A virus and Rotavirus A (Supplemen-
tary Figs. 12-14). In other words, our approach cannot fully
distinguish between two possible reasons for a mammal having

few virus associations: 1) the virus has never been observed in the
mammal (due to research effort), and 2) the mammal is biolo-
gically not susceptible. One potential field-wide solution to this
problem would be the inclusion of known-unsusceptible asso-
ciations. This could potentially mitigate a large effect of ‘research
effort’ related issues as well studies species would generally also
have larger numbers of known-unsusceptible associations, which
could tend to balance the effect. However, there are many reasons
why this cannot be used at present, including: negative results are
less likely to be published, especially for relatively under-studied
and wild species; no resource of unsusceptible associations cur-
rently exists beyond review articles capturing a small number of
either viral or mammalian species; and practical difficulties
proving species-wide unsusceptibility to a given virus.

Prediction of unknown and novel viruses and their potential
threat to humans, livestock and wildlife is an increasingly
important and active research area. Where an established virus is
increasing its geographical range (e.g. due to climatic or demo-
graphic factors), then our framework provides powerful means to
assess potential hosts it has yet to come into contact with. The
identification of these hosts is exceedingly important, as viruses
continue to move across the globe via complex transmission
cycles featuring migratory animals®>, legal and illegal trade in
animals#®47, unknown hosts (in various taxa, including non-
mammalian hosts), bridge vectors?, and reverse zoonoses*S.
However, for completely novel or never-studied viruses, our
approach cannot predict potential associations due to lack of viral
and network traits: an example is SARS-CoV-2; our pipeline
could not have predicted its host association when it first
emerged, but subsequent study of the virus, its traits and its
observed hosts allows for prediction of its unobserved host
associations*®. Future work may be able to enhance the predictive
power of our approach by incorporating more diverse viral traits,
particularly in terms of detailed genetics® and in terms of geo-
graphical distribution and associated features of the virus as
highlighted in previous work®®°!. Integration of predictors of
host-virus interactions such as the existence of particular viral
receptors in host cells would also greatly benefit our models and
create a fourth perspective that could be added into our
framework.

Finally, a further separation of perspectives could also be
achieved by incorporating arthropod vectors or intermediate
hosts, or different classes of pathogens and hosts, particularly
birds. Future integration of avian species into our network could
potentially increase predictive power and explainability of our
approach, particularly in relation to the ecology of viruses for
which birds are known to be important reservoirs or amplifying
hosts (e.g. flaviviruses such as West Nile and Japanese encepha-
litis, and influenza viruses). The incorporation of birds into our
network component will enable quantification of yet-uncaptured
important pathways in which birds play central roles. However,
such integration will first require establishing a more complete
picture of avian viruses and their hosts — the number of asso-
ciations we were able to capture for avian species was 2,525
between 1,251 bird and 306 virus species (~40% of the total
number of mammalian associations in this study). This could be
achieved either by deeper mining of existing sources or by
developing separate predictive pipelines focusing solely on birds.

In this study we attempted to expand our knowledge of viral
host ranges by predicting the unknown hosts of known viruses.
We applied a divide-and-conquer approach which separated viral,
mammalian and network features into three unique perspectives,
each predicting associations independently to enhance predictive
power. We predicted over 20,000 unknown associations between
known viruses and mammalian hosts, suggesting that current
knowledge greatly underestimates the number of associations
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between wild and semi-domesticated mammals. Completing the
picture of virus-host interactions can help identify and mitigate
current and future zoonotic and animal-disease risks, including
spill-over from animals into humans.

