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ABSTRACT Whole-genome multiomic profiles hold valuable information for the analysis and prediction of disease risk and progression.
However, integrating high-dimensional multilayer omic data into risk-assessment models is statistically and computationally challenging.
We describe a statistical framework, the Bayesian generalized additive model ((BGAM), and present software for integrating multilayer
high-dimensional inputs into risk-assessment models. We used BGAM and data from The Cancer Genome Atlas for the analysis and
prediction of survival after diagnosis of breast cancer. We developed a sequence of studies to (1) compare predictions based on single omics
with those based on clinical covariates commonly used for the assessment of breast cancer patients (COV), (2) evaluate the benefits of
combining COV and omics, (3) compare models based on (a) COV and gene expression profiles from oncogenes with (b) COV and whole-
genome gene expression (WGGE) profiles, and (4) evaluate the impacts of combining multiple omics and their interactions. We report that
(1) WGGE profiles and whole-genome methylation (METH) profiles offer more predictive power than any of the COV commonly used in
clinical practice (e.g., subtype and stage), (2) adding WGGE or METH profiles to COV increases prediction accuracy, (3) the predictive power
of WGGE profiles is considerably higher than that based on expression from large-effect oncogenes, and (4) the gain in prediction accuracy
when combining multiple omics is consistent. Our results show the feasibility of omic integration and highlight the importance of WGGE
and METH profiles in breast cancer, achieving gains of up to 7 points area under the curve (AUC) over the COV in some cases.
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THE continued development of high-throughput genomic
technologies has fundamentally changed the genetic

analyses of complex traits and diseases. These technologies
provide large volumes of data from multiple “omic” layers,
including the genome (e.g., SNPs, copy-number variants,
and mutations), the epigenome (e.g., methylation), the

transcriptome (e.g., RNA-seq), the proteome, and so on.
This information can be used to develop models for under-
standing and predicting disease risk and disease prognosis.
Recently, several studies have uncovered unprecedented
numbers of omic factors associated with disease risk and
progression. For instance, in the last decade, genome-wide
association studies (GWAS) have reported large numbers
of SNPs (e.g., http://www.genome.gov/gwastudies/) and
structural variants [e.g., copy-number variants (Beroukhim
et al. 2010; Morrow 2010)] associated with disease risk.
Likewise, several studies have reported methylation sites
(Dedeurwaerder et al. 2011; Fackler et al. 2011; Fang et al.
2011) and genes with expression profiles associated with
prognosis (Perou et al. 2000; Sørlie et al. 2001; Van’t Veer
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et al. 2002; Sotiriou and Pusztai 2009; Gyorffy et al. 2016).
However, despite the tremendous progress achieved, use of this
information in clinical practice remains limited in part because
the proportion of variance in disease risk or prognosis explained
by the individual factors identified still remains limited.

Data integration can be an avenue for improving our un-
derstanding and our ability to predict disease risk and prog-
nosis. Integration can take place by combining information
frommultiple sites across the genome as well as by integrat-
ing inputs from different omics. In prediction of complex
traits and disease risk, several studies (e.g., Purcell et al. 2009;
de los Campos et al. 2010c; Yang et al. 2010; Makowsky et al.
2011; Vazquez et al. 2012) have demonstrated that the pro-
portion of variance explained by use of whole-DNA profiles is
considerably higher than that achieved by models that use a
limited number of GWAS-significant variants. Likewise, several
studies have demonstrated benefits of integrating data from
multiple omics. For example, Chen et al. (2012) demonstrated
how integrated omic profiles can provide insights into the de-
velopment of type 2 diabetes. However, our ability to integrate
whole-genome multilayer omic data into risk assessments still
lags behind.

Wheeler et al. (2014) and Vazquez et al. (2014) proposed
using what Wheeler called “Omic Kriging” for prediction
of complex traits and disease risk using multiomic profiles.
Kriging is a kernel-smoothing technique commonly used in
spatial statistics (e.g., Cressie 2015). From a statistical per-
spective, kriging is the best linear unbiased predictor (BLUP)
method commonly used in quantitative genetics (Henderson
1950; Robinson 1991) using pedigree (Henderson 1950,
1975) or DNA information (G-BLUP) (VanRaden 2008)].
OmicKriging is a multikernel method (de los Campos et al.
2010a, b) in which the resulting kernel is a weighted average
of similarity matrices derived from different omics.

Although OmicKriging represents a promising method
for integrating multiomic data, the method has potentially
important limitations. First, the approach assumes that the
architectureof effects is homogeneousacrossomic layers. This
assumption may not hold if some omics have a sparse architec-
ture of effect (i.e., a few factors have sizable effects, and the rest
have no effect) and other omics have non-sparse-effects archi-
tecture (i.e., all inputs have small effects). Second, OmicKriging
assumes implicitly that omics act in an additive manner (i.e.,
there are no interactions between omics). This may fail, for
instance, if the effects of one layer (e.g., SNP) are modulated
by a second layer (e.g., methylation).

In this study, we describe a modeling framework that (1)
allows integration of high-dimension inputs from multiple
omic layers, (2) contemplates different effect architectures
across layers, and (3) incorporates interactions between
omics. The approach is a Bayesian generalized additivemodel
(BGAM) that integrates in a unified setting ideas from general-
ized additivemodels (Hastie andTibshirani 1986)withBayesian
methods that allow for different architectures of effects (includ-
ing estimation with or without shrinkage and variable selection
methods) and recently developed techniques for modeling

interactions between high-dimensional inputs (Jarquín et al.
2014). Importantly, the BGAM can be used with traditional
quantitative traits and time-event (subject to censoring), ordi-
nal, and binary (e.g., disease) outcomes.

We use BGAM and data from The Cancer Genome Atlas
(TCGA) to develop models for analysis and prediction of
breast cancer (BC) outcomes. Breast cancer is considered
one of the most lethal types of cancer (Boyle and Levin
2008). In the United States alone, there are �180,000 new
cases of BC each year (Eifel et al. 2000), and it has been
estimated that about 12% of women will develop BC over
their lifetime (Eifel et al. 2000; Smigal et al. 2006). Advances
in early detection and in adjuvant therapy have reducedmor-
tality due to BC. However, adjuvant therapy has important
undesirable side effects on treated patients. Some of the most
serious ones include permanent infertility, heart damage,
cognitive impairment, and increased probability of developing
other types of cancers (Eifel et al. 2000). Cancers in approxi-
mately 40%of BC patients are estimated to recur ormetastasize
(Weigelt et al. 2005). However, because current models cannot
accurately predict BC progression, approximately 80% of BC
patients are treated with adjuvant therapy. Thus, a substantial
number of BC patients are being treated unnecessarily with
adjuvant therapy. An accurate assessment of disease progres-
sion could be used to implement amore precise approach to the
treatment of BC patients and reduce the impact of undesirable
outcomes due to therapy. Here we apply a BGAM modeling
framework to data from TCGA to developmodels for prediction
of the probability of survival after a diagnosis of BC. In our
application, we compare multiomic models with risk assess-
ments based on clinical covariates and the expression profiles
of large-effect genes included in the Oncotype DX platform
(Genomic Health) (Paik et al. 2004, 2006), which is a Food
and Drug Administration (FDA)–approved platform used in
clinical practice to predict BC progression. Our analysis demon-
strates that the integration of whole-omic profiles can increase
the proportion of interindividual differences in survival and
enhance prediction accuracy of BC outcomes above and beyond
that which can be achieved using clinical covariates (i.e., race,
age, cancer subtype, and stage) and expression-based diagnos-
tic tools (e.g., Oncotype DX).

