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Peripartum cardiomyopathy (PPCM) is a potentially life-threatening condition in which

heart failure and systolic dysfunction occur late in pregnancy or within months following

delivery. To date, no reliable biomarkers or therapeutic interventions for the condition

exist, thus necessitating an urgent need for identification of novel PPCM drug targets and

candidate biomarkers. Leads for novel treatments and biomarkers are therefore being

investigated worldwide. Pregnancy is generally accompanied by dramatic hemodynamic

changes, including a reduced afterload and a 50% increase in cardiac output. These

increased cardiac stresses during pregnancy potentially impair protein folding processes

within the cardiac tissue. The accumulation of misfolded proteins results in increased

toxicity and cardiac insults that trigger heart failure. Under stress conditions, molecular

chaperones such as heat shock proteins (Hsps) play crucial roles in maintaining cellular

proteostasis. Here, we critically assess the potential role of Hsps in PPCM. We further

predict specific associations between the Hsp types Hsp70, Hsp90 and small Hsps

with several proteins implicated in PPCM pathophysiology. Furthermore, we explore the

possibility of select Hsps as novel candidate PPCM biomarkers and drug targets. A

better understanding of how these Hsps modulate PPCM pathogenesis holds promise

in improving treatment, prognosis and management of the condition, and possibly other

forms of acute heart failure.
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INTRODUCTION

Protein folding processes are fundamental in the maintenance of cardiac tissue integrity (1). The
metabolic and mechanical demands of the heart, such as its continuous contractile activities,
place a burden for robust protein quality control systems (2). Several cardiovascular diseases
such as ischemic heart disease and heart failure (HF) are characterised by increased mechanical
and oxidative pressures which trigger an accumulation of misfolded proteins in cardiomyocytes.
Misfolded proteins are toxic to cardiomyocytes, potentially causing cardiac insults that lead to
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HF (3). Under ensuing stress conditions, protein folding
processes which typically occur in the sarcoplasmic reticulum,
sarcomeres and mitochondria, are crucial in maintaining cardiac
muscle integrity (4). Molecular chaperones such as heat shock
proteins (Hsps) are an important class of proteins involved in
the maintenance of proteostasis in various cell types under both
normal and stress conditions. Here, we review the potential
involvement of Hsps in peripartum cardiomyopathy (PPCM).
Notably, the additional cardiac stress associated with pregnancy
may further induce unique protein folding pathways in PPCM.
Using bioinformatics tools, we further propose novel interactions
(between proteins involved in PPCM pathogenesis and Hsps)
which can be targeted toward drug interventions. Currently,
echocardiography is the principal diagnostic tool for PPCM, as
no reliable biomarkers exist. In this review, we also critically
assess the potential of Hsps as candidate PPCM biomarkers.

PATHOPHYSIOLOGY AND MOLECULAR
PATHWAYS OF PPCM

PPCM is a common and devastating disease that is associated
with the unexpected loss of maternal cardiac function in the
period surrounding parturition i.e., toward the end of pregnancy
or within months following delivery (5). PPCM is characterised
by a decreased left ventricular ejection fraction (LVEF) that is
<45% in patients without prior cardiac disease (6). Generally,
PPCM presents as congestive HF and systolic dysfunction,
with typical symptoms including dyspnoea, fatigue, palpitations,
oedema and chest pain (5). Although 90% of PPCM cases present
after parturition, in rare cases disease onset has also been reported
in the second trimester (7, 8). With a reported incidence ranging
from 1:100 to 1:10,000 deliveries (9, 10), the frequency of PPCM
appears to be influenced by ethnicity, with individuals of African
origin at greater risk of developing the disease (10, 11). Other risk
factors for PPCM include preeclampsia, multiparity, maternal
age and multiple pregnancies.

Although the pathophysiology of PPCM is not entirely
understood, several mechanisms of disease have been suggested.
These include malnutrition, viral infection, autoimmunity and
increased haemodynamic strain, although their roles in PPCM
have proved nebulous (12). Current evidence, however, strongly
suggests that PPCM may be driven by a pathological imbalance
of pro- and anti-angiogenic hormones, as well as genetic
factors. Two main pathways underlying disease pathogenesis
have accrued from studies of mouse models of PPCM, as
well as observations in human patients. These are reviewed in
more detail elsewhere (12), but both involve the creation of
a profoundly vasculotoxic environment through imbalances in
angiogenic hormones.

The first pathway is characterised by increased expression of
the pituitary hormone prolactin (PRL) which, in conditions of
high oxidative stress, ultimately leads to cardiomyocyte apoptosis
and cardiac dysfunction. The post translational processing of PRL
is complex and the full length 23 kDa protein may be cleaved by
peptidases (such as Cathepsin D) into a smaller 16 kDa variant.
The 16 kDa PRL variant is a potent anti-angiogenic factor which

acts as a vasoinhibin which can also cause vascular dropout,
global systolic dysfunction and cardiac endothelial apoptosis. A
murine PPCMmodel demonstrated that cardiac-specific deletion
of the STAT3 gene caused increased oxidative stress through
reduced MnSOD expression (13). Further investigation also
revealed an increase in cathepsin D activity and a corresponding
increase in 16 kDa PRL levels (13). Altogether, this implies
a vital role of STAT3 in cardioprotection during pregnancy,
suggesting that dysregulation of STAT3 may also underlie
PPCM. Recently, inhibition of Notch1/Hes1 has been found
to induce PPCM through suppression of STAT3 activation,
as well as increasing cathepsin D expression (14). Another
protein involved in PPCM pathophysiology, Akt, is highly
activated during pregnancy and promotes cardiac hypertrophy,
and was shown to be activated by both PRL and interferon-γ
(IFNγ) (15).

