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Abstract 

Background:  Rubidium-82 positron emission tomography (82Rb PET) MPI is consid-
ered a noninvasive reference standard for the assessment of myocardial perfusion in 
coronary artery disease (CAD) patients. Our main goal was to compare the diagnostic 
performance of static rest/ vasodilator stress CT myocardial perfusion imaging (CT-MPI) 
to stress/ rest 82Rb PET-MPI for the identification of myocardial ischemia.

Methods:  Forty-four patients with suspected or diagnosed CAD underwent both 
static CT-MPI and 82Rb PET-MPI at rest and during pharmacological stress. The extent 
and severity of perfusion defects on PET-MPI were assessed to obtain summed stress 
score, summed rest score, and summed difference score. The extent and severity 
of perfusion defects on CT-MPI was visually assessed using the same grading scale. 
CT-MPI was compared with PET-MPI as the gold standard on a per-territory and a per-
patient basis.

Results:  On a per-patient basis, there was moderate agreement between CT-MPI and 
PET-MPI with a weighted 0.49 for detection of stress induced perfusion abnormalities. 
Using PET-MPI as a reference, static CT-MPI had 89% sensitivity (SS), 58% specificity (SP), 
71% accuracy (AC), 88% negative predictive value (NPV), and 59% positive predic-
tive value (PPV) to diagnose stress-rest perfusion deficits on a per-patient basis. On a 
per-territory analysis, CT-MPI had 73% SS, 65% SP, 67% AC, 90.8% NPV, and 34% PPV to 
diagnose perfusion deficits.

Conclusions:  CT-MPI has high sensitivity and good overall accuracy for the diagnosis 
of functionally significant CAD using 82Rb PET-MPI as the reference standard. CT-MPI 
may play an important role in assessing the functional significance of CAD especially in 
combination with CCTA.
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Introduction
Cardiac computed tomography (CT) angiography (CCTA) is a noninvasive diagnostic 
method with high sensitivity and very high negative predictive value for the detection of 
obstructive coronary artery disease (CAD) in patients with chest pain (Budoff et al. 2008; 
Miller et al. 2008; Meijboom et al. 2008; Litt et al. 2012). However, both morphological 
data and functional significance of coronary stenosis are important for management and 
to impact clinical outcomes for symptomatic CAD patients considered for revasculariza-
tion (Bruyne et al. 2012). Although CCTA can provide anatomical information regard-
ing the presence of epicardial coronary artery stenosis, the hemodynamic significance of 
coronary stenosis usually requires assessment by catheter-based fractional flow reserve 
(FFR) (Meijboom et  al. 2008; Pijls et  al. 1996), or noninvasive methods such as single 
photon emission tomography/myocardial perfusion imaging (SPECT-MPI) (Gaemperli 
et al. 2008), positron emission tomography (PET) (Carli et al. 2007), cardiac magnetic 
resonance imaging (CMR) (Bettencourt et al. 2013), stress echocardiography (Jiménez-
Navarro et al. 2001) and FFRCT (FFR determined using CCTA images) (Pontone et al. 
2019a).

CT-MPI has been compared with myocardial flow measured with microspheres (Eck 
et  al. 2016), SPECT (Jaarsma et  al. 2012; Cury et  al. 2010; Tamarappoo et  al. 2010), 
CMR (Jaarsma et al. 2012), FFRCT (Pontone et al. 2019a; Yang et al. 2017) and invasive 
FFR (Jaarsma et al. 2012; Takx et al. 2015; Williams et al. 2017). Multiple experimental, 
single-centre and multi-centre clinical studies evaluated the diagnostic accuracy of CT 
myocardial perfusion (CT-MPI) to detect flow limiting stenosis and associated myocar-
dial perfusion abnormalities in comparison with other methods (Pontone et al. 2019a; 
Eck et al. 2016; Jaarsma et al. 2012; Cury et al. 2010; Tamarappoo et al. 2010; Yang et al. 
2017; Takx et  al. 2015; Williams et  al. 2017). CT-MPI is reported to have comparable 
diagnostic accuracy for detection of myocardial ischemia compared to invasive FFR 
(Takx et al. 2015). CT-MPI can be performed either using a static (obtains a single CT 
dataset at an estimated peak myocardial enhancement time after contrast administra-
tion) or a dynamic (multiple CT datasets obtained after contrast administration along a 
time-attenuation curve) method (Koo et al. 2016).

Rubidium-82 PET (82Rb PET) has been considered a noninvasive reference standard 
for the detection of obstructive CAD (Jaarsma et  al. 2012; Mc Ardle et  al. 2012), but 
there are limited studies that use Rb PET as a reference standard to assess CT-MPI, and 
no studies have used a static ECG-gated prospective acquisition protocol. The purpose 
of our study was to compare the diagnostic accuracy of rest/vasodilator stress static CT-
MPI with vasodilator stress/rest 82Rb PET-MPI in identification of myocardial ischemia 
in patients with suspected CAD, using visual qualitative and semi-quantitative analysis. 
We also aimed to assess image quality and characterize artifacts in the CT-MPI studies.