In this article, we outline the main elements of the BGAM
modeling framework and present a series of case studies in
which we apply the methods to BC cases from TCGA. The
Discussion section highlights the main findings of our study
and offers a brief perspective on the strengths and limitations
of the BGAM framework. Our results show how the integra-
tion of omics in a clinical model improves prediction accuracy
for most omics, but the improvements are higher by combin-
ing clinical information with whole-genome methylation and
gene expression profiles.

Modeling Framework

Assume that themultilayeromicdata consist of aphenotypeor
disease outcome yi ði ¼ 1; . . . ; nÞ and sets of predictors
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coming from L input layers; these layers may include demo-
graphics, clinical covariates, and data from several omics. We
denote the data from these layers as X ¼ fX1; . . . ;XLg. Here
Xl ¼ fxlijg denotes a set of predictors from the lth data layer,
and l = 1, . . ., L, i = 1, . . ., n, and j = 1, . . ., pl index input
layers l, individuals i, and predictors within an input layer j,
respectively.

Generalized additive model (GAM)

Multilayer inputs can be incorporated into a regressionmodel
using the so-called generalized additive model (GAM) frame-
work (Hastie and Tibshirani 1986). In a GAM, a regression
function is expressed as the sum of L smooth functions

hi ¼ f1ðX1i;a1Þ þ f2ðX2i;a2Þ þ⋯þ fLðXLi;a1Þ (1)

Each of these functions can be linear or nonlinear for the
inputs and can be specified parametrically or using semi-
parametric methods (e.g., splines). Typically, these func-
tions are indexed by a set of parameters al estimated from
data. When these parameters are high dimensional (i.e., pl is
large), estimation is typically carried out using L2-penalized
(i.e., ridge-regression) estimators (Hastie and Tibshirani 1986);
this approach renders smooth functions with shrunken param-
eter estimates. The extent of shrinkage of estimates is controlled
by regularization parameters. When there is only smooth func-
tion, an optimal value for the regularization parameter can be
chosen using cross-validation methods (e.g., Golub et al. 1979).
However, when there are multiple regularization parameters
(e.g., one per term of the linear predictor), the cross-validation
approach becomes infeasible, and other approaches (e.g.,
mixed-effects models or Bayesian methods) are needed.

For some high-dimensional inputs (e.g., DNA markers and
transcriptomes), variable selection, as opposed to shrinkage,
may be desirable. This can be achieved in penalized regressions
by using penalties other than those based on the L2 norm, e.g.,
with the L1 norm, as in the LASSO method (Tibshirani 1996).
Alternatively, variable selection and/or shrinkage canbeobtained
in a Bayesian setting by choosing particular types of prior distri-
butions. The Bayesian approach has several attractive features.
First, within a Bayesian framework, multiple regularization pa-
rameters can be estimated from data without the need to
conduct extensive cross-validations. Second, Bayesian mod-
els can accommodate both shrinkage and variable selection
in a unified framework. Finally, using methods described later,
within the Bayesian framework, one can accommodate in-
teractions between inputs in high-dimensional sets. There-
fore, in this study, we adopted a Bayesian generalized additive
model (BGAM) framework for integrating multiomic inputs.

Bayesian generalized additive model (BGAM)

For ease of presentation, we introduce the model for the case
of a Gaussian outcome and assume that each of the functions
entering in (1) are linear on their inputs. Cases involving non-
Gaussian outcomes or functions that are nonlinear on
inputs are considered later. For the purpose of illustration,

we consider only three input layers, including a set of
nongenetic covariates X1i ¼ fx1ijgj¼p1

j¼1 and two omics
X2i ¼ fx2ijgj¼p2

j¼1 and X3i ¼ fx3ijgj¼p3
j¼1 . Extensions to more than

three layers are straightforward. With this setting, the lin-
ear predictor becomes

hi ¼ mþ
Xj¼p1

j¼1

x1ija1j þ
Xj¼p2

j¼1

x2ija2j þ
Xj¼p3

j¼1

x3ija3j (2)

where a1 ¼ fa1jgj¼p1
j¼1 , a2 ¼ fa2jgj¼p2

j¼1 , and a3 ¼ fa3jgj¼p3
j¼1 are

regression coefficients.

Bayesian likelihood

Under Gaussian assumptions, the conditional distribution of
the outcome given the parameters of the linear predictors is

pðyjX1;X2;X3; uÞ ¼
Yi¼n

i¼1
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�
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where u ¼ fs2
e ;m; a1;a2;a3g is a vector of model

unknowns.

Prior distribution

In aBayesian setting, layer-specific architectures of effects can
be accommodated using layer-specific priors. Therefore, we
structure the joint prior distribution of effects as follows:

p
�
a1;a2;a3;s

2
e ;V1;V2;V3

�
} p

�
s2
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�Y3
l¼1

" Yj¼pl
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where pðs2
e Þ is a prior for the error variance (e.g., a scaled

inverse chi-square), pðaljjVl Þ are IID priors assigned to the
effect of the 1st input layer, Vl is a set of layer-specific regu-
larization hyperparameters, and pðVlÞ is a prior distribution
assigned to these hyperparameters.

Special cases

Estimation without shrinkage can be obtained by setting
pðaljjVl Þ to be a flat prior (e.g., a normal prior centered
at zero and with a very large variance). Shrunken estimates
can be obtained by setting pðaljjVl Þ to be a normal prior
centered at zero and with variance parameter (Vl ¼ s2

al
)

treated as unknown. This approach renders estimates com-
parable to those of ridge regression (Meuwissen et al. 2001)
with an extent of shrinkage that is similar across effects.
Differential shrinkage of estimates of effects can be ob-
tained using priors from the thick-tailed family, such as the
double-exponential or scaled-t distributions; these priors are
used in the Bayesian LASSO (Park and Casella 2008) and
in BayesA (Meuwissen et al. 2001). Finally, variable selection
can be achieved by setting pðaljjVl Þ to be a finite mixture
with a point of mass (or a very sharp spike) at zero and a
relatively flat slab (George and McCulloch 1993; Ishwaran
and Rao 2005).
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Functions that are nonlinear inputs

These can be accommodated by first mapping the original
inputs (e.g., Xl) into a set of basis functions Fl ¼ ffl1ðXlÞ;
fl2ðXlÞ; . . . g and then using the transformed inputs fljðXlÞ as
covariates in the regression. This can be done either in para-
metric settings (e.g., with polynomials) or with semiparamet-
ric specifications (e.g., using splines or kernels).

Gaussian processes

When the coefficients entering a linear term are assigned IID
normal priors, the resulting function can be viewed as a draw
from a Gaussian process. For instance, if alj � Nð0;s2

al
Þ, then

the function fl ¼ Flal follows a normal distribution with null
mean and covariancematrix given by Kls

2
al
, where Kl ¼ FlF9l

is a covariance structure computed using cross-products of
the basis functions. This treatment fully connects the BGAM
with reproducing kernel Hilbert spaces (RKHS) regression
methods (Wahba 1990; Shawe-Taylor and Cristianini 2004),
a framework that can be used to implement various types of
parametric and semiparametric regressions. Importantly, this
framework can be implemented with almost any input sets,
including text data, images, special data, graphs, and so on
(Wahba 1990; de los Campos et al. 2009, 2010a).

Interactions between input layers

Model of expressions (1) and (2) assume that layers act
additively.However,many applicationsmay requiremodeling
interactions between layers. Accommodating interactions can
be particularly challenging when the number of inputs in the
interacting layers is large. For instance, with 10,000 expres-
sion profiles and 10,000 SNPs,modeling all possible first-order
interactions requires using 100million contrasts. Dealing with
interactions explicitly is not feasible. Therefore, we propose to
deal with interactions implicitly using Gaussian processes with
covariance structures based on the patterns induced by the
so-called reaction-norm model. This approach has been
used for modeling interactions between genetic factors and
environmental covariates in plants and animals (Gregorius
and Namkoong 1986; Calus et al. 2002; Su et al. 2006;
Jarquín et al. 2014). Recently, Jarquín et al. (2014) developed
methods for reaction norms involving high-dimensional ge-
netic (e.g., SNP) and high-dimensional environmental inputs.
The authors show that the covariance patterns induced by
a reaction-norm model can be expressed as the Schur (or
Hadamard) product of kernels that evaluate input similarity at
each of the interacting layers. An example of the use of this
method is provided in the fourth case study of the next section.