The second PPCM pathophysiology pathway involves the
increased placental secretion of soluble Fms-like tyrosine kinase
1 (sFlt1) into the maternal system. Precisely why sFlt1 is secreted
by the placenta is unclear, but both sFlt1 and membrane bound
Flt1 are decoy receptors for vascular endothelial growth factors
(VEGFs). VEGFA and VEGFB are proangiogenic factors and
important mediators of cardiac homeostasis, but the binding of
sFlt1 inhibits their activity (16). VEGF expression is driven by
PGC-1α, and suppression of this in murine hearts led to PPCM
and an increased susceptibility to sFlt1-induced cardiomyopathy
(17). In this study, excessively high sFlt1 levels were able to cause
cardiomyopathy, even in mice without the PGC1-1α deletion
or pregnancy, indicating that excess sFlt1 alone can induce
cardiac dysfunction. This emphasises the sensitivity of the heart
to angiogenic imbalance as a result of placental sFlt1, that may
occur during pregnancy. Synchtiotrophoblasts of the placenta
secrete copious amounts of sFlt1 and as such, plasma levels of
the protein rise exponentially toward birth (18). Most of the
free VEGF in maternal circulation is thus neutralised by sFlt1
during pregnancy. More so, elevated sFlt1 have been described
in women with PPCM (17), and have been directly correlated
with disease severity and the occurrence of adverse clinical events
(19). Notably, higher sFlt1 levels have been reported in twin
pregnancies, another risk factor for PPCM (20, 21), possibly as
a result of the larger placenta (22).

CARDIAC MECHANICAL STRESS DURING
PREGNANCY

Pregnancy is accompanied by dramatic hemodynamic changes,
including reduced resistance during systole (afterload) and
a 50% increase in cardiac output and blood volume (23).
Furthermore, foetal microchimeric cells may reduce cardiac
function resulting in increased cardiac mechanical stress during
pregnancy (24, 25). It is however worth noting that most of
these changes typically occur early in gestation, many months
before PPCM typically presents (Figure 1). These changes trigger
homeostatic and structural remodelling of cardiovascular tissues.
Whereas, hemodynamic changes of pregnancy peak in the second
trimester, hormonal changes of pregnancy are most drastic in
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the third trimester and early postpartum (Figure 1) (26). These
changes also coincide with the presentation of PPCM. As such,
the vasculotoxic hormonal changes that occur during and after
parturition act as a trigger for PPCM. Indeed, several studies have
demonstrated that PPCM is triggered by the rapidly changing
environment of late gestation thus inducing vasculopathy in
susceptible women (13, 27, 28). This is supported by the fact that
hormones that likely trigger PPCM (PRL and sFlt1) are mostly
at their peak in late pregnancy and postpartum. In addition,
unlike other forms of cardiomyopathy, cardiac function is usually
restored upon a drop in these hormones which comes with
delivery. Apart from sFlt1, the placenta also secretes several other
hormones which may result in maternal stress during pregnancy.
Despite these cardiac demands associated with pregnancy, there
is a need for protein quality control to be maintained in
the cardiomyocytes.

CARDIOMYOCYTE PROTEOSTASIS AND
POTENTIAL ROLES OF Hsps IN PPCM

The robust maintenance of proteostasis in cardiomyocytes
is crucial in ensuring the integrity of cardiac tissue. An
accumulation of misfolded and unfolded proteins results in
the formation of aggregates which are usually cytotoxic. The
heart is constantly exposed to mechanical stresses associated
with its continuous contractile activities, as well as chemical
stresses induced by free radicals and hormones. In PPCM,
pregnancy further burdens cardiac tissue, as the heart readjust
to the needs of the developing foetus. Stress supresses the
cell’s capacity to maintain proteostasis thus compromising
the ability of proteins to attain native conformation. Cellular
stress can lead to protein misfolding or unfolding, leading to
proteins that are unable to carry out their normal functions
(29). Such stresses typically impair protein folding, potentially
resulting in the formation of functionally impaired and toxic
protein aggregates that trigger cardiac insults. Under the ensuing
stress conditions, molecular chaperones such as Hsps likely
facilitate cardiomyocyte proteostasis. Generally, Hsps perform
a myriad of housekeeping and stress-protective roles in cells
to maintain proteostasis (Figure 2) (30). We propose that Hsps
are particularly important in PPCM since the heart is further
burdened by pregnancy related stresses that may impair optimal
protein folding processes in the cardiomyocytes.