Methods

Virus-host species associations. Species-level virus-mammal associations were
extracted from the ENHanCEd Infectious Diseases Database!— EID2 (version
from December 2019). EID2 automatically mines information on pathogens (of
any taxa), their hosts and locations from two sources: meta-data accompanying
nucleotide sequences (hereafter sequences) published in Genbank2>3; and 2) titles
and abstracts (hereafter TIABs) of publications indexed in the PubMed>*. At time
of extractions, EID2 has collated information from >7 million sequences (and
processed 100 M + sequences), and >8 million TIABs. EID2 imports names of
organisms (here viruses and mammals), and their taxonomy from the NCBI
Taxonomy database®. It also extends these names with an exhaustive, expertly
curated, collection of alternative and common names. These names are utilised to
disambiguate hosts and pathogens in sequence meta-data and TIABs using
inclusion and exclusion terms!?. Evidence collated from TIABs is considered likely
if it exceeds a given threshold (usually > 4 publications). For the vast majority of
stored organisms, EID2 follows the NCBI definitions of ‘species’ and ‘subspecies’,
with unclassified and uncultured species being denoted as ‘no rank’. For the pur-
poses of this study, we recursively aggregated virus-mammal associations - a
mammal that was found to host a strain or subspecies of virus was considered a
host of the corresponding virus species (and vice versa). We further checked each
of these species level associations for accuracy and to eliminate laboratory-
produced results. This resulted in 6331 associations between 1896 viruses and 1436
terrestrial mammals. The support of these associations in EID2’s evidence base was
as follows: 22.79% had publication and sequence evidence; 33.03% were supported
by nucleotide sequence only, and 44.18% were supported by evidence extracted
from TIABs. The nature of this evidence was as follows: 70.48% of associations
were strongly supported by sequence, isolation, or PCR evidence; 29.52% were
supported by serology-only evidence. Of the total number of associations inferred
from publication-only evidence, 66.82% were supported by serological evidence.
We trained our pipelines with associations obtained from both sources; this is
because serology is a standard means of determining previous viral infection in an
individual. Isolation cannot detect an infection that has since been cleared by the
host’s immune system. Hence isolation and serology have different applications,
and both should be utilised to get a more complete picture. Both sequencing and
serological methodologies vary in their sensitivity and specificity depending on the
virus clade. Both sequencing and serological methodologies vary in their sensitivity
and specificity depending on the virus clade, with neither being superior in all
cases*®=>8. Consequently, we chose to present the results using both isolation and
serology in the manuscript. However, to account for possible variations in the
strength of our evidence base, we trained a separate predictive pipeline including
only those associations supported by sequence evidence (55.82% of total); Sup-
plementary Results 8 summarise predictions of this pipeline; full results are
included in our data release (see below).

Multi-perspective framework to predict unknown virus-mammal associations.
We transformed our species-level virus-mammal associations into a bipartite
network in which nodes represent either virus or mammal species, and links
indicate associations between mammalian and viral species. Our bipartite virus-
mammal network is sparsely connected - roughly 0.23% of potential associations
are documented in EID2, despite it being the most comprehensive resource of its
kind. This sparsity is more evident in wild and semi-domesticated species where
only 0.182% of potential associations are observed. We treated the problem of
bridging this gap in our knowledge of virus-mammal associations as a supervised
classification problem of links in the bipartite network. In other words, we aimed to
predict unknown associations between known viruses and their mammalian hosts
based on our knowledge to date of these species. Each possible virus-mammal
association is predicted three times as follows.

1 - From the mammalian perspective: For each mammal in our network, given
a set of features (predictors) comprising viral traits (e.g. genome, transmission
routes) — Table 1, what is the probability of an association forming between this
mammal and each of the 1,896 virus species?

2 - From the viral perspective: For each virus species found in our network,
given a set of features (predictors) encompassing mammalian phylogeny, ecology,
and geographical distribution - Table 2, what is the probability of an association
forming between this virus and each of 1,436 terrestrial mammals?

3 - Form the network perspective: Given a set of topological features
representing the bipartite network expressing most of our knowledge to date of
virus-mammal associations, what is the probability of an association forming
between any virus and any mammal in our dataset (n = 1,896 x 1,436 = 2,722,656
possible associations)?