Non-Gaussian outcomes

Non-Gaussian outcomes (e.g., binary or ordered categorical
outcomes) can be accommodated using the probit or logit
link; in a Bayesian Markov chain Monte Carlo (MCMC) set-
ting, the probit link can be implemented easily using data
augmentation (Albert and Chib 1993).

Software

All the models described in this section can be implemented
using the Bayesian generalized linear regression (BGLR) R
package (Pérez and de los Campos 2014). This software im-
plements BGAM for continuous, binary, and ordinal outcomes
and offers users the possibility of specifying at each of the
layers parametric and semiparametric methods for shrinkage
and variable selection. Further details about the software can
be found in Pérez and de los Campos (2014) and at the
following website: https://github.com/gdlc/BGLR-R/.

Case Studies

In this section, we investigate the association between patient
survival and several predictors that can be assessed at di-
agnosis, including informationcommonlyusedbyclinicians to
assess BC patients (hereafter we refer to these predictors as
“clinical covariates”), gene expression profiles (RNA-seq),
methylation, copy-number variant, and micro-RNA. All these
omics were assessed at the primary tumor. We consider sev-
eral research questions, and for each of these questions, we
designed a case study that involves the comparison of several
models, each of which is a special case of the BGAM frame-
work described in the preceding section. All the case studies
are based on data from BC patients from TCGA. The motiva-
tion for each of the case studies is briefly presented next.

Case study I

Clinical information such as tumor subtype or cancer stage is
used to assess risk of possible cancer outcomes; precise pre-
diction of outcomes improves the decision as to which treat-
ment options should be used for each patient. Although the
clinical covariates are predictive of the likelihood of disease
progression, after accounting for differences attributable to
theseclinical predictors, important interindividualdifferences
in the BC outcome remain. Gene expression has been dem-
onstrated to be associated with BC progression (Sørlie et al.
2001, 2003). Therefore, in our first case study (CS-I), we
assessed the relative contribution to variance and prediction
accuracy of whole-genome gene expression (WGGE) profiles.
We compare models based on WGGE profiles with others
based on clinical covariates commonly used in clinical prac-
tice (BC subtype, stage, age at cancer diagnosis, histologic
subtype, and race). In this study, we assessed the contribution
to variance and prediction accuracy of WGGE profiles alone
and in combination with clinical covariates. Sørlie et al.
(2001) demonstrated that clusters derived from the gene
expression profiles are associated with breast cancer sub-
types. Our COV (M7) model and all other models that in-
corporate all clinical covariates already accounts for BC
subtypes as dummy variables and therefore incorporates
clustering. Several studies have demonstrated the association
of gene expression patterns and BC outcome. However, these
studies are based on data that have been conditioned by some
dimension-reduction method (e.g., clustering or principal
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components). We argue that consideration of WGGE profiles
is essential in capturing the diverse information on this trait
of complex biology.

Case study II

Our first case study accounted for the main effects of com-
monly used clinical covariates and those of WGGE profiles.
However, the patterns of gene expression and the prognosis
of the cancer present substantial variation in both the dif-
ferent cancer subtypes and the different stages of devel-
opment of the disease. Therefore, in our second case study
(CS-II), we focused on a particular cancer subtype: luminal
types at early stage—this is the most prevalent subtype.
For early-stage luminal patients, there is a well-established
commercial gene expression platform (Oncotype DX; Geno-
mic Health, Inc, Redwood City, CA) (Paik et al. 2004, 2006)
that has been approved by the FDA for use as a diagnostic
tool. Oncotype DX analysis is based on the profile of a genetic
signature consisting of only a few genes. We argue that the
use of whole-genome gene expression profiles can lead to a
larger proportion of variance explained and higher prediction
accuracy than can be achieved using the expression profiles
of a few genes. Therefore, in CS-II, we compared models
based on (1) clinical covariates, (2) clinical covariates plus
the expression profile of genes included in the Oncotype DX,
and (3) clinical covariates and WGGE profiles. The models
were fitted and compared based on data from patients with
luminal types at early stage only, lymph node negative, and
all lymph nodes.

Case study III

Information from omics other than the transcriptome, such as
DNA information (e.g., copy-number variants), or data from
the epigenome also can contribute to interindividual differ-
ences in survival. Therefore, in our third case study (CS-III),
we considered the use of omics other than WGGE pro-
files, including micro-RNA (miRNA), methylation, and copy-
number variant (CNV). For each omic, we assessed the
proportion of variance explained and prediction accuracy of
the omic alone and in conjunction with clinical covariates; in
all cases, we considered one omic at a time and conducted
separate analyses for each of the omics.

Case study IV

In our previous case studies, we assessed omics separately
or in combination with COV. In our fourth case study (CS-IV),
we evaluated the benefits of integrating two omics, WGGE
and METH profiles and COV simultaneously; we explored
this both with an additive model and with a specification
that contemplates interactions between omics.

Data

The Cancer Genome Atlas (TCGA) offers data on BC patients
with demographic, clinical, omic, and follow-up information
fromwhich survival information can be derived. Because data
are still being collected, follow-up time is short for most

patients. Therefore, our response variable was defined as
subjects that either died (1) or were alive (0) and had at least
three years of follow-up. All male records and females with
incomplete follow-up or inconsistent clinical records (e.g.,
death shortly after the diagnosis of BC in an early stage with-
out any record of progression) were removed. Also, women
with distant metastases at the time of diagnosis or patients
with history of a previous cancer were removed. After editing,
these samples were reduced from over 1000 to 797 samples,
from which only 285 met the minimum follow-up criteria.
Thus, the baseline data set consisted of 285 patients; these
included subjects with concordant data that were either dead
(n = 60) or alive (n = 225) and had a minimum follow-up
time of 3 years. Not all these patients had complete data for
all the omics. Therefore, in some of the case studies, we
further narrowed the set of patients to those who had com-
plete data for the inputs relevant to the specific analysis. The
original data set offered by TCGA was reduced to patients
with at least three years of follow-up because follow-up is
still too short [in the original TCGA data, the follow-up time
averages (6SD) 2.05 (61.14) years of last contact time for
those still alive.]

In CS-I, CS-III, and CA-IV, models were obtained by
regressing alive status (0/1) on the inputs that follow. These
inputs were selected based on their association with survival
in preliminary analyses. CS-II is a more homogeneous pop-
ulation, and fewer covariables were used (see Case study II
section).

Demographics: Demographics included age at diagnosis
[55.6 6 12.6 years (mean 6 SD)] and race/ethnicity
(Caucasian/African American).

Clinical information from the tumor: Tumor clinical in-
formation included histologic type [whether the invasive
tumor arose from lobular tissue (n = 35) or from ductal
breast tissue (n = 251)], subtype classification based on
themembrane receptors present in the tumor cell (luminal A,
179; luminal B, 24; Her2-Neu, 69; and triple negative, 13),
and stage, as defined by the American Joint Committee on
Cancer (Edge et al. 2010) (from I–IV; the number of patients
per stage were 58, 159, and 68 in stages I, II, and higher,
respectively).