Hsps can generally be classified into seven families, based
on structural and functional features (Table 1). Broadly, Hsps
function to facilitate the correct folding and assembly of
polypeptides, thus preventing the formation of misfolded or
incorrectly assembled proteins (44). Hsps also play an important
role in the suppression or inhibition of polypeptide aggregation
in cells (45). When a nascent polypeptide chain exits the
ribosome or an organellar import pore, or when a labile
native protein becomes transiently heat denatured, it may
transiently unfold and expose hydrophobic segments to the
aqueous environment (31). Depending on the intensity and
duration of the stress as well as the degree of hydrophobic
exposure, the misfolded monomers may clamp together through

intermolecular hydrophobic associations to form aggregates (46).
Hsps of the “holdase” class (such as small Hsps (sHsps), Hsp40,
Hsp70, and Hsp110) can bind to the exposed hydrophobic
residues on the surface of misfolded polypeptides to prevent the
formation of aggregates (47).

The roles of Hsps in several cardiovascular conditions such
as HF and dilated cardiomyopathy (DCM) have been reported
(Table 1). The Hsp70 family of molecular chaperones is a central
hub for the maintenance of proteostasis in cells (48). Hsp70s
are actively involved in almost every stage of a protein’s life
course (Figure 2). Thus, Hsp70s facilitate folding of nascent
peptides emerging at the ribosomes (49), protein trafficking
and translocation across membranes (50). In addition, Hsp70s
facilitate the refolding of misfolded protein (31, 51), and also
channelling misfolded proteins which are beyond repair toward
degradation (52, 53). In order for Hsp70s to function efficiently,
they depend on assistance from functional networks formed
with members of several co-chaperones which include Carboxyl
terminus of HSC70-interacting protein (CHIP), Bcl-2 associated
athanogene 3 (BAG3) and Hsp70-Hsp90 organising protein
(Hop) (2). Additionally, Hsp70 also forms functional networks
with Hsp40 (54), Hsp90 (55), and sHsps (56). Protein folding
by Hsp70 is tightly controlled by J-domain proteins (Hsp40)
and nucleotide exchange factors (NEFs) such as BAG3. The co-
ordinated action of Hsp70 and Hsp90 facilitates the folding of
most structural and signalling proteins (Figure 2). In fact, Hsp70
has been described as a promiscuous chaperone that is capable of
binding virtually any peptide sequence (57).

Hsps also play crucial roles in the ubiquitin proteasome
system (UPS) which is the main proteolytic system in eukaryotic
cells facilitating the degradation of misfolded proteins. It has
previously been established that the constitutively expressed
Hsp70 (Hsc70) is required for ubiquitylation of several
proteasome substrates (58). Furthermore, the majority of E3
ligase complexes of the UPS pathway have been shown to
cooperate with Hsps (59). Hsps also function as escort factors
that either deliver or dock the Ub-protein conjugates to the
proteasome thus preventing the formation of ubiquitylated
protein aggregates (Figure 3A) (53). Functional co-operations
of Hsp70 could be pivotal in maintaining cardiomyocyte
proteostasis during pregnancy-induced stress. The co-chaperone
CHIP (a ubiquitin ligase) is ubiquitously expressed, although it is
prominently expressed in striated muscle such as cardiac tissue
(2). Functionally, CHIP co-operates with Hsp70 to ubiquitinate
misfolded proteins that cannot be repaired, targeting them
for protein degradation by the proteasome (Figure 3A) (60).
Previous studies have implicated CHIP in cardiac disease. In a
murine model, genetic knockout of CHIP resulted in exaggerated
cardiac hypertrophy, as evidenced by increased heart weights,
wall thickness and cardiomyocyte size following exercise or
pressure overload (61, 62). Genetic knockout of CHIP was also
associated with a dramatic decline in cardiac function in response
to pressure overload (63). Due to its ability to regulate Hsp70
chaperone activity, CHIP may also be an important determinant
in modulating Hsp70-chaperoned proteins in the cardiomyocyte.

The interaction of Hsp70 with another co-chaperone,
BAG3, is also critical for cardiac muscle development and
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FIGURE 1 | Stress associated with PPCM development. Approximately 10% of PPCM cases present within the third trimester, while 90% of PPCM cases present

postpartum. Hemodynamic changes associated with pregnancy begin in the second trimester and persist to approximately 6 months postpartum. Several other

stresses, such as hormonal changes are also associated with pregnancy.

vascular disease pathogenesis (64). BAG3 is generally involved
in a range of cellular functions which include protein
folding, apoptosis, autophagy as well as CMA/chaperone-assisted
selective autophagy (CASA) to the UPS (2). BAG3 not only forms
functional co-operations with Hsp70, but also with sHsps such
as HspB5, HspB6 and HspB8 (65, 66). sHSPs act in concert with
Hsp70 to facilitate protein refolding (Figure 3B) (67, 68). Since
sHSPS lack ATP-dependent enzymatic activity that is necessary
for active protein refolding, BAG3 facilitates the formation of
a BAG3-sHsp-Hsp70 complex through which protein refolding
can occur. The direct involvement of BAG3 in cardiac disease
has previously been reported in 1BAG3 mice that were observed
to develop cardiomyopathy and non-inflammatory myofibrillar
myopathy (MFM) (64).