Methods
Patients and study protocol

The study was approved by our institutional review board, and all patients provided 
written informed consent for inclusion and data analysis. Forty-four consecutive 
patients with clinically suspected or stable symptomatic CAD with a clinical indica-
tion for vasodilator stress/rest 82Rb PET-MPI at a single urban teaching hospital were 
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prospectively enrolled to perform both rest/vasodilator stress CT-MPI and vasodilator 
stress/rest 82RbPET-MPI within 90 days. Patients with heart failure, acute coronary syn-
drome, reactive airway disease, chronic kidney disease, and allergy to iodinated contrast 
were excluded. No patient experienced any interval change in clinical status or coronary 
revascularization.

CT‑MPI protocol

Patient preparation

Participants abstained from caffeine for 12 h and from methylxanthine-containing prod-
ucts, oral dipyridamole, theophylline, and beta-blockers for 24  h before stress testing. 
An 18-gauge cannula was inserted into the right antecubital vein for stress agent and 
contrast administration. Before the rest CT acquisition, patients received metoprolol to 
target heart rate of < 65 beats/min and nitroglycerin (0.8 mg) sublingually. All patients 
were observed for one hour after the study (Fig. 1).

Image acquisition

A non-contrast prospective electrocardiogram (ECG) triggered axial (sequential) car-
diac CT was performed for calcium scoring as per local clinical routine on a GE Volume 
CT (GE Healthcare, Waukesha, USA), with 64 × 0.625 mm collimation, gantry rotation 
350 ms, with X-ray tube modulation, mA = 400–800, 120 kVp, at 70% RR interval (Chow 
et al. 2010). For CT-MPI, two consecutive prospective ECG-triggered axial acquisitions 
at 75% of R-R interval with ± 5% padding were performed with mA = 400–800, 100 
kVp for body mass index < 30, 120 kVp for body mass index ≥ 30 (Abbara et  al. 2016). 
A triphasic intravenous injection protocol (100% contrast, 40%/60% contrast/saline and 
100% saline) of 70 mL of contrast medium (Omnipaque-350, GE Healthcare, Princeton, 
NJ, USA) was injected at 5 ml/s. For rest CT-MPI, acquisition was determined using a 
test bolus (20 ml of contrast) to determine time to peak in the ascending aorta. After a 
delay of at least 20 min, stress CT-MPI was acquired 2 min following dipyridamole injec-
tion which was infused intravenously at a dose of 0.14 mg/kg/min over 5 min (Cury et al. 
2010). Stress CT-MPI was initiated using a real-time bolus tracking technique, at the 
time of peak left ventricle filling with contrast, which was determined with a threshold 
of 120 Hounsfield unit (HU). During dipyridamole infusion, heart rate, blood pressure, 
ECG, and symptoms were monitored continuously. Once image acquisition was com-
pleted, intravenous aminophylline (1.5 mg/kg body weight) was administered over 5 min 
to reverse the effects of dipyridamole.

CT‑MPI image reconstruction

Prospectively acquired cardiac CT rest/stress data sets were reconstructed at 70, 75, 
and 80% of the R-R interval with a slice thickness of 0.625 mm, 250 mm reconstructed 
field of view, 512 × 512 matrix and standard reconstruction algorithm. Rest cardiac CT 
angiography images were used for clinical anatomic assessment of coronary stenosis. 
Rest/stress data sets for each patient were loaded into a dedicated workstation Aquarius 
iNtuition software (Version 4.4.11, TeraRecon, San Mateo, CA, USA) in multidata work-
flow allowing anatomical coregistration and synchronization of both data sets side by 
side for visual interpretation of myocardial attenuation in standard multiplanar images 
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in short-axis, vertical-long-axis and horizontal long-axis of the left ventricle (LV), with 
7 mm slice thickness images.

Interpretation of myocardial perfusion on CT‑MPI

Two experienced independent readers blinded to all clinical, CT coronary angiography 
and 82Rb PET findings analyzed and scored the CT-MPI studies. Individual data per 
reader and a combined consensus reading data were collected. Initial display window 
width and window level settings were 200 to 300 HU and 100 to 150 HU, respectively 
(Blankstein et al. 2009) but free manipulation of window width and window level set-
tings was allowed. Regions of myocardium that exhibited significantly reduced CT atten-
uation as a result of decreased contrast distribution were considered to have abnormal 
perfusion. The attenuation of normal myocardium in each patient was used as an inter-
nal reference to visually compare and assess the relative severity of myocardial hypoper-
fusion (Fig. 2).

True perfusion defects were differentiated from potential artifacts by examining the 
morphology of myocardial perfusion defects and their relation with the LV endocar-
dial contour. Perfusion defects that did not follow the endocardial contour or extended 
beyond the heart borders were considered artifacts. True perfusion defects were defined 
if present simultaneously in more than one plane (short-axis, vertical-long-axis and hor-
izontal long-axis) and in two consecutive segments. Artifacts were registered according 
to the segments involved and classified as beam hardening, motion, step-artifact and 
noise. Image quality and reader’s confidence were registered using Likert scale 1 to 5 
(1-inadequate to 5-excellent).