Omics data: Omics data included gene expression pro-
files from RNA-seq, whole-genome methylation, miRNA, and
CNVs. Gene expression profiles were assessed using RNA-seq
technology sequenced on an Illumina HiSeq 2000 platform.
Normalized expression counts per gene were used. Workflows
for the creation of level 3 RNA data were detailed previ-
ously (Li et al. 2010; Wang et al. 2010). CNV data were de-
rived from Affymetrix Genome-Wide SNP Array 6.0. Mean
log2 ratios were used as a measure of per-segment CNVs.
Full processing details are documented in a Broad Institute
GenePattern pipeline (“GenePattern”). Source data for
methylation were generated with the Illumina Infinium
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HumanMethylation450 Beadchip and were processed by
the Johns Hopkins GSC to derive beta values for CpG sites
and their association with gene regions using methylumi
(Pidsley et al. 2013). miRNA values are quantified as
reads per million (RPM) from the Illumina HiSeq miRNA
2500 platform. Short-sequence reads were aligned to the
RCh37-lite reference genome using the Burrows-Wheeler
Alignment (BWA) tool (Li and Durbin 2009) and normal-
ized as RPMs (Network 2012). In TCGA, samples were
randomly assigned to plates; therefore, there should be
no association between batch and survival outcomes.
However, to confirm this, we conducted analyses of dis-
persion due to batch (see Supplemental Material, File S1,
Table S1.1).

Data analysis

Each of the case studies includes a baseline model plus
extensions obtained by including different combinations of
omics. In all cases, the response (survival, Yes/No) was
regressed on predictors using a threshold model (Gianola
and Foulley 1983; Agresti 2012) as implemented in the BGLR
R package (Pérez and de los Campos 2014). In each study,
models were first fitted to all the individuals that had com-
plete data for the set of predictors used in the case study.
From this analysis, we reported parameter estimates (e.g.,
variance components) and the posterior means of the log
likelihoods.

Model specification: The effects of clinical covariates were
regarded as fixed, while the effects of different omics
were regarded as random. For simplicity, all random effects
were assumed to be IID Gaussian, with omic-specific variance
parameters. We also conducted analyses using priors that
induce variable selection. In other studies, these models did
not show strong differences in risk for disease (Vazquez et al.
2015). Results of these analyses are given in the File S1,
Table S1.2. Variance parameters were assigned scaled in-
verse-chi-square priors with five degrees of freedom (this
gives a weakly informative prior) and scale parameters com-
puted according to the rules described in Perez and de los
Campos (2014); this is the default treatment of variances
implemented in BGLR. For each model, we ran 500,000 iter-
ations of a Gibbs sampler; the first 20,000 samples were dis-
carded as burn-in, and the remaining samples were thinned
at a thinning interval of five (see File S1, Figure S1.1 and
Figure S1.2 and Table S1.3). For all case studies, we report
the log likelihood, effective number of parameters in the
model, and the deviance information criteria (DIC).

Prediction accuracy: Prediction accuracy was assessed us-
ing cross-validations (CVs). We implemented a total of 200
independently generated 10-fold CVs. Prediction accuracywas
assessed using the CV–area under the receiver operating char-
acteristic curve (CV-AUC) (e.g., Fawcett 2006). Therefore, for
each study and model, we had a total of 200 estimates of CV-
AUC. Models were compared based on the average CV-AUC

and also by counting the proportion of CVs (of 200) for which
a given model had a higher CV-AUC than another. For CV
analyses, models were fitted using 80,000 iterations collected
after discarding the first 15,000 samples; furthermore, sam-
ples were thinned at an interval of five. For all case studies, we
report the average and SD (across 200CVs) of the CV-AUCand
the proportion of times that a model had a CV-AUC greater
than other models, also computed using results from 200 CVs.
Code to implement the models described herein is provided in
File S2 and on the following website: https://github.com/
anainesvs/VAZQUEZ_etal_GENETICS_2016.

Data availability

The data used in this study is publically available, collected and
distributed by TCGA, National Institutes of Health/National
Cancer Institute project. Data can be obtained at https://tcga-
data.nci.nih.gov/tcga. Additionally, to ensure reproducibility
of this analysis, the lines of code used to execute this study
are provided in File S2 and at the above- mentioned github
repository.

Results

Case study I: integrating clinical covariates and whole-
genome gene expression

The first case study (CS-I) was designed to assess the mar-
ginal association between survival and individual risk fac-
tors composed of clinical covariates (e.g., age, race, etc.) and to
quantify the gains in prediction accuracy that can be achieved
by adding gene expression data on a model that accounts for
the clinical information. Six sets of risk factors were consid-
ered; these included two demographics (age and race), three
clinical features of the cancer (whether it is a lobular carci-
noma, cancer subtype, and pathologic stage), and gene expres-
sion profiles (RNA-seq) from the primary tumor.

Sequence of models: A total of eight models were fitted,
including six single-risk-factor models (labeled as M1–M6),
a model based on all predictors except gene expression (M7,
also labeled as COV), and a model that included all the avail-
able predictors (M8, labeled as COV + WGGE).

Results: Table 1 provides goodness-of-fit statistics, measures
of model complexity, and estimates of prediction accuracy for
each of the eight models fitted in CS-I. Among the single-
factor models, the one that fitted the data best and had the
highest CV-AUC was the model using whole-genome gene
expression (WGGE, M6); clearly, WGGE profiles were the
most informative input.

Comparison of the results obtained with models COV and
COV +WGGE indicate that information from WGGE profiles
can improve the assessment of survival, even after accounting
for the predictors commonly considered in clinical practice.
The increase in CV-AUC obtained when WGGE profiles were
added to a model that includes all COVs was, on average,
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1.7 points (COV+WGGE) higher than that for amodel based
on COV, and the comparison across 200 CVs shows that the
model COV + WGGE outperformed the model based on
clinical covariates (COV) 99% of the time. In other words,
the increase in prediction accuracy was consistent.

Case study II: genetic signatures vs. whole-genome
gene expression profiles within cancer subtypes

CS-I showed that the assessment of BC survival could be
improved by using WGGE profiles from the tumor tissue.
CS-I is an analysis that is not specific to a cancer subtype,
although subtypes are considered in the model. The clinical
value of WGGE profiles for BC has been demonstrated pre-
viously (Sørlie et al. 2001), and gene expression profiles from
oncogenes are often used to assess BC patients; an example of
this is the Oncotype DX platform (Paik et al. 2004, 2006),
which is based on the expression profiles of 21 genes. Onco-
type DX has been validated for assessing BC outcome among
patients affected by tumors of the luminal (estrogen receptor–
positive [ER+]) cancer subtype that are in an early stage of
disease and do not have distant or nodal metastases. Therefore,
in this case study, we focused only on luminal cancers and
compared the relative contribution to variance and to prediction
accuracy of the expression profile of the Oncotype DX with that
of WGGE profiles.

Data: Data consist of a subset of the patients (n= 186) used
in CS-I who qualify for the Onctoype DX test; these are patients
who had ER+ tumors at stage I or stage II. Results are pre-
sented for all early-stage luminal patients [ER+ or progester-
one receptor positive (PR+)] and only for early-stage luminal
patients with negative lymph nodes (the target population of
the Oncotype DX). The platform includes 21 genes, 16 “risk”
genes, and 5 reference (“housekeeping”) genes for the purpose
of normalizing the data (Paik et al. 2004). From RNA-seq
WGGE profiles, we retrieve the expression profiles from all
the risk genes, except RPLP0.

Sequence of models: The baselinemodel (COV) included age
at diagnosis, race, and ethnicity. Tumor subtype and stage
were not included as covariates of the baselinemodel because
all patients had luminal tumors in early stage. The baseline
model was first extended by adding the random effects of the
expression of the genes included in the Oncotype DX panel
(COV + ONCO). Subsequently, we extended the COV +
ONCO model by adding the random effects of 17,899 genes
not included in theOncotypeDXpanel (we labeled thismodel
COV + WGGE, standing for covariates plus whole-genome
gene expression). The effects of race and age were treated as
fixed, and those of the gene expression profiles of the genes
included ineitherCOV+ONCOorCOV+WGGEwereassigned
IID normal priors with null mean and unknown variance (var-
iances were assigned scaled inverse-chi-square priors).