In the heart, Hsp70 is induced by several factors which
include steroid hormones (e.g., vasopressin), free radicals, drugs,
probiotic derived proteins, physical exercise and environmental
changes (69, 70). Elevated Hsp70 expression results in reduced
myocardial infarction (71). In addition, Hsp70 levels are also

thought to correlate with a timecourse of cardioprotection (36).
Furthermore, high Hsp70 levels are linked with a decrease in
cardiac apoptosis (33, 72). As such, high Hsp70 levels have
been reported to confer improvement in the recovery of post
ischemia reperfusion injury (73). Wei et al. (74) demonstrated
high Hsp70 expression levels in hearts showing failure due to
cardiomyopathy (arrhythmogenic cardiomyopathy, DCM) and
ischemia. The degradation of misfolded proteins is important
for the constant turnover of sarcomeric proteins required
for correct function and regulation of cardiac mass (75). In
addition, Hsp70 co-operates with CHIP and BAG1 to control the
degradation of myosin and sarcomeric proteins (76). Given these
roles of Hsp70 in cardiac function, it is tempting to speculate
implications of the chaperone in PPCM. This hypothesis may
need experimental validation.

Hsp90 is a unique molecular chaperone which possesses the
ability to bind target proteins that are in a near native state in
order to mediate the final stages of folding (77). In addition,
Hsp90 is specialised to facilitate the folding of specific, defined
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FIGURE 2 | Proposed roles of Hsps in PPCM. In cells, Hsp70s perform both housekeeping and stress response related roles. Hsp70s co-operate with various

co-chaperones such as Hsp40 and Hsp110 to facilitate the de novo folding of polypeptides from the ribosome to facilitate their folding into their native conformations.

Hsp70s also co-operate with Hsp90 and Hop to activate proteins. Hsp70s also form partnerships with Hsp60 to facilitate the translocation of proteins across

membranes. Under stress conditions, Hsp70s prevent the formation of aggregates and also facilitate the degradation of misfolded/unfolded proteins.

sets of client proteins such as steroid hormone receptors, TLR
innate immunity receptors, RNA polymerases and PI3-kinase-
related kinases (PIKKs) (78). As such, Hsp90 modulates cell
signalling, genome maintenance and assembly of transcriptional
and translational apparatuses in cells (36). Together with Hsp70,
Hsp90 plays key roles in protein folding as they facilitate the
folding, maturation and activation of virtually all proteins in the
cell (50, 57). While Hsp70 generally binds to nascent polypeptide
chains at the ribosome, Hsp90 binds a more specialised clientome
that includes steroid hormones and kinases. Hop acts as an

adaptor protein to enable Hsp70-Hsp90 interaction through their
C-terminal sequences (Figure 3C) (79, 80). As such, Hop enables
the transfer of client proteins such as kinases, nuclear receptors
like the steroid hormone receptors (SHR) and transcription
factors between the chaperones Hsp70 and Hsp90 for folding,
assembly and activation (Figure 2) (81, 82).

Hsp90 also plays an active role in protein quality control by
directing misfolded proteins toward the UPS for degradation
(83). Hsp90 possesses anti-apoptotic effects on hypoxia-mediated
cardiomyocyte damage (84). An Hsp90 client, ErBB2, was shown
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TABLE 1 | Major Hsp families and cardiovascular roles.

Protein

family

Localisation CVD implication Stress inducers References

Hsp110 Cytosol,

ER

ND* (General role: Protein aggregation suppression; Possess

holdase function)

(31)

Hsp100 Mitochondrion ND* (General role: Dis-assembly of quaternary structure of

polypeptide complexes and are required for thermotolerance)

(32)

Hsp90 Myocyte 1. Hsp90 antibody levels rise 16-fold under stress (potential CVD

biomarker?)

2. Hsp90 supports Akt signalling (elevated Hsp90 and Akt levels

have been reported in hypoxia challenged cardiomyocytes)

3. Hsp90 possesses anti-apoptotic effects on hypoxia-mediated

cardiomyocyte damage

4. Cardiac Hsp90 supports protein maturation and has roles in the

development of mutation-related cardiac arrhythmia

5. Hsp90 regulates angiotensin II-induced cardiac hypertrophy

Ischemia

ROS

(33, 34)

Hsp70 Myocyte

cells

1. Specific role in myocardial protection from chronic ischemia

2. Participates in myocardial adaptive processes to chronic

repetitive ischemia (high tissue levels of Hsp72 have been reported

in myocardial hibernation)

3. High Hsp70 expression levels were correlated to HF

progression (potential HF biomarker)

Ischemia and

mechanical stress,

steroid hormones,

drugs, physical

exercise

(35, 36)

Hsp60 Endothelial

cells

Myocyte surface

1. Ischemic myocardial damage

2. Thought to participate in inflammatory processes (activates

autoimmune response. High Hsp60 expression elicits an

autoimmune response that can trigger further vascular/ myocardial

damage)

3. High Hsp60 levels reported in coronary artery disease patients

4. Serum Hsp60 was related to the severity of CHF and associated

with a high risk for late stage cardiac events in CHF patients

Biochemical or

infective insults;

hyperthermia

(37–40)