Visual assessment of perfusion deficit on CT‑MPI

The extent and severity of perfusion defect in each segment was graded on a 0 to 4 
scale (0 = uniform CT attenuation equal to normal myocardium; 1 = mildly reduced 
attenuation encompassing less than 25% of the myocardium; 2 = moderately reduced 

Fig. 2  CT-MPI Rest-Stress visual analysis. CT-MPI in Rest (A–E) and Stress (F–J) in short axis, 2-chamber and 
4-chamber multi-planar planes images with 5–7 mm slice thickness, display 200–300 HU window width and 
100–150 HU window length. Perfusion defects on post dipyridamole stress CT-MPI in mid and apical anterior/
anterolateral segments in a single patient (red arrows on G–J). The extent and severity of stress perfusion 
defect was scored as 1 for mid anterior segment, 2 mid anterolateral segment, 3 for apical anterior segment 
and 1 apical lateral segment. This corresponded to summed stress score of 7, summed rest score of 0 and 
sTPD 10%, iTPD 10%. TPD total perfusion deficit
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attenuation comprising 25% to 50% of the myocardium; 3 = moderately reduced attenu-
ation in 50% to 75% of the myocardium; and 4 = severely reduced attenuation in more 
than 75% of the myocardium) (Fig. 2). The scores from both readers for each study were 
averaged to achieve a final perfusion deficit score for each study. The CT-MPI based 
summed stress score (SSS) and summed rest score (SRS) were derived by adding the 
scores assigned to each individual segment from stress and rest. A summed difference 
score (SDS) was defined as the difference between SSS and SRS. A visually assessed total 
perfusion deficit (TPD) for CT-MPI was derived by dividing CT-MPI SSS, SRS and SDS 
by 68 (which represents the sum of the maximum scores that could be assigned to each 
of the 17 segments) multiplied by 100%. The difference in TPDstress-TPDrest was calcu-
lated representing the percentage of total myocardium involved with stress ischemia 
(iTPD), an approach previously applied to SPECT-MPI (Hachamovitch et al. 2003) and 
CT- MPI versus SPECT-CT comparison (Tamarappoo et al. 2010).

82Rb PET imaging

The 82Rb PET studies were performed according to our standard clinical protocol pre-
viously described (Ziadi et al. 2011). Patients refrained from caffeine ≥ 12 h and theo-
phyllines for > 48  h before the 82Rb PET study. After an overnight fast, patients were 
positioned in a 3-dimensional PET system (Discovery Rx/VCT, GE Healthcare, Milwau-
kee, Wisconsin). A low-dose (0.25 mSv), fast helical (1.5 s) CT (120 kVp with axial and 
angular mA modulation at a noise index of 50) was acquired for attenuation correction. 
Then, 10 MBq/kg of 82Rb was administered intravenously over 30  s interval to ensure 
dead-time losses remained < 50% (RUBY-FILL®- rubidium chloride rb-82 injection solu-
tion, package insert, Jubilant DraxImage Inc). A 17-frame, 10-min dynamic 82Rb scan 
was acquired with a parallel list-mode acquisition.

After rest PET-MPI, a dipyridamole stress test was performed (0.14 mg/kg/min over 
5  min). Then 10  MBq/kg of 82Rb was infused 3  min after completion of the vasodila-
tor infusion. Stress images were acquired per rest MPI. A repeat low-dose CT scan was 
acquired after stress PET images for attenuation correction.

Images were reconstructed using Fourier rebinning and filtered back-projection with 
a 12-mm 3-dimensional Hann window of the ramp filter. The list-mode data from 2.5 
to 10 min were replayed to reconstruct electrocardiographic-gated images. Images were 
interpreted using a 17-segment model and a 5-point scoring system (normal, mildly 
reduced, moderately reduced, severely reduced and absent 82Rb uptake) by an experi-
enced reader blinded to clinical data. SSS, SRS and SDS were calculated semi-automati-
cally (Cerqueira et al. 2002).

Statistical analysis

Continuous variables were expressed as mean ± SD. Normally distributed continuous 
variables were compared using a paired t test and categorical variables with χ2 test. The 
presence of perfusion defect by 82Rb PET-MPI or CT-MPI was considered a categorical 
variable. Per-segment based, per-territory and per-patient comparison of abnormal seg-
ments by CT-MPI and 82Rb PET-MPI was expressed as sensitivity (SS), specificity (SP), 
accuracy (AC), positive predictive value (PPV), negative predictive value (NPV), posi-
tive likelihood ratio and negative likelihood ratio using 82Rb-MPI as the reference. Kappa 
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estimates were used to evaluate the agreement between the 2 independent CT-MPI 
readers and between CT-MPI and 82Rb-MPI in identification of hypoperfused myocar-
dial segments. Agreement between TPD by PET-MPI and visually derived TPD by CT-
MPI were assessed using the Bland–Altman analysis by calculating the mean difference 
and SD of the differences. The range of ± 1.96 SD of the differences provided the 95% 
level of agreement between the two techniques. To further strengthen the comparison 
between the two techniques, the Passing-Bablok regression method was used to assess 
the significance of agreement. The significance of the linear agreement was analyzed 
with the CUSUM (cumulative summation) test for linearity; P < 0.05 indicated a signifi-
cant consistent difference between the two techniques. Lastly, receiver operating char-
acteristic (ROC) analysis (with interactive plot analysis) was used to test the predictive 
accuracy of CT-MPI with82Rb PET-MPI as the reference. Optimal cut-off was defined as 
the threshold where the sum of sensitivity and specificity was maximum.