Our framework trained and selected a set of supervised classifiers in each of the
above perspectives as discussed below. It then consolidated the results of the best
performing classifiers using voting whereby an unknown (potential or unobserved/
undocumented) association was selected if it was predicted by at least two of the

three perspectives. This is because each of our perspectives focuses on a particular
aspect of virus-host associations. From the mammalian perspective, and for every
included mammal, the probability of a virus affecting/associating with this focal
mammal is quantified based on our knowledge of the viruses found in this
mammal to date. Similarly, from the viral perspective, the probability of the virus
infecting/associating with included mammalian species is quantified based on our
knowledge to date of known hosts of this virus. The final perspective enables
generation of predictions based on the topology of the network linking all included
mammals with all included viruses. Thus, our three perspectives capture all aspects
of viral-mammalian association without biasing toward one aspect.

Our framework is flexible, in terms of machine-learning algorithms selected,
classifiers trained, and features engineered for each perspective. It avoids overfitting
as it approaches the problem from various perspectives, and effectively consolidates
ensembles of classifiers trained on subsets of the underlying data. In addition, no
constituent model of our framework has been trained with all available data at any
time. Finally, our framework enables the incorporation of hosts where only one
virus has been detected to date (via perspectives 2 and 3), and viruses where only
one host has been discovered (via perspectives 1 and 3).

The local approach - the mammalian and viral perspectives. Our mammalian
and viral perspectives generate “local” predictions for hosts and viruses, respec-
tively. These local predictions are derived by training a suite of models for each
host (with two or more known viruses), and virus species (with two or more known
mammalian hosts), as described in subsequent sections. In other words, each
mammalian species has its own “local” suite of models, trained using viral traits
(Table 1), to predict viruses which could associate with this host. Similarly, each
selected virus has its own set of models, trained using mammalian features
(Table 2), to predict mammalian hosts which are potentially susceptible to this
virus. The reason for predicting locally (per host, or virus) is two-fold: 1) Variations
of host susceptibility, viral host range: traits (features) determining, for instance,
mammalian species susceptibility to West Nile virus, are potentially different to
those affecting these species’ susceptibility to Bovine immunodeficiency virus.
Hence, by training these models locally, we are able to ascertain the influence of
these traits on each host, and each virus. 2) Class balancing: we synthesised new
positive training instances for each of our hosts, based on the traits of their known
viruses Likewise, we synthesised new positive instances for each of our viruses,
based on the traits of their known mammalian hosts (as discussed below).

The network perspective - topologically derived network features of virus-
mammal associations. In contrast with our mammalian and viral perspectives, the
network linking known viruses with their mammalian hosts presents a “global”
view of how these viruses are shared amongst their mammalian hosts. Here we
capture the topology of this bipartite network by means of counts of potential
motifs?! (Fig. 4A, C). These motifs capture important indirect pathways between
viruses and their mammalian hosts. These pathways vary from simple general-
isations capturing whether a virus has wide range of hosts or not (M3.1, M4.1, and
M5.1), or if the mammal is exposed to many viruses (M3.2, M4.6, M5.20), to more
complex pathways (e.g. two host species sharing 80% of their viruses with each
other; three viruses sharing 50% of their hosts with each other). These pathways
might indicate if an unknown association is more likely to exist in nature or not,
and are only capturable, and most importantly quantifiable (Fig. 4D), at the global
level as encapsulated by our network perspective.

Transforming these pathways into features from which supervised machine-
learning algorithms could learn, enables us to make predictions directly from the
network structure. Here, counting of potential motifs is limited to the 3-step ego
network of both virus and host — the network comprising nodes which can be
reached in 3 steps (links) or fewer from each focal node (nodes comprising the
focal association (Fig. 4B).