Results: The results from CS-II are given in Table 2. In this
study, we report CV-AUC based on luminal types, all luminals,Ta
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and only the ones with lymph node negatives. Estimates of
variance components revealed that the contribution to vari-
ance of the expression of the gene in the Oncotype DX was
low (0.027). However, the use of WGGE profiles lead to a
sizable fraction of variance explained. Indeed, the estimated
variance component associated with WGGE profiles (0.439)
amounts to 30% of the variance in risk that is not explained
by COV (computed as 0.439/1.439). However, owing to the
small sample size, the posterior credibility region for the es-
timated variance component associated with WGGE profiles
was wide. The DIC (“smaller is better”) also suggests that the
best model was the one including COV and WGGE profiles.
And the CVs based on all luminal cases revealed that adding
information from the genes included in the Oncotype DX
(COV + ONCO) improved CV-AUC relative to the baseline
model by 2.7 points and that addingWGGE profiles increased
CV-AUCs (also relative to COV) by 6.5 points. The analyses
based on patients with lymph node–negative tumors also
revealed a sizable increase in prediction CV-AUC when using
WGGE profiles (compared to the baseline model, the model
using COV and WGGE had 6.6 points in CV-AUC, and COV +
WGGE outperformed COV in 99% of the 200 CVs). However,
the prediction CV-AUC of the COV + ONCO model was sim-
ilar to that obtained with the COV model only. Therefore, we
conclude that using WGGE profiles leads to a higher propor-
tion of variance of risk explained and a higher prediction
accuracy than can be achieved using the expression profiles
of a few genes.

Case study III: comparison between omics

In the two preceding studies, we assessed the performance of
models based on clinical covariates and gene expression in-
formation from the tumor cells. In this study,we compared the
relative performance of models based on the other omics avail-
able: (1) CNVs, (2) methylation (METH), and (3) miRNA.

Data: This study includes data from patients who had in-
formation for at least one of the omics considered. Figure 1
shows a Venn diagram (Oliveros 2007) representing the
number of patients with omic data by layer. The number of
individuals with complete omic data are relatively small (n=
127). Therefore, when fitting models for a given omic, we
used all the individuals who had information for that omic.
This leads to three different sets of patients (we labeled them
as sets 1–3, corresponding to individuals with CNV, METH,
and miRNA, respectively) to which models were fitted.

Sequence of models: For each set of patients, we compared
the performance of a model based on covariates only (COV)
with that of a model based on covariates plus data from the
corresponding omic (COV+ CNV, COV+METH, and COV+
miRNA). As before, models were fitted using the BGLR R
package with COV as fixed effects and omics as random
effects, where the effects of the omics were treated as IID
drawn from a normal distribution with null mean and un-
known variance. Ta
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Results: Table 3 shows estimates of goodness of fit, model
complexity, variance components, and prediction accuracy
(AUC in CV) by model. The comparison of models based on
COV only with those based on one omic (either METH, CNV,
or miRNA) suggests that a model usingMETH profiles fits the
data better than and predicts survival equally well (actually
slightly more accurate) as a model based on COV. This sug-
gests that METH profiles information is capturing differences
due to tumor subtype and stage. This was not observed for
models based on CNV or miRNA; in these two cases, the
model based on COV outperformed the prediction accuracy
of the models based on either CNV or miRNA only.

The estimates of variance components derived frommodels
using COV plus one omic (COV+ CNV, COV+METH, COV+
miRNA) show that METH profiles and CNVs explained a
large fraction of interindividual differences in risk that cannot
be explained by COV; however, the 95% posterior credibility
regions are all wide. According to DIC, the models using COV
plus one omic were all better than the model using COV only;
however, the differences in DIC were, relative to the model
based on COV, large for the case of COV +METH and COV +
CNV and very small for themodel COV+miRNA (only about 2
points). Finally, the evaluation of prediction accuracy suggests
that adding eitherMETH profiles or CNVs to a model based on
COV increased prediction accuracy significantly (99% of the
time in200CVs)but by1.5 to1.7points ofAUC.Consideringall
the results from these case studies, it appears that among the
three omics evaluated, METH was the one that explained a
large proportion of variance in risk and contributed most to
prediction power, both when considered alone or in combina-
tion with COV.

Case study IV: integrating multiple omics

Among the four omics considered in the preceding studies,
the METH and WGGE models appeared to be the ones that

explain a large proportion of variance and achieved the
highest levels of prediction accuracy both when considered
alone and in combination with COV. Therefore, in this case
study, we considered integrating these two omics together
with COV into a risk-assessment model. Furthermore, we
evaluated the impacts of including interactions between the
two omics using a reaction-norm model.

Data: Data include the individuals (n = 218) who had com-
plete information for COV, METH, and WGGE.

Sequence of models: The baseline model (COV) is the same
as the one described in CS-I. This model was first expanded
by adding METH and WGGE additively (COV + METH +
WGGE) and subsequently further expanded by adding in-
teractions between omics (COV + METH 3 WGGE) using a
reaction-norm model. As before, COV was included as fixed
effects and omics as random effects. In all cases, the random
effects were assumed to be Gaussian, with omic-specific vari-
ance. The additive model COV + METH + WGGE had two
variance parameters linked to the main effects of each of the
omics included, and COV + METH 3 WGGE had three vari-
ance parameters, two formain effects and one for interactions.

Results: Table 4 shows the results obtained in CS-IV. In the
additive model (COV + METH + WGGE), the two omics
explained about 27% of the variance in risk that was not
accounted for by COV (this is estimated as the sum of the
two variance components divide by the sum of the two var-
iance components plus the error variance, which in the probit
model is 1). When interactions were added, the estimated
variance components of the main effects of each omic went
down (this relative to the additive model), and the total pro-
portion of variance in risk explained by omics (including
main effects and interactions) stays roughly the same. The
posterior mean of the log likelihood of the model COV +
METH + WGGE was 15.8 points higher than that of the COV
model; this indicates that adding the two omics increased good-
ness of fit markedly. When interactions were added, the change
in the log-likelihood relative to COV + METH + WGGE was
more modest. DIC (“smaller is better”) indicates a clear su-
periority of the additive model with two omics relative to
COV and almost no difference between COV + METH +
WGGE and COV + METH 3 WGGE. Finally, the evaluation of
prediction accuracy fromCVs showed that (1) thebaselinemodel
had a reasonably good AUC (0.724), (2) the additive model
improved the performance by 3 points in AUC (importantly, this
increase happened in 99% of the 200 CV), and (3) adding inter-
actions did not clearly improved prediction accuracy (in 60% of
the CV the additive model was better than the model having
interactions, and in the other 40%, the opposite happened).

Discussion

The availability of multiomic data sets has increased recently,
and this trend is expected to continue. Modern omic data sets

Figure 1 Venn diagram with the number of patients who had informa-
tion by omic layer (CNV, copy number variant; miRNA, micro-RNA; RNA,
RNA abundance measured with RNA-seq).
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can be big (large n), high dimensional (each subject can have
information on hundreds of thousands of variables), and
have a multilayer structure (e.g., data may involve clinical
information, demographics, lifestyle, and multiple omics).
While recent advances in computational power and method-
ology have enhanced our ability to analyze these data sets,
the availability of methods and data-analysis tools for inte-
grating high-dimensional multilayer inputs for the prediction
of disease risk is lacking.