Results
Patient and studies characteristics

Of the 44 patients (23 male) included in the analysis, 23 (52%) had history of CAD, and 
23 (52%) were symptomatic with chest pain (Table 1). The interval period between CT-
MPI and 82Rb PET studies was 20 ± 19 days (Table 2). Perfusion defects were detected by 
82Rb PET in 18 patients, corresponding to a disease prevalence of 41%.

CT‑MPI image quality and artifacts

The image quality Likert scores for rest studies was 4 or 5 in 41 (94%), compared to 25 
(66%) of stress studies (p < 0.05). The reader’s confidence on assessing stress/rest CT-
MPI studies was scored as 4 or 5 in 34 (77%) of studies. Likert scores for image quality 
and reader´s confidence are provided in detail in “Appendix 1”.

There were visible artifacts in 37 (84%) of rest/stress CT-MPI studies. The distribu-
tion of artifacts was assessed by segment (17 segments in 44 studies corresponding to 
a total of 748 segments). In rest studies, there were 105 (14%) segments with artifacts 
compared to 203 (27%) in stress studies (p < 0.001). Beam hardening artifacts were pre-
sent in 60 (8%) and 43 (6%), and step artifact were present in 30 (4%) and 41 (5%) seg-
ments, respectively, on rest and stress studies. The presence of beam hardening artifacts 
was higher in the right coronary artery 55 (16%) compared to left anterior descending 39 
(4%) and circumflex territory 9 (3%) (p < 0.0001). The type and distribution of artifacts 
on rest and stress studies are described in detail in “Appendices 2 and 3”.

CT‑MPI diagnostic performance compared to 82Rb PET MPI

There were 26 (59%) patients with reversible perfusion defects on CT-MPI and 18 (41%) 
patients on 82Rb PET (p = 0.135) (Fig. 3). There was a moderate agreement between CT-
MPI readers in identification of abnormal CT myocardial perfusion on a per-patient 
basis, with inter-rater agreement weighted kappa of 0.49 (95% CI of 0.28 to 0.70). The 
sensitivity (SS), specificity (SP), accuracy (AC), for reader A were, respectively, 88.9%, 
57.7%, 70.5%, and for reader B were 55.6%, 80.8%, 70.5%. For identification of abnormal 
CT myocardial perfusion on a per-patient basis, the area under the ROC curve (AUC) 
was 0.73 and 0.68 (p = 0.47), respectively, for reader A and B.
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Using the reader´s consensus reading, there was a moderate agreement between 
CT-MPI and 82Rb-PET for identification of abnormal myocardial perfusion on a per 
patient basis (weighted kappa of 0.44, 95% CI of 0.21 to 0.68).

On a per-patient analysis, CT-MPI compared to 82Rb-PET as the reference stand-
ard had 88.9% SS, 57.7% SP and 70.5% AC, and AUC of 0.73 (95% CI of 0.58–0.85) 
(p < 0.001). On per-territory basis, CT-MPI had over all 73.1% SS, 65.1% SP, 67.7% 
AC, and AUC of 0.69 (95% CI of 0.61 to 0.77) (p < 0.001) (Table 3).

Table 1  Patients characteristics

Quantitative variables expressed as mean and ± standard deviation; categorical variables expressed as frequencies 
(percentages)

BM, body mass index; CAD coronary artery disease; MI myocardial infarct; PCI percutaneous coronary intervention; CABG 
coronary artery bypass graft surgery; IDDM insulin dependent diabetes mellitus; NIDDM noninsulin dependent diabetes 
mellitus; CCS Canadian Cardiovascular Society grading scale of angina; NYHA New York Heart Association functional 
classification

Characteristic Value

n 44

BMI 30.8 (± 6.7)

Age 61.7 (± 10.9)

Male/female 23 (52)/21 (48)

Past medical history of CAD:

 Previous MI 10 (23)

 Previous PCI 10 (23)

 Previous CABG 3 (7)

Smoking history 33 (75)

Diabetes 17 (39)

 IDDM 4 (9)

 NIDDM 13 (30)

Hypertension 35 (80)

Hyperlipidemia 36 (82)

Family History of CAD 24 (55)

Asymptomatic 9 (20)

New Chest Pain

 Typical 10 (23)

 Atypical 12 (27)

Dyspnea 26 (59)

Palpitations 16 (36)

CCS class

 0 18 (41)

 1 13(30)

 2 4(9)

 3 2(5)

 4 7(16)

NYHA Class

 0 15(34)

 1 13(30)

 2 8(18)

 3 1(2)

 4 7(16)
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CT‑MPI and 82Rb PET‑MPI agreements: measurements of TPD and ischemic TPD

While the SSS, SDS and iTPD were significantly higher (p < 0.05) on CT-MPI studies 
compared to 82Rb PET, the SRS and rTPD scores were not different between the two 
modalities (p = 0.105) (Table  4). There was a significant correlation between SDS and 
iTPD assessed by CT-MPI and 82Rb PET (Pearson´s correlation r = 0.407, p = 0.007, 95% 
CI 0.122 to 0.631 for SDS and r = 0.406, p = 0.007, 95% CI 0.120 to 0.6294 for iTPD).