Hsp40 Cytosol,

membranes,

ER

1. Co-chaperone of Hsp70; Host cell modifications

2. Associated with development of fatal DCM

Ischemia and

mechanical stress

(41)

sHsps 1. High expression levels during cardiac hypertrophy

2. Cardioprotection (Hsp27 has a cardioprotective effect in cases

of infarction)

3. Overexpression of Hsp27 results in reduction in cell apoptosis in

cardiac tissue

4. High Hsp25 expression improved survival of cardiomyopathy

patients and the heart resistance against toxicity

Hypertrophic

stimuli, including

aortic banding,

angiotensin II

infusion

(42, 43)

*ND, not determined.

to be linked to the development of HF in a murine model (85).
Mice lacking cardiac specific ErBB2 developed HF characterised
by left ventricular (LV) dilation, wall thinning and decreased
systolic function (85). Due to its large clientome, we speculate
a likelihood of Hsp90 in chaperoning several other proteins
involved in PPCM pathogenesis. We therefore sought to predict
the interaction and roles of Hsp90, Hsp70 and sHsps in PPCM
using bioinformatics.

PREDICTED ASSOCIATIONS BETWEEN
MAJOR Hsp FAMILIES AND THE PPCM
PROTEOME

Using STRING analysis, we predicted the associations of
several proteins currently known to be involved in PPCM
pathophysiology with members of the Hsp70, Hsp90 and sHsp
family members (Table 2 and Figure 4). Although the actual

implications of such interactions are at present unknown,
experimental validationmay provide insights into candidate drug
design or biomarker discovery. These Hsps and PPCM protein
associations are described in the following sections.

Akt
Akt is a protein kinase and a key component of the
ubiquitous PI3K/Akt signalling pathway. Activated Akt promotes
cellular survival, proliferation and growth. In the heart,
Akt signalling induces both pathological hypertrophy and
physiological hypertrophy (for example, during pregnancy)
(86). However, Akt appears to have an exacerbatory effect in
PPCM (15), possibly by aggravating an underlying angiogenic
imbalance. Select Hsp70 (HspA4, HspA5, HspA9), Hsp90
(Hsp90AB1), and sHsps (HspB1) are predicted to interact with
Akt (Table 2).
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FIGURE 3 | Interaction of Carboxyl terminus of HSC70-interacting protein (CHIP) with binding partners for protein quality control. Hsp70 functions with

co-chaperones CHIP, BAG3 and Hop in maintain cellular proteostasis. (A) The CHIP pathway involves the association of CHIP with Ub, E2, BAG3, Bcl-2-associated

athanogene 3 and Hsp70 to facilitate degradation. (B) Formation of sHSPs-BAG3-HSP70 complex to prevent aggregation of proteins thus forming insoluble

substrates in the cardiomyocytes. (C) Hsp70-Hsp90 Organising Protein (Hop) adaptor properties to link Heat shock protein 70 (Hsp70) with Heat shock protein 90 for

client substrates transfer.

HspA4 (a non-canonical Hsp70 member), HspA5 (an Hsp
of the endoplasmic reticulum (ER) also referred to as Grp78),
and HspA9 (a mitochondrial Hsp also referred to as Grp75)
(Figure 4) have been demonstrated to activate Akt in cancer
models (87–90). Interestingly, Akt has also been shown to
phosphorylate HspA5 (91) and regulate its expression (92),
thus suggesting a possible feedback loop in which Akt and
Hsp70 proteins positively regulate each other. This may be
protective in cellular conditions such as oxidative stress and
ER stress, which induce HspA9 and HspA5, respectively (89,
90). Since these Hsp70 isoforms are predicted to bind and
possibly activate Akt, it is possible that HspA4, HspA5, and
HspA9 play decisive roles in PPCM pathogenesis. HspA5/Akt
interaction has been demonstrated as essential for cardiac
development, function, and stress response. The loss of HspA5
in cardiomyocytes leaves them vulnerable to apoptosis following
oxidative and ER stresses through suppressed Akt signalling (93),
while upregulation of HspA5 attenuated ischaemia/reperfusion-
induced cardiac damage by stimulating Akt activity (94, 95).
Recently, ER stressors and ischaemia were also shown to increase
the secretion of HspA5 by cardiomyocytes (96), indicating an
extracellular cardioprotective role of this Hsp by activating
Akt signalling.

Hsp90 proteins and sHsps are also predicted to interact
with Akt (Figure 4). Similar to Hsp70s, these also appear to
be involved in the stabilisation and activation of Akt kinase

activity (97–100). Hsp90AB1/HspB1 interaction with Akt may
have cardioprotective effects against a range of cardiac insults
(101–105). While the activation of Akt by Hsps is generally
beneficial in response to several cardiac insults, Akt stimulation is
detrimental in the case of PPCM (15). As PPCM is characterised
by oxidative and other stresses (Figure 2), the induction of
Hsp70s, Hsp90s and sHsps during PPCM is highly probable,
as is the subsequent stimulation of the Akt signalling pathway,
althoughmore research will be needed to confirm this hypothesis.