We generated a features-set comprising the counts of potential motifs for all
associations (Fig. 4D) and trained several machine-learning algorithms with this
dataset (plus research effort) as detailed in following subsections. Motifs are usually
associated with specific frequency thresholds?3. However, here we follow previous
work?! in removing this restriction. We simply counted the number of occurrences
of potential motifs of each focal association, and then let the machine-learning
algorithms detect which motifs were particularly important to the problem of
predicting links in our network (Fig. 4E).

Research effort. We incorporated research effort on mammal and virus species
into our network perspective models. This is because it is through this perspective
that predictions are made for all hosts and all viruses at the same time, and where
the effect of research effort into both the hosts and viruses can be measured and
corrected for adequately and simultaneously. We calculated research effort as the
total number of sequences and publications of each species as indexed by EID210,
In addition, we trained a separate pipeline in which the research effort into our
hosts was included as predictive feature in each constituent viral perspective model;
and the research effort into our viruses was included in each constituent mam-
malian perspective model. Agreement between training constituent models with
and without research efforts in mammalian and viral perspective was 99.7%
[99.9%-99.2%] (values in bracket are confidence intervals derived from predictions
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CI). Cohen’s Kappa = 0.86 [0.85-0.89] (Kappa range: 0-1). Results of this pipeline
are listed in Supplementary Results 1. Detailed validation of both pipelines is listed
in Supplementary Results 2.

Multi-perspective prediction of virus-mammal associations. As highlighted
above, our framework comprised three perspectives: mammalian, viral and net-
work. Each of these perspectives trained a set models with different features
(Tables 1 and 2, and Fig. 4 respectively), and hence required its own pipeline as
described below (Supplementary Note 5).

Mammalian and viral perspectives

Class balancing. On average each virus in our dataset affected 3.45 mammals
(~0.240% of the 1436 mammals in our models), and each mammalian host was
affected by 4.41 viruses (~0.241% of the 1833 viruses in our models). This pre-
sented an imbalance in our data, whereby a small percentage of instances are
actualised. We dealt with this issue in two ways: first we excluded any virus (n=
1281) which was found in only one mammal species from our virus models
pipeline (viral perspective), and we excluded any mammal (n = 758) which is only
affected by one virus from our mammal models pipeline (mammalian perspective).
Second, we deployed SMOTE - Synthetic Minority Over-sampling Technique®®%0
to rebalance the classes prior to training each of our viral (n =8 x 556) and
mammalian (n =8 X 699) models. SMOTE synthesises new minority class
instances from existing minority instances using a variation of k-nearest neighbour
algorithm. The SMOTE algorithm then over-samples from the minority instances
(original and synthesised) and under-samples from the majority class to create a
balanced training set. All class balancing was achieved using caret R package®® (R
version 3.6.2).

Classification algorithms. For each mammal and each virus selected above we
trained 8 classification algorithms (Supplementary Table 4): Model Averaged
Neural Network (avNNet), Stochastic Gradient Boosting (GBM), Random Forest,
eXtreme Gradient Boosting (XGBoost), Support Vector Machines with radial basis
kernel and class weights (SVM-RW), Linear SVM with Class Weights (SVM-LW),
SVM with Polynomial Kernel (SVM-P), and Naive Bayes. These classifiers offer a
varied subset of plethora of classifiers available for experimentation (over 179
classifiers categorised into at least 17 families®!), and were selected due to their
robustness, scalability®!, and their potentially good performance with imbalance
data classification®2. All models were trained and optimised using caret R
package® (R version 3.6.2) as described below.

Training and tuning. each of the above models was trained with 10-fold cross
validation (10 repeats). This validation method works by splitting training data into
10 random samples, each sample is held out in turn, and the model is trained on
the remainder groups. The model’s prediction for the existence or absence of the
mammal-virus associations in the held-out group are used to construct confusion
matrices and calculate an optimisation metric (here Area Under the ROC Curve,
AUC for short). The optimisation metric is used to select best model in the vali-
dation process.