Bland–Altman analysis using iTPD scores of CT-MPI and 82Rb PET, demonstrated a 
bias of 6.4%, a standard deviation in differences of 9.3% and, 95% limits of agreement 
between the two methods of − 12 and 25% (Fig. 4). The regression line of the differ-
ences in the two methods showed a positive trend when plotted against the mean of 

Table 2  Studies characteristics

Average ± standard deviation; Effective dose = Dose length product (DLP) × 0.014mSV/mGy·cm

CT-MPI computed tomography myocardial perfusion imaging; 82Rb PET MPI Rubidium-positron emission tomography 
myocardial perfusion imaging

Characteristic Value

Duration in days between CT-MPI and 82Rb-PET MPI 20.3 (± 19.2)

Heart rate during rest CT-MPI (beats per minute) 54.2 (± 6.7)

Range of heart rate during rest CT-MPI (beats per minute) 39–67

Maximum heart rate during stress CT-MPI (beats per minute) 72.9 (± 8.9)

Range of heart rate during stress CT-MPI (beats per minute) 58–100

DLP of rest-stress CT-MPI, mGy/cm 598.1 (± 149.8)

Total effective radiation dose rest-stress CT-MPI, mSv 8.4 (± 2.1)

Total estimated effective radiation dose 82Rb-PET MPI, mSv 2

Fig. 3  Stress CT-MI and 82Rb-PET agreement by visual analysis. Post dipyridamole stress short-axis images 
of CT-MPI in (A, C) and 82Rb-PET (B, D). Perfusion defects on post dipyridamole stress CT-MPI in mid anterior 
segments and corresponding 82Rb-PET images in a single patient (red arrows). Note beam hardening artifacts 
in apical segments in CT images (open green arrows)
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Table 3  Diagnostic performance of CT-MPI on a per patient and per-territory analysis using 82Rb 
PET-MPI as the reference standard

CT-MPI computed tomography myocardial perfusion imaging; 82Rb PET MPI Rubidium-positron emission tomography 
myocardial perfusion imaging; LAD left descending coronary artery; LCx left circumflex coronary artery; RCA​ right coronary 
artery; ROC receive operating characteristic curve

Per-patient Per-territory
LAD LCx RCA​ All-territories

Sensitivity 88.9% [65.3–98.6] 91.7% 80% 44.4% 73.1% [52.2–88.4]

Specificity 57.7% [36.9–76.7] 56.3% 74.4% 62.9% 65.1% [53.4–74.6]

Positive likelihood ratio 2.1 [1.3–3.4] 2.10 3.12 1.23 2.15 [1.5–3.1]

Negative likelihood ratio 0.19 [0.1–0.7] 0.15 0.27 0.88 0.41 [0.2–0.8]

Positive predictive value 59.26% [38.8–77.6] 44% 28.57% 23.53% 33.93% [21.8–47.8]

Negative predictive value 88.2% [63.6–98.5] 94.7% 96.77% 81.48% 90.79% [82.6–96.4]

Accuracy 70.5% 65.6% 75.0% 59.1% 67.7%

Area under the ROC curve 0.73 [0.57–0.85] 0.74 0.77 0.54 0.69[0.60–0.77]

Table 4  Comparison of CT-MPI and 82Rb PET MPI

SSS, SRS, SDS, TPDs, TPDr, iTPD are expressed as average % ± standard deviation

CT-MPI computed tomography myocardial perfusion imaging; Rb-PET Rubidium-positron emission tomography myocardial 
perfusion imaging

CT-MPI 82Rb-PET MPI p

Patients with stress reversible perfusion defects 
(SDS > 0)