STAT3
Contrary to Akt, STAT3 activation may inhibit PPCM (13).
Although no interactions between Hsp70s and STAT3 were
observed, members of the Hsp90 and sHsp families are predicted
to interact with STAT3 (Figure 4). The role of Hsp90 and
the small HspB1 (Hsp27) in STAT3 signalling has recently
been reviewed in detail (106), with these Hsps acting as
key chaperones at numerous stages of the STAT3 pathway,
including phosphorylation, activation and nuclear localisation
of STAT3, as well as limiting its proteasomal degradation. It is
therefore plausible that Hsp90 promotes STAT3 activation which
may reverse the progression to fulminant PPCM. Therapeutic
interventions that promote elevated Hsp90 expression levels in
the cardiomyocytes may therefore prove beneficiual to PPCM
patients. Further research is however needed to ascertain the
functions of Hsps in modulating these pathways.
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TABLE 2 | STRING interactions between heat shock and PPCM proteins.

Protein Hsps involved Role in PPCM pathology

Akt HspA4, HspA5, HspA9, Hsp90,

sHsps

Accelerates inflammation and fibrosis postpartum, through an unknown mechanism

CCL2 HspA4 Initiates inflammatory process, triggered by IFNγ or PRL

ERBB4 Hsp90 Cardiomyocyte survival; suppression during PPCM triggers cellular apoptosis

Flt1 Hsp90 Excess of soluble form (sFlt1) triggers angiogenic imbalance and PPCM, associated

with adverse outcomes in PPCM patients

HES1 HspA4, Hsp90 Activation of cardioprotective STAT3 signalling

IFNγ HspA1A, Hsp90 Continuously high IFNγ serum levels are associated with increased inflammatory

status and adverse outcomes in PPCM patients

MMP HspA13 MMPs can cleave PRL to its 16 kDa variant. High MMP levels have been detected in

murine PPCM experiments

MnSOD HspA4, HspA5 Responsible for organ specific antioxidant defence mechanisms in the peripartum

phase. Generally cardiac MnSOD levels are high, although these are reduced in

PPCM patients

NF-κB HspA1L, Hsp90 Transcription factor activated by 16 kDa PRL, inducing apoptosis and antiangiogenic

effects

NOTCH1 Hsp90 Activation of cardioprotective STAT3 signalling

STAT3 Hsp90, sHsps Cardioprotective signaling

VEGF HspA4 Crucial for blood vessel formation and homeostasis (VEGF A). Also drives

trans-endothelial transport of fatty acids in the cardiomyocytes (VEGF B)

Other Interactions
Several other interactions were observed between Hsps and
proteins in the PPCM pathway (Table 2), although the functional
and biochemical roles of these remain to be determined.
For instance, excess sFlt1 and reduced VEGF levels are key
components of the angiogenic imbalance that characterises
PPCM. While an interaction between Hsp90 and Flt1 was
observed, current knowledge has only implicated Hsp90 in the
maintenance of membrane-bound Flt1 in endothelial cells (107);
interaction with the soluble form of the protein is unknown.
However, because inhibition of Hsp90 could reduce levels of
Flt1 (107), the role of Hsps in the stabilisation or folding
of Flt1 may be worth exploring, especially in the context
of placentally-derived sFlt1. We also predicted association of
HspA4 with VEGFA. It has previously been demonstrated that
HspA4 has a stabilising effect on VEGFA mRNA in cancer
cells (108). It is conceivable that HspA4 suppresses aggregation
of VEGFA under stress conditions, keeping the protein in a
folding competent form, as has been demonstrated with other
Hsp70 isoforms (56).

The Role of Hsps in Buffering Mutations
PPCM has been demonstrated to have a genetic basis, in at
least a subset of patients (109–111). It is notable that molecular
chaperones play a key role in the translation of genetic variation,
by silencing or potentiatingmutations (112). Hsp90, in particular,
may potentiate mutations by assisting the folding and function
of the mutant proteins, allowing them to have immediate
phenotypic consequences (113). Alternatively, Hsp90 can silence
mutations so that they have no phenotypic manifestation,
although these buffering effects can be overwhelmed by
environmental stresses (113). The implications of this are that

Hsp90, or other Hsps, can buffer genetic mutations in a manner
that is dependent on the environmental conditions. This may
explain, in part, why the samemutations can cause DCM in some
individuals, and PPCM in others.

The modulation of mutations by Hsps has also been described
in Fanconi Anaemia, where Hsp70 was found to bind to inactive
mutant proteins with severe phenotypic effects (114). The roles
of Hsps in the buffering of cardiomyopathy-causing mutations is
largely unknown, although heritable cardiomyopathies including
DCM and hypertrophic cardiomyopathy (HCM) may be
characterised by dysfunction of the UPS and other protein
quality control mechanisms (115, 116). DCM- andHCM-causing
mutations typically occur as truncations of genes encoding
the sarcomeric proteins titin and cMyBP-C, respectively, and
mutations in both have been described in PPCM patients, as
well as other sarcomeric gene mutations (109–111, 117). Notably,
these truncated protein products are not incorporated into the
sarcomeres of mutation carriers (118, 119), although in the case
of titin this haploinsufficiency has been attributed to mRNA
degradation by nonsense-mediated decay (120). The role of Hsps
in the buffering of truncating PPCM-causing mutations remains
to be determined.