Statistical models for the analysis of multilayer omic data
should (1) be able to integrate data from multiple omics, (2)
cope with high-dimensional inputs, (3) allow for different
architectures of effects across layers, and (4) accommodate
interactions between risk factors, including interactions be-
tween two or more high-dimensional sets. In this study, we
described a Bayesian generalized additive model (BGAM)
framework that fulfills those requirements. BGAMs integrate
ideas from different sources, including (1) generalized addi-
tive models (GAMs) (Hastie 2008), (2) Bayesian regularized
regressions (George and McCulloch 1993; Ishwaran and Rao
2005), and (3) modern approaches for modeling interactions
between high-dimensional inputs primarily developed for the
study of genetic-by-environment interactions (Jarquín et al.
2014). OmicKriging, a multiomic risk-assessment method
(Vazquez et al. 2014; Wheeler et al. 2014), can be seen as a
special case of the BGAM that assumes additive action across
omics and a homogeneous architecture of effects (with
Gaussian assumptions) across layers. Within the BGAM frame-
work, some of these assumptions can be relaxed by specifying
different prior distributions of effects across layers, by using
layer-specific regularization parameters (e.g., layer-specific
variances), and by incorporating interactions within or be-
tween layers using either parametric or semiparametric proce-
dures. The BGLR R package (Pérez and de los Campos 2014)
allows me to incorporate all these features for quantitative
(censored or not), ordinal, and binary traits. In our applica-
tion we used the BGLR with data from TCGA to build risk-
assessment models for prediction of survival of BC patients
using clinical covariates and multiple omics.

Omic information (e.g., gene expression patterns) can re-
veal important processes taking place at the cellular level.
Previous studies (Wheeler et al. 2014) have shown successful
integration of multilayer omics for prediction of cell pheno-
types. In these studies, the phenotype was measured in the
same cells where omics were assessed. Prediction of whole-
organism phenotypes is considerably more challenging due
to intercell variations in omics and traits and because the link
between the cellular processes at the tissues where omics were
assessed and target phenotype/disease may be weak owing to
multiple intervening factors. Perhaps for this reason, the in-
tegration of multiple omics for prediction of whole-organism
phenotypes has been much more limited. For instance, us-
ing OmicKriging Wheeler et al. (2014) did not observe
benefits of integrating DNA and gene expression informa-
tion for prediction of a pharmacogenetic trait (change inTa
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low-density lipoprotein cholesterol after simvastatin treat-
ment) relative to models based on DNA information only.

Recently, Yuan et al. (2014) considered integrating omics
with clinical covariates for prediction of survival in four dif-
ferent types of cancers (i.e., ovarian, renal, glioblastomamul-
tiforme, and lung squamous cell carcinoma). In most cases,
the authors did not find a significance gain in prediction ac-
curacy by combining omics with clinical covariates relative to
the covariate-only model. In a few combinations of cancers
and omics, the authors reported a statistically significant gain
in prediction accuracy, but the magnitude of the gain was
very low. In our study, we found significant gains in prediction
accuracy when integrating eitherWGGE orMETH, with gains
in AUC ranging from 2 to 7 points. An important difference
between the study by Yuan et al. (2014) and this study is that
the modeling approach used here (BGAM) assigned different
regularization parameters for different sets of inputs. This
allowed the model to weight differentially information from
clinical covariates and from different omics. To illustrate
the importance of assigning different priors/regularization
parameters for different omics, we conducted a sensitivity
analysis in which we fitted the model incorporating COV,
WGGE, and METH of CS-IV without assigning different pri-
ors/regularization parameters for each of the three inputs
sets. The results are presented in File S1, Table S1.4. Assign-
ing the same prior/regularization parameters to all the ef-
fects resulted in a substantial loss in AUC: from 0.754
(model COV + WGGE + METH, CS-IV) to levels of AUC on
the order of 0.56 when the same inputs were assigned the
same prior/regularization parameters and 0.64 when the
same inputs were assigned the same prior in a variable selec-
tion model (BayesB).

BC becomes lethal after migrating from the breast with the
development of distant metastases on organs (e.g., brain or
liver). An important strength of our application is that all the
omics used for prediction of survival of BC patients were
assessed at the primary tumor: the tissue where the disease
is unfolding. An additional strength of this application is that
the overwhelming majority of cancer samples are primary
tumor only. Our response variable considered alive status
(0/1), but one could also regress survival time as a censored
outcome on covariates and omics using parametric (e.g.,Weibull,
log-normal) or semiparametric regression (e.g., Cox propor-
tional hazard regression) (Cox 1972).

Several risk factors are associated with the likelihood of
developing distant metastases and, ultimately, survival. The
risk factors commonly considered when assessing cancer pa-
tients, including tumor type, subtype, and stage, were found
to be significantly associated with survival in TCGA. Other
factors commonly considered when assessing BC patients,
including lymph node invasion, marginal status (whether
cancerous cells are present in the remaining margins at the
site of surgery), increased size of the primary tumor, and level
of loss of histopathology differentiation in the tumor cells
themselves were not significantly associated with survival
when a full set of COV was included. Consequently, ourTa
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baseline COVmodel included demographics (race and age at
diagnosis) and the three clinical covariates that had signif-
icant association with survival (lobular/ductal, tumor sub-
type, and stage).

Cancer subtype and stage are themost important predictors
consideredbya clinicianwhenassessingBCpatients.Our study
showed that these two predictors are indeed the clinical COV
thatoffershighest predictionaccuracy.OurCS-I also shows that
WGGE profile had more predictive power than any of the
predictors commonly used in clinical practice, including cancer
subtype and state, which are well established in the literature
(Koscielny et al. 1984; Carter et al. 1989; Rosen et al. 1989;
Elston and Ellis 1991; Sørlie et al. 2001;Weigelt et al. 2005) as
clinical predictors of BC progression and survival.

Geneexpression is informativeof cancer subtypeandstage;
indeed, gene expression patterns are predictive of intrinsic
subtypes, which are then confirmed by receptor subtype
(Sørlie et al. 2001). However, our results suggest that even
after accounting for all the variables commonly used to assess
cancer patients, including stage and cancer subtype, the ad-
dition of WGGE profiles can further improve prediction accu-
racy. The gains in prediction accuracy obtained when adding
WGGE profiles were moderate in magnitude (2.0–2.5 points
in AUC) when we considered all the cancer subtypes to-
gether to be very relevant (7 points in AUC) when models
were fitted to a particular subtype, as was the case in CS-II.
Because the COV model includes cancer stage and subtype,
which are correlated with gene expression–derived clusters
(Sørlie et al. 2001), the gains in predictive accuracy obtained
with the addition of WGGE profiles cannot be attributed to
clustering. To demonstrate this, we derived the leading five
principal components (PCs) of gene expression and tested
the significance of adding these PCs as predictors in the COV
model using a likelihood-ratio test. The results (see File S1,
Table S1.5) indicated that after accounting for COV, the
leading five PCs did not have a significant effect on sur-
vival. Therefore, we conclude that the gains in predictive ac-
curacy observed are largely owing to patterns other than the
clustering obtainable with the first PC from gene expression.

The predictive power of gene expression profiles was
established in the literaturemore thanadecadeago.However,
risk assessment is typically based on the expression profiles of
a few large-effect genes (Paik et al. 2004; Glas et al. 2006).
Results from SNP data in other contexts suggest that the in-
formation from large numbers of markers may increase the
phenotypic variance explained better than preselecting small
numbers of SNPs (Allen et al. 2010; Vazquez et al. 2010).
While the expression profiles of preselected genes are cer-
tainly predictive of BC outcomes, valuable information may
be lost when the nonselected genes are ignored. The results
from CS-II confirmed this hypothesis. Indeed, our results in-
dicate that the use of WGGE profiles leads to a larger pro-
portion of variance in risk explained and provides higher
predictive accuracy of BC patient survival than what can be
obtained using the expression profiles of a few oncogenes.
With modern sequencing technologies, assessing WGGE

profiles has become feasible, and it should be economically
viable. We argue that the use of WGGE profiles for assess-
ment of BC patients should receive more attention.