26 18 0.135

Summed Stress Score (SSS) 7.4 ± 7.1 2.5 ± 3.5  < 0.0001

Summed Rest Score (SRS) 1.6 ± 2.8 1.0 ± 2.3 0.105

Summed Difference Score (SDS) 5.8 ± 6.9 1.5 ± 2.3 0.0001

Total Perfusion Deficit Stress (TPDs) 10.9 ± 10.5 3.7 ± 5.2  < 0.0001

Total Perfusion Deficit Rest (TPDr) 2.4 ± 4.0 1.4 ± 3.4 0.105

Ischemic perfusion deficit (iTPD) 8.5 ± 10.1 2.3 ± 3.4 0.0001

Fig. 4  Bland–Altman analysis using visually derived iTPD % demonstrated a mean bias of 6.4; standard 
deviation of differences: 9.33 and 95% limits of agreement between the two methods: − 12.08 and 24.98. 
Thus, CT-MPI derived iTPD % overestimated the PET iTPD % by 6.4% on average with the 95% limits as above. 
The dashed pink line represents the regression line of the differences between CT-MPI and PET iTPD% 
which shows a positive trend representing that the CT-MPI derived iTPD% overestimation increased with an 
increasing average of CT-MPI and PET iTPD%. CT computed tomography; MPI myocardial perfusion imaging; 
PET 82-Rubidium positron emission tomography; iTPD% ischemic total perfusion deficit % based on visual 
semi-quantitative methods
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the two measurements. The CUSUM test confirmed linearity (P = 0.53) between the 
two modalities of iTPD measurement, and the Passing–Bablok regression analysis 
showed good agreement with a proportional bias (slope = 6.86) between iTPD visu-
ally derived from CT-MPI and 82Rb PET (Fig. 5).

Discussion
To our knowledge, this is the first study that directly compares myocardial perfu-
sion in static CT-MPI and 82Rb PET-MPI using prospective ECG-triggered axial car-
diac CT protocol with semi-quantitative visual assessment with a widely available 
64-detector CT scanner. This study also provides in-depth information about the CT-
MPI image quality and artifacts including their distribution. Our study shows a mod-
erate agreement between static CT-MPI and 82Rb PET-MPI (weighted kappa of 0.49, 
95% CI of 0.28 to 0.70) and demonstrates good diagnostic performance of CT-MPI on 
qualitative and quantitative analyses at a per-person (89% SS, 58% SP, 71% accuracy 
AC) and a per-territory level (73% SS, 65% SP, 67% AC).

Other prior studies have compared CT-MPI and PET-MPI albeit with differing CT 
and PET methodologies. Williams et al. (2017) compared static whole-heart coverage 
CT-MPI determined perfusion defects with oxygen-15 labelled water PET determined 
myocardial blood flow (MBF). The authors reported excellent correlation between CT 
attenuation density and PET determined MBF (r = 0.579, P < 0.001). Others have uti-
lized either dynamic (Kikuchi et al. 2014) or multiphase (Dantas et al. 2018) CT-MPI 
protocols to calculate MBF and have shown good correlation with 82Rb PET deter-
mined MBF. Our study extends the available evidence by demonstrating a moderate 
agreement between static CT-MPI and 82Rb PET-MPI based on a semi-quantitative 
visual assessment of myocardial segments for reversible perfusion defects.

Fig. 5  The Passing–Bablok method of comparison demonstrates a proportional bias between the two 
semi-quantitative visual methods of myocardial perfusion assessment (slope = 6.86, y-intercept = 0, n = 43). 
The blue solid line indicates the slope of CT-MPI iTPD% measurements plotted against the perfect-fit line 
(dotted red line, slope = 1). The dotted blue line shows the lower limit of the 95% CI which does not include 
the perfect-fit line and hence, the proportional bias. The proportional bias indicates that the CT-MPI derived 
iTPD% overestimation of 82Rb PET derived iTPD% progressively increases with an increase in perfusion 
abnormalities as identified by 82Rb PET. The CUSUM (cumulative summation) test shows that the observed 
data does not significantly deviate from a linear model (P = 0.53). CT-MPI computed tomography myocardial 
perfusion imaging; 82Rb PET 82-Rubidium positron emission tomography; iTPD% ischemic total perfusion 
deficit % based on visual semi-quantitative methods
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Our findings lend support to the use of static CT-MPI with a semi-quantitative vis-
ual assessment in identifying hemodynamically significant CAD. This is important as a 
static CT-MPI protocol with a semi-quantitative visual assessment can be easily inte-
grated into a reporting practice and also doesn’t have limitations of a dynamic CT-MPI 
protocols such as increased radiation exposure (Danad et al. 2016), longer duration of 
breath hold, need for whole-heart coverage CT scanner, and the need for analytical soft-
ware for absolute MBF quantification (Koo et al. 2016).