The Role of Hsps in the PPCM
Inflammasome
In addition to their proteostatic roles, Hsps may also act as
“chaperokines” which present antigens to the immune system.
Hsp70, Hsp90 and sHps are secreted under stress conditions,
where they can have pro- or anti-inflammatory effects [reviewed
in (121)]. As myocardial inflammation is thought to be a key
contributor to PPCM pathogenesis (12), the immunomodulatory
effects of Hsps may be of interest. Indeed, several studies have
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FIGURE 4 | Predicted interactome of several Hsps with PPCM proteins. The heat map shows the interaction of PPCM pathogenesis proteins with Hsp70, Hsp90 and

sHsp group members.

demonstrated potential roles of Hsps in cardiac inflammatory
pathways in response to myocarditis (122, 123) and myocardial
injury (discussed below).

Extracellular Hsp70 can induce cardiomyocyte inflammation
and cell death, in contrast with the pro-survival role of
intracellular Hsp70 (124). Increased levels of circulating Hsp70
have been reported in models of acute myocardial infarction,
autoimmune myocarditis and left ventricular dysfunction, all
in association with elevated inflammatory markers and worse
outcomes (37, 125, 126). Up-regulation of Hsp70 by treatment
with Melusin in a mouse model of myocardial infarction was
shown to reduce inflammatory cell infiltrates in the myocardium
and improve cardiac function (127). The roles of Hsp90, Hsp60
and sHsps in cardiac inflammatory responses has also been
demonstrated. Hsp90 has been shown to have cardioprotective
effects in ischaemic pre- and post-conditioning by suppression
of immune responses (128, 129). On the other hand, HspB1 may
down-regulate leukocyte recruitment and cardiac inflammation
(130). Hsp60 appears to induce cardiac inflammation and

cytokine production (131, 132). It is therefore plausible that
the level of circulating Hsps may promote or suppress cardiac
inflammation, although it is unclear at this stage whether Hsp
induction in PPCM would be beneficial or detrimental to
recovery of cardiac function.

TARGETING Hsps TOWARD NOVEL PPCM
THERAPY

To date, no disease-specific interventions for PPCM exist. As
is the case with other cardiomyopathies, PPCM management is
primarily focused on managing volume status, neutralising
neurohormonal maladaptive responses, and preventing
complications (133). One of the most used PPCM treatments is
bromocriptine which functions by suppressing PRL production
postpartum. A small proof-of-concept randomised trial of
bromocriptine in 20 women with PPCM in Africa demonstrated
improvements in mortality and LVEF at 6 months (134). Those
observations were confirmed in a multi-center randomized
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FIGURE 5 | Key stages in the PPCM pathophysiology pathway which are modulated by Hsps. Hsps interact with several proteins involved in the PPCM

pathophysiological pathway. (A) Several Hsp70 isoforms interact with various proteins involved in PPCM pathogenesis. (B) The stages within the PPCM

pathophysiology pathway where Hsp90 and sHsps interact with PPCM proteins are shown. Targeting these stages may be crucial in novel PPCM interventions.
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TABLE 3 | Hsp-centred drug modulation strategies in novel PPCM drug design.

Drug molecule Mechanism of action Possible cardiac implication

(i) Hsp expression enhancing drugs

Geranylgeranyl-

Acetone

Induces Hsp70 and HspB8 expression Cardioprotective effects have been reported in cardiomyopathy

modes

Simvastain Induces HspB1, Hsp70 and Hsp90 expression Improves cardiac function and symptoms in DCM patients

(ii) Hsp functionality inhibitors

Polymixin B Inhibits Hsp90 and Hsp70 (NBD) chaperone function May reduce inflammatory effects of Hsps on cardiac tissue

EGCG Inhibits Hsp70 and Hsp90 expression by inhibiting the

promoter activity of the respective chaperones

May reduce inflammatory effects of Hsps on cardiac tissue

Colistin sulphate Inhibits Hsp90 and Hsp70 (NBD) chaperone function May reduce inflammatory effects of Hsps on cardiac tissue

study (135). Based on these data the 2018 ESC Guidelines for
the management of cardiovascular diseases during pregnancy
states that bromocriptine may be considered in women with
newly diagnosed PPCM (5). However, more research in this
area is needed. As such, there is an urgent need for the
identification of novel PPCM drug targets in the design of novel
therapeutic interventions.

Hsps have previously been suggested as druggable candidates
in human disease models (136). Several Hsps, such as Hsp70 and
Hsp90 members, show great potential as drug targets in several
cancers. For instance, the proteasome inhibitor, Bortezomib, has
been used in anticancer therapy where it exerts antitumor effects
by upregulating Hsp60 and Hsp90 on the surface of cancer cells
(137). Attention is currently being drawn toward Hsp-directed
therapies as candidates for novel cardiovascular disease therapies.
A study recently demonstrated that blockingHsp70 activity could
be therapeutically beneficial in HF treatment (138). Given its
ATP-dependent nature, Hsp70 is also amenable to inhibition
using ATP-mimicking drugs. Interestingly, predictions from our
STRING analysis revealed several stages which can potentially be
modulated by Hsp70 (Figure 5A).