In addition to WGGE profiles, the CNV and METH models
offer some promising results. Methylation has been shown to
be an interesting set to predict plant traits (Hu et al. 2015). In
our study, methylation considered alone offered higher pre-
dictive accuracy than a model based on clinical predictors,
including both cancer stage and subtype. Further studies are
needed to assess whether the association between methyl-
ation and survival is due to common factors (e.g., carcinogenic
factors that affectmethylation pattern andBCprogression at the
same time) or tomediation (e.g., that the effects of carcinogenic
factors may be mediated by methylation). However, our results
did not show a large variance associated with miRNA in the
survival of BC patients. Further studies with larger sample sizes
will be needed to determine whether our model results involv-
ing miRNA are due to lack of power or to weak association
between miRNA profiles and survival.

Methylation additively integrated to WGGE explains
about 30% of the variance in risk that was not explained
by COV, and the AUC of the model was 3 points greater than
that achieved with COV. This gain in AUC is slightly greater
(�1 point greater) than what we achieved in CS-I and CS-III
when we added one omic at a time. This suggests that even
though METH and WGGE profiles provide, to some extent,
redundant information, such redundancy is not complete,
and there may be some benefits to including both omics in
a model. When we added interactions, we did not observe
performance improvement relative to the additive model.
Neither the proportion of variance explained by omics nor
predictive accuracy increased relative to the additive model.
Further studies with higher sample sizes and perhaps with
analyses within cancer subtype are needed to fully explore
the potential benefits of including multiple omics with omic-
by-omic interaction.

In this study, we demonstrate how clinical information can
be integrated with whole-genome omic data derived from
several omic layers, including the genome (e.g., CNV), epige-
nome (METH), and transcriptome (miRNAandWGGEprofiles).
With some of the omics, we found statistically significant and,
in some cases, substantial gains in predictive accuracy rela-
tive to models based on clinical COV. However, our ability to
detect improvements may have been limited by three main
factors. The first is small sample size. Most of the models we
considered involved large numbers of effects. Although
Bayesian methods allow handling high-dimensional predic-
tors even in settings where the number of effects exceeds
sample size, the accuracy of estimates of individual effects
is low when the number of effects is large relative to sample
size. Therefore, considerably larger numbers of samples will
be needed to realize the potential contribution to predic-
tive accuracy. The second limiting factor is that in three of
our four case studies, we treated BC as a single disease and
included the cancer subtype in themodel. When BC is treated
as a homogeneous disease, a large fraction of interindividual
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difference in survival can be attributed to cancer subtype.
We decided to carry out CS-I, CS-III, and CS-IV based on all BC
cases because carrying out analyses within cancer subtype
would have reduced the sample size. In the only case where
we considered a within-subtype analysis (CS-II), we detected
gains in prediction accuracy that were considerably larger than
when all subtypes were considered jointly. This suggests that
omics may contribute significantly to prediction of interindi-
vidual differences in progression and survival within subtypes,
thus paving the way to a more precise approach to the treat-
ment of BC patients. Finally, the third limiting factor is that
TCGA is a relatively new repository for BC, and hence, follow-
up time is short for many patients, and limited follow-up time
reduces the information content of each case. In the near fu-
ture, the availability of large data sets comprising clinical in-
formation and multilayer omic data will increase, and such
data sets will allow researchers to explore the limits of what
multilayer omic data can contribute to prediction of BC pro-
gression and patient survival.
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Figure	  S1.1.	  Trace	  plots	  of	  variance	  parameters	  associated	  to	  CNV,	  Methylation	  and	  
miRNA,	  derived	  from	  the	  models	  presented	  in	  Case	  Study	  3.	  	  
	  

	  
	  
Figure	  S1.2.	  Trace	  plot	  of	  fixed	  effects	  obtained	  from	  the	  samples	  collected	  when	  
fitting	  a	  model	  for	  clinical	  covariates	  and	  CNV	  (COV+CNV),	  case	  study	  III.	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



Table	  S1.1.	  Dispersion Separability Criterion (DSC) due to batch computed with the R 
package MBatch (“MBatch” by Weinstein's group).  
Omic Dispersion Separability Criterion* 
CNV 0.224 
Methylation 0.234 
miRNA 0.343 
Gene Expression 0.272 
*The authors of ‘MBatch’ suggest problematic threshold is a DSC of 0.5. 
	  
	  
Table	  S1.2.	  Cross-‐validation	  AUC	  (average	  over	  100	  cross	  validations)	  and	  SD	  of	  the	  
AUC	  for	  models	  with	  different	  inputs	  and	  priors.	  
	  
Model	   AUC	  in	  CV	  
	   Average	   SD	  
GE	  (Gaussian	  Prior)	   0.658	   0.011	  
GE	  (Bayes	  B)	   0.653	   0.012	  
COV	  (Fixed	  Effect)	   0.703	   0.007	  
COV	  (Fixed	  Effect)+GE	  (Gaussian	  Prior)	   0.721	   0.008	  
COV	  (Fixed	  Effect)+GE	  (Bayes	  B)	   0.717	   0.008	  
	  
	  
Table	  S1.3.	  Estimated	  posterior	  mean	  and	  the	  estimated	  Monte	  Carlo	  standard	  
error	  of	  mean	  for	  selected	  parameters	  (all	  obtained	  from	  models	  in	  case	  study	  3,	  the	  
fixed	  effects	  parameter	  correspond	  to	  the	  model	  using	  covariates	  plus	  CNV.	  
	  
Parameter	  being	  Estimated:	  	   Posterior	  Mean	   MC	  SE	  
Variance	  associated	  to	  CNV	   0.637	   0.011	  
Variance	  associated	  to	  Methylation	   0.652	   0.025	  
Variance	  associated	  to	  miRNA	   0.338	   0.004	  
Race	  (African	  American	  versus	  White)	   0.114	   0.005	  
Age	  effect	  	   0.017	   0.0001	  
Pathological	  Stage	  	   0.387	   0.002	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



	  
Table	  S1.4.	  Cross-‐validation	  AUC	  (average	  over	  100	  cross	  validations)	  and	  SD	  of	  the	  
AUC	  for	  models	  with	  layer-‐specific	  prior	  and	  layer-‐specific	  regularization	  
parameters	  (first	  row)	  versus	  models	  (rows	  2	  and	  3)	  where	  all	  predictors	  were	  
assigned	  the	  same	  prior	  and	  same	  regularization	  parameters	  (either	  Gaussian,	  row	  
2	  or	  Bayes	  B,	  row	  3).	  
	  
Model	   AUC	  in	  CV	  
	   Average	   SD	  
COV	  (Fixed)+GE	  (Gaussian)+METH	  (Gaussian)	  	   0.754	   0.004	  
COV+GE+METH	  (All	  with	  the	  same	  Gaussian	  Prior)	   0.561	   0.025	  
COV+GE+METH	  (All	  with	  the	  same	  prior:	  Bayes	  B)	   0.637	   0.022	  
GE:	  gene	  expression,	  COV:	  clinical	  covariates,	  METH=METHILATION.	  
	  