We adopted an adaptive resample approach® to tune the hyper-parameters of
our models. This approach resamples the tuning parameter grid in a way that
concentrates on values that are the in the neighbourhood of the optimal settings
(adaptive). Due to the large number of classifiers trained in our framework this
adaptive approach allowed us to find optimal (or near optimal) values of the hyper-
parameters of each included machine-learning algorithm without relying on the
nominal resampling process whereby all the tuning parameter combinations are
computed for all the resamples before a choice is made about which parameters are
good and which are poor.

Classifier selection strategy. We computed three performance metrics based on the
median predicted probability across each set of replicate models: AUC, true skills
statistics (TSS) and F1-score (Supplementary Table 5). The best performing clas-
sifier per each virus or mammal, across all measures, was included in our multi-
perspective final model (Supplementary Results 4 and 5).

Confidence intervals. In order to allow us to incorporate uncertainty arising from
variations in SMOTE resampling technique and resulting training sets, and to
generate empirical confidence intervals (90%), hyper-parameters of best perform-
ing models were carried across to train 50 replicate models for each best per-
forming mammalian or viral model. In other words, we generated a bragging (i.e.
median) ensemble for each selected host or virus, and the resulting prediction was
carried to our multi-perspective final model.

Network perspective

Class balancing. Our bipartite virus-mammal network is sparsely connected with
6331 documented associations out of 2,722,656 possible associations (0.23%). Due
to this we implemented strict under-sampling: whereby balanced samples drawn at
random (without replacement) from the set of all potential virus-mammal

associations. Each sample comprised 2000 instances (1000 positive (known) and
1000 unknown virus-mammal associations.

Training & tuning. We trained the same selection of algorithms as above with
balanced sets (2000 instances each) using 10-fold cross validation with adaptive
resampling to optimise AUC. We repeated this process 100 times to generate a
bragging ensemble of predictions (derived as probabilities) of these replicate
models. We calculated empirical confidence intervals (90%) of the ensemble
probabilities across the 100 replicate models.

Classifier selection strategy. We selected the bragging ensemble which obtained the
best overall performance metrics (AUC, F1-Score and TSS) when applied to all
available associations. The predictions of the best overall ensemble were incorpo-
rated into our final model (SVM-RW - Supplementary Results 6).

Performance assessment. We trained the constituent models of each perspectives
with a stratified random training set comprising 85% of all data (n = 2,315,391
with 5377 known virus-mammal associations). The processes described above were
repeated with training set only, and performance was measured against the held-
out test set (15% of all data, n = 407,265 with 954 known virus-mammal asso-
ciations). Performance metrics obtained through this assessment are reported
above and in Supplementary Results 2. Additionally, we performed a com-
plementary test to assess the ability of our model to predict systematically removed
virus-mammal associations (Supplementary Results 3).

Variable importance. we calculated relative importance (influence or contribu-
tion) of viral (Table 1), mammalian (Table 2), and network features (Fig. 4C) to
each model in our three perspectives. Due to the selection strategy implemented in
our viral and mammalian perspectives, whereby models from 8 different algo-
rithms were selected, we computed the importance of these features using a model-
independent filter approach via a ROC curve analysis conducted on each predictor
(as implemented in the caret package®?).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Virus-mammal species-level associations were obtained from the ENHanCEd Infectious
Diseases Database (EID2). Viral, mammalian and geospatial data were obtained from
open-access data sources. These sources are listed in detail in Supplementary Notes 1-3
of the Supplementary Information file, and their DOIs are provided in the
Supplementary References. Data used can be found here: https://doi.org/10.6084/m9.
figshare.13270304, with the exception of mammalian presence shapefiles and raw climate
data (due to their large size) - these data can be obtained from the authors or directly
from the sources listed in the Supplementary Information file. Final and intermediate
(perspective) predictions of our approach, and predictions obtained using only sequence-
evidence are also made available (https://doi.org/10.6084/m9.figshare.13270304).

Code availability
All codes used in our analyses are made available via figshare (https://doi.org/10.6084/
m9.figshare.13270304).
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