Our study demonstrated a per-patient SS of 88.9%, a SP of 57.7% and 70.5% AC for 
CT-MPI based on a semi-quantitative visual assessment when compared to 82Rb PET-
MPI as the reference standard. The per-patient AUC of 0.73 demonstrates a good abil-
ity of CT-MPI to discriminate between those with and without myocardial perfusion 
defects. We found that CT-MPI overestimated perfusion defects in the myocardium as 
the visually derived SSS and the resultant iTPD from CT-MPI were significantly higher 
than those derived from 82Rb PET-MPI (p < 0.0001). While the SRS was not significantly 
different, the same trend of higher measures was also noted using CT-MPI. Similarly, 
the Bland–Altman analysis also showed that CT-MPI overestimated perfusion defects 
and the Passing–Bablok test revealed that this overestimation progressively increased 
with an increase in perfusion abnormalities as identified by 82Rb PET. The overestima-
tion of perfusion defects by CT-MPI is unlikely to be secondary to false positive defects 
related to artifacts (Blankstein et al. 2009). Of note, artifacts were identified in 27% of 
patients in our study who underwent stress CT-MPI. Most of these were noise artifacts 
(11%), and only 6% of beam hardening artifacts, which are known to mimic abnormal 
myocardial perfusion. The Likert scores for image quality were lower in the stress phase 
(score 4 or 5 in 66% of stress phase vs 94% of rest phase images) as expected. It seems 
unlikely that the relatively low number of beam hardening artifacts and image quality 
limitations could explain the differences in the measures of perfusion defects, as this 
trend was also noted in the rest studies. It is possible that the CT-MPI stress phase iden-
tified an excess of myocardial perfusion defects compared to 82Rb PET-MPI because 
of inherent higher spatial resolution (approximately 0.4  mm of CT compared to 0.7–
0.9  mm of PET), higher contrast resolution and dynamic range of CT compared to a 
nuclear based method. Similar findings were described by Meinel et al. (2013), in a study 
of 55 patients comparing first-pass (static) dual energy CT with SPECT as the reference 
standard. In this study, almost one-half of defects that were reversible at SPECT were 
classified as fixed, suggesting that the higher sensitivity of rest CT perfusion could be 
due to its ability to detect small subendocardial perfusion abnormalities. In fact, it is 
well described that the presence of perfusion abnormalities at rest CT-MPI that corre-
late with decreased myocardial flow and myocardial ischemia are probably secondary to 
the vasodilatory effects of nitroglycerin and iodine contrast inducing a mild hyperemic 
state (Williams et al. 2017; Meinel et al. 2013; Iwasaki and Matsumoto 2011; Kachenoura 
et al. 2009; Gupta et al. 2013; Osawa et al. 2014, 2016; Han et al. 2018). However, given a 
lack of invasive cardiac catheterization correlation in all cases, it is possible that some of 
these cases could be false positives. Therefore, it may be prudent in clinical practice to 
correlate CT-MPI findings with CCTA or FFRCT to offset the risk of false positives.

On a per-territory level, the current study demonstrated a good SS of 73.1%, 65.1% 
SP and 67.7% AC. Of note, this is a small increase in SP from the per-patient value 
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(57.7%) and decrease compared to per-patient SS (88.9%). This is an important result 
which demonstrates a difference in the diagnostic performance of a semi-quantitative 
visual assessment of CT-MPI using a per-person or a per-territory methodology. Given 
the good per-patient SS (88.9%) and the moderately low negative likelihood ratio (0.19) 
relative to 82Rb PET, using CT-MPI with a semi-quantitative visual per-person assess-
ment may be useful in ruling out functionally significant CAD, which would be espe-
cially valuable in those with a high pretest probability. On the other hand, a per-territory 
assessment may be useful in ruling in functionally significant CAD given the moderate 
SP (65.1%) and positive likelihood ratio (2.15), which would be valuable for those with 
low pretest probabilities.

It is interesting to note a moderate agreement (weighted kappa 0.49) and a markedly 
higher SS were recorded for CT-MPI reader A compared to reader B (88.9% vs 55.6%) on 
a per-patient basis for identification of myocardial perfusion defects. This highlights the 
issue of inter-reader variability in visual assessment of static CT-MPI. While this result 
could possibly be explained by the difference in experience of the two CT-MPI readers 
(Lubbers et al. 2011), it also highlights the need to further investigate visual assessment 
methods that would reduce inter-reader variability. Nonetheless, the inter-reader vari-
ability in our study is reflective of the “real-world” scenario with CT-MPI image readers 
of varying degrees of experience.

Static CT-MPI addresses a number of the limitations of other MPI modalities. The 
wide availability of CT scanners compared to PET and CMR, the higher spatial resolu-
tion compared to SPECT, and the ability of CT-MPI to simultaneously provide infor-
mation regarding the functional significance and anatomical assessment of CAD in a 
short examination duration place CT-MPI favorably compared to the other modalities 
(Yang et al. 2017). Considering the relative ease with which a visual based semi-quanti-
tative MPI assessment can be integrated into a routine clinical practice, the use of such 
methodology might prove beneficial to assess the functional significance of CAD. There 
is emerging data on the added value of integrating CT-MPI with CCTA and FFRCT to 
provide incremental diagnostic accuracy, specifically in borderline lesions with FFRCT 
between 0.7 and 0.8 (Coenen et al. 2017; Pontone et al. 2019b). As per the 2020 Society 
of Cardiovascular Computed Tomography expert consensus, the use of CT-MPI as an 
adjunct for patients having CCTA is recommended for those at high risk of obstructive 
CAD or if stenoses have indeterminate functional significance (Patel et  al. 2020). Fur-
thermore, stress CT-MPI may be combined with FFRCT, as theoretically the former may 
be more representative of the contribution of epicardial stenosis, microvascular disease 
and myocardial mass to ischemia.