	  
Table	  S1.5:	  P-‐values	  results	  from	  Likelihood	  Ratio	  Test	  of	  extending	  the	  clinical	  
model	  (short	  model)	  with	  GE-‐derived	  and	  methylation-‐derived	  PCs	  (1	  to	  5	  
successively)	  to	  model	  breast	  cancer	  alive	  status	  with	  a	  logit	  link.	  
Short	  model	  
(H0)	  

Long	  model	  (HA)	  	   p-‐Value	  
-‐PC	  derived	  
from	  GE	  

p-‐Value	  
-‐PC	  derived	  

from	  
Methylation	  

COV	   COV	  +PC1	   0.740	   0.453	  
COV	   COV	  +PC1+PC2	   0.070	   0.123	  
COV	   COV	  +PC1+PC2+PC3	   0.056	   0.241	  
COV	   COV	  +PC1+PC2+PC3+PC4	   0.072	   0.089	  
COV	   COV	  +PC1+PC2+PC3+PC4+PC5	   0.091	   0.152	  
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Integrating multiple Omics for Prediction of BC Survival

The following scripts illustrate how to fit some of the models presented in Vazquez et al., Genetics, 2016, the scripts are also
provided at: https://github.com/anainesvs/VAZQUEZ_etal_GENETICS_2016, please refer to that webpage for updates.

Contact: avazquez@msu.edu

(1) Installing BGLR

The code below illustrates how to install and load the necessary package from CRAN using  install.packages() .

   install.packages(pkg='BGLR')    # install BGLR
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   library(BGLR); 

(2) Loading data

Data: The code assumes that the user has saved in the file  OMIC_DATA.rda  the objects that contain the phenotypic information,
clinical covariates, and omic data. The code assumes that the file  OMIC_DATA.rda  contain the following objects:

 XF : an incidence matrix for clinical covariates.
 Xge : an incidence matrix for gene expression.
 Xmt : an incidence matrix for methylation values at various sites.
 y : a vector with the response, in this case a 0/1 where 0 denotes alive. The code below assumes that all the predictors
were edited by removing outliers and predictors that did not vary in the sample, transformed if needed, and missing values
were imputed.

(3) Computing similarity matrices

Some of the models fitted in the study use similarity matrices of the form G=XX' computed from omics. The following code
illustrates how to compute this matrix for gene expression. A similar code could be use to compute a G-matrix for methylation or
other omics (see (6)).

  load('OMIC_DATA.rda')

  #Computing a similarity matrix for gene-expression data

   Xge<- scale(Xge, scale=true, center=TRUE) #centering and scaling

   Gge<-tcrossprod(Xge)                      #computing crossproductcts

   Gge<-Gge/mean(diag(Gge))                  #scales to an average diagonal value of 1.

NOTE: for larger data sets it may be more convinient to use the  geG()  function of the BGData R-package. This function allows
computing G without loading all the data in RAM and offers methods for multi-core computing.
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(4) Fitting a binary regression for (the "fixed effects" of) Clinical Coavariates using BGLR (COV)

The following code illustrates how to use BGLR to fit a fixed effects model. The matrix XF is an incidence matrix for clinical
covariates. There is no column for intercept in XF because BGLR adds the intercept automatically. The response variable  y  is
assumed to be coded with two lables (e.g., 0/1), the argument  response_type  is used to indicate to BGLR that the response is
ordinal (the binary case is a special case with only two levels). Predictors are given to BGLR in the form a two-level list. The
argument  save_at  can be used to provide a path and a pre-fix to be added to the files saved by BGLR. For further details see
Pérez-Rodriguez and de los Campos, Genetics, 2014. The code also shows how to retrieve estimates of effects and of success
probabilities. In the examples below we fit the model using the default number of iterations (1,500) and burn-in (500). In practice
longer chains are needed, the user can increase the numbrer of iterations or the burn-in using the arguments  nIter  and
 burnIn  of  BGLR .

### Inputs

# centering and scaling the incidence matrix for fixed effects.

 XF<- scale(XF, scale=FALSE, center=TRUE) 

 ETA.COV<-list( COV=list(X=XF, model='FIXED') )

# Fitting the model

 fm=BGLR(y=y, ETA=ETA.COV, saveAt='cov_', response_type='ordinal')

# Retrieving estimates

 fm$ETA$COV$b      # posterior means of fixed effects

 fm$ETA$COV$SD.b   # posteriro SD of fixed effects

 head(fm$probs)    # estimated probabilities for the 0/1 outcomes.

(5) Fitting a binary model for fixed effects and whole genome gene expression (GE) using
BGLR (COV+GE)

The following code illustrates how to use BGLR to fit a mixed effects model that accomodates both clinical covariates and whole-
genome-gene expression.

# Setting the linear predictor
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  ETA.COV.GE<-list( COV=list(X=XF, model='FIXED'), GE=list(K=Gge, model='RKHS'))

# Fitting the model

  fm.COV.GE<- BGLR(y=y, ETA=ETA.COV.GE, response_type='ordinal',saveAt='cov_ge_')

#  Retrieving predictors

  fm.COV.GE$mu            # intercept

  fm.COV.GE$ETA$COV$b     # effects of covariates

  fm$COV.GE$ETA$GE$varU   # variance associated to GE SD.varU gives posterior SD

  fm.COV.GE$ETA$GE$u      # random effects associated to gene expression

  plot(scan('cov_ge_ETA_GE_varU.dat'),type='o',col=4) # trace plot of variance of GE.

NOTE: to fit a similar model for COV+METH one just needs to change the inputs in the defintiion of the linear predictor by
providing Gmt instead of Gge.

(6) Fitting a binary model for fixed effects covariates and 2 omics (COV+GE+METH)

The following code shows how to extend the the model  COV+GE  with addition of methylation data.

#Computing a similarity matrix for methylation data

Xmt<- scale(Xmt, scale=TRUE, center=TRUE)  #centering and scaling

Gmt<-tcrossprod(Xmt)                       #computing crossproductcts

Gmt<-Gmt/mean(diag(Gmt))                   #scales to an average diagonal value of 1.

ETA.COV.GE.MT<-list( COV=list(X=XF, model='FIXED'),

                     GE=list(K=Gge, model='RKHS'),

                     METH=list(K=Gmt, model='RKHS'))

# Fitting models 

fm.COV.GE.MT<- BGLR(y=y, ETA=ETA.COV.GE.MT, 

                 response_type='ordinal',saveAt='cov_ge_mt_')

(7) Fitting a binary model for fixed effects covariates and 2 omics and their interactions
(COV+GE+METH+GExMETH)
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The following code shows how to extend the the model  COV+GE+METH  with addition of interactions between gene expression and
methylation profiles.

 G.mg=Gmt*Gge

 G.mg=G.mg/mean(diag(G.mg))

 ETA.COV.GE.MT.GExMT<-list( COV=list(X=XF, model='FIXED'),

                     GE=list(K=Gge, model='RKHS'),

                     METH=list(K=Gmt, model='RKHS'),

                     GExMETH=list(K=G.mg, model='RKHS'))

# Fitting models 

fm.COV.GE.MT.GExMT<- BGLR(y=y, ETA=ETA.COV.GE.MT.GExMT, 

                 response_type='ordinal',saveAt='cov_ge_mt_gexmt')

(8) Validation

The following illustrates how to select a validation set using the model  COV  as example.

#Installing and loading library pROC to compute Area Under the ROC Curve.

install.packages(pkg='pROC')    # install pROC

library(pROC);

n <- length(y)

  # Randomly select a 20% of the data to be the testing set 

tst<- runif(n) <0.2

yNA = y; yNA[tst] <-NA

  # Fit the model only in the training set

fm.COVtr<- BGLR(y=yNA, ETA=ETA.COV, response_type='ordinal')

  # Find probability of survival for the testing set

pred <-fm.COVtr$probs[tst,2]

  # Estimate AUC

AUC_train<-auc(y[!tst],fm.COVtr$yHat[!tst])

AUC_test<-auc(y[tst], pred)

#For the first individual, area under the standard normal curve (CDF) 
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#of estimated y from full model:

pnorm(fm.COVtr$yHat[1])

NOTE: if sample size is small (like TCGA data) and uneven in the number of 1s and 0s it will be wise to randomize 1s and 0s to
be part of the testing sets, and repeate the validation multiple times. In Vazquez et al., 2016 (Genetics) we implement 200 cross-
validations.
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