Multiple studies have compared FFRCT with static CT-MPI in their ability to pro-
vide incremental diagnostic value to CCTA in detecting hemodynamically signifi-
cant stenoses. These studies have shown conflicting results, possibly due to differing 
CT-MPI acquisition modalities, the type of scanners used and other study limita-
tions including small sample sizes (Pontone et al. 2019a; Yang et al. 2017; Guo et al. 
2021; Ihdayhid et  al. 2018; Ko et  al. 2019). Furthermore, a recent meta-analysis by 
Celeng et  al. (2019), showed similar diagnostic performance of CT-MPI (SS 0.94, 
95% CI 0.91–0.97; SP 0.48, 95% CI 0.37–0.59, n = 3101) and FFRCT (SS 0.83, 95% CI 
0.71–0.92; SP 0.79, 95% CI 0.68–0.87, n = 697) on a per-patient basis. CT-MPI can 
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overcome FFRCT limitations such as requirement for off-site interpretation, evalua-
tion of coronary stents and epicardial vessels with complex plaque and anatomy. Fur-
thermore, FFRCT uses CCTA images as boundary conditions for computation fluid 
dynamic analysis of the coronary tree, and therefore the technique is impaired with 
the presence of artifacts in the coronary artery images that limit coronary segmen-
tation, such as motion, steps, severe calcification or bypass grafts, factors that do 
not affect the performance of CT-MPI. Thus, CCTA and CT-MPI can be performed 
using a 64-detector width MDCT with static low dose protocol, FFRCT evaluation 
for CCTA datasets may not be feasible in a substantial number of cases (Rochitte 
and Magalhães 2019).

This study was a single-center, prospective study with a limited sample size and 
hence, studies in larger cohorts are needed to validate our findings. The large patient 
size in the study (average BMI 30.8 ± 6.7), the use of 64-detector row CT scan-
ner and a low radiation dose protocol using prospective ECG-gated rest and stress 
acquisitions may have affected CT results unfavorably. However, despite these tech-
nical limitations, our study shows that CT-MPI is feasible and has good accuracy. 
We used a “rest-first” protocol for CT-MPI which could preclude our ability to iden-
tify low-attenuation perfusion defects, since iodine contrast can be retained in small 
subendocardial infarcts (increasing myocardial density) and theoretically decrease 
the sensitivity to detect perfusion defects in the stress phase (Koo et al. 2016). How-
ever, contrast contamination is likely to affect results for short inter-scan intervals of 
less than approximately 20 min. In our study an interval of 20 min was used, which 
should have been sufficient to allow for adequate washout of most of the myocardial 
contrast. Furthermore, theophyllines were withheld for 24 h more for 82Rb PET-MPI 
than CT-MPI in our study. The difference in duration of withholding theophyllines 
prior to 82Rb PET-MPI and CT-MPI in our study was driven by our local protocol. 
As the duration in both cases was 24 h or more (i.e. minimum required), additional 
24 h of theophylline free period prior to 82Rb PET-MPI would have not caused any 
significant effect on study results (Salcedo and Kern 2009). Metoprolol was given 
orally before the rest CT-MPI. This may have caused some reduction in CT-MPI 
sensitivity.

Lastly, our study used 82Rb tracer for PET, which has a lower image resolution, a 
lower myocardial extraction fraction compared to Oxygen-15 water tracer (Maddahi 
and Packard 2014). However, given the need for an onsite-cyclotron for producing 
Oxygen-15 water tracers, most PET-MPIs are performed using Rb tracers (Takx 
et al. 2015) thus, reiterating the value of our study for current clinical practice. To 
our knowledge, nitrogen-13-ammonia PET has not been compared to CT-MPI.

Conclusions
In conclusion, CT-MPI has high sensitivity and good overall accuracy for the diag-
nosis of functionally significant CAD using 82Rb PET-MPI as the reference standard. 
CT-MPI may play an important role in assessing the functional significance of CAD 
especially in combination with CCTA because of its high availability.
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Appendix 1: Likert scores (1 to 5) of image quality and reader’s confidence 
for CT‑MPI
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Appendix 2: CT‑MPI artifacts and distribution according to segments 
and coronary territories

Rest Stress p* LAD LCx RCA​ P**

No artifacts 643 (86) 545 (73)  < 000.1 717 (81) 222(84) 249(71) 0.002

Artifacts 105 (14) 203 (27)  < 000.1 163 (19) 42(16) 103(29) 0.002

Beam hardening 60 (8) 43 (6) 0.08 39(4) 9(3) 55(16)  < 000.1

Motion 3(0) 40(5)  < 000.1 24(3) 7(3) 12(3) 0.56

Step artifact 30(4) 41(5) 0.18 47(5) 10(4) 14(4) 0.25

Noise 12(2) 79(11)  < 000.1 53(6) 16(16) 22(6) 0.89

N = 17 segments × 44 studies = 748; number of findings (%)

LAD left descending coronary artery; LCx circumflex coronary artery; RCA​ right coronary artery

LAD (1,2,7,8,12,13–17 segments), LCx (5,6,11 segments), and RCA (3,4,9,10 segments) according to 17-segment model

p* Chi-squared test between Rest and Stress; P** Chi-squared test for trend between LAD, LCx and RCA​

Appendix 3: CT‑MPI artifacts and distribution

LAD = left descending coronary artery; LCx = circumflex coronary artery; RCA = right  
coronary artery
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