Hsp-centred drug modulation strategies may be centred
around one of the following strategies; (i) boosting Hsp
expression and (ii) inhibition of Hsp functionality. Each of
these possible strategies is assessed in detail (Table 3). Inhibition
would generally involve the development of small molecule
inhibitors that target the functional domains of the Hsps thus
disrupting their chaperone function. The direct inhibition of
Hsps, resulting in the subsequent disruption of key protein-
associations can be an efficacious way to modulate protein fate.
Small molecule inhibitors such as polymyxin B and colistin
sulphate possess great potential in this regard, as they have
been successfully used to inhibit the activity Hsp70 in vitro
(139). These two compounds are directed toward the nucleotide-
binding domain, thus lowering the basal ATPase activity of
the Hsp70. Designing domain specific inhibitory compounds
may prove useful in Hsp70-targeted PPCM therapy. Since
Hsp70 functions in co-operation with several other proteins
involved in the pathophysiology of PPCM, selective targeting
of cardiac Hsp70 may become a decisive step in inhibiting
PPCM pathology. An alternative strategy worth exploring in
designing novel PPCM therapy involves targeting heat shock

factors (e.g., HSF1) which are responsible for modulation of
Hsp expression. Although the generally high sequence and
structural conservation of Hsp70 may be a snag in targeted
inhibition, specific signature motifs in individual Hsp70 family
members may be targeted toward this. Particularly, we predicted
the association of several PPCM pathophysiology proteins with
HspA4 (Figure 5A). HspA4 belongs to the Hsp110 family
of chaperones, which are a specialised subclass of Hsp70s
functionally and structurally distinguished from the canonical
Hsp70s (56). This makes HspA4 amenable to selective targeting
by inhibitors since it is unique from the more conserved
canonical Hsp70s.

Prospects of targeting co-chaperones that are crucial
for Hsp70 function also exist. The Hsp70 co-chaperone,
CHIP, has been shown to play a crucial role in regulating
intracellular protein signalling as evidenced by an increase in
Akt phosphorylation which in turn leads to activation of the
Akt signalling pathway leading to cardiac hypertrophy (63, 140).
CHIP-directed therapies may potentially disrupt Hsp70 activity
in turn causing detrimental downstream effects on Akt signalling
within cardiomyocytes (Figure 6). Another Hsp70 co-chaperone,
BAG3, may also be a crucial PPCM drug target. Disruption of
the BAG3-sHsp-Hsp70 complex has previously been shown to be
associated with DCM and non-inflammatory MFM (141–143).
The specific roles of BAG3 in PPCM pathophysiology are
however yet to be validated. BAG3 mutations have however
been proposed to be associated with PPCM. Thus, enhancing
BAG3 expression in PPCM patients may possibly offer
cardioprotection by augmenting cardiomyocyte proteostasis.
As such, it may therefore be generally hypothesised that these
co-chaperones may act as decisive players in Hsp-modulated
proteostasis within the cardiomyocyte andmay thus act as PPCM
drug targets.

Hsp90 also serves as an attractive candidate for novel PPCM
drug interventions given that it is predicted to modulate the
PPCM pathogenesis pathway (Figure 5B) via its interaction with
AKT and NFKB1 (Figure 6). It is well-established that Hsp90
plays important functions in regulating client proteins into their
active conformations. As such, Hsp90 possibly activates AKT
triggering a cascade of events that leads to PPCM. Furthermore,
Hsp90 is predicted to interact withNFKBwhich is associated with
cardiac inflammation in PPCM. Hsp90 thus likely plays decisive
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FIGURE 6 | Potential effects of Hsp-directed inhibition in PPCM therapy. Targeting the Hsp types sHsp, Hsp110, Hsp90, and Hsp70 has the potential to disrupt key

signalling pathways that are important in PPCM pathophysiology.

roles in PPCM pathophysiology via AKT and NFKB signalling.
Consequently, Hsp90-inhibiting directed therapies may prove
beneficial in novel PPCM therapies. To date, several classes of
Hsp90-targeting small molecule inhibitors have been proposed
for disrupting Hsp90 chaperone function. The majority of these
compete with ATP for binding onto the N-terminal domain
(NTD) ultimately keeping the chaperone in an inhibitor-bound
conformation that abrogates its function (144). Currently, the
following natural and synthetic Hsp90-targeting drugs, such as
ansamycin and derivatives of purine, resorcinol, benzamide, and
tricyclic imidapyridines have been described in several disease

models such as cancer [reviewed in (145)]. However, the potential
of Hsp90-targeting drugs in PPCM is yet to be explored.

Hsps AS CANDIDATE PPCM BIOMARKERS

Despite the importance of early diagnosis for full cardiac recovery
in PPCM patients, physicians are often faced with the difficulty
of distinguishing between peripartum discomfort in healthy
women and the pathological PPCM symptoms. PPCM diagnosis
thus relies on a high index of suspicion. A thorough history
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FIGURE 7 | Hsps as potential PPCM biomarkers. The Hsps (sHsps, Hsp60, Hsp70, Hsp90) predicted to associate with PPCM pathogenesis proteins may be used as

candidate biomarkers.

of the onset of symptoms combined with a comprehensive
echocardiography report confirming <45% LVEF are important
diagnostic determinants. Currently, the only clinically confirmed
PPCM biomarker is the brain natriuretic peptide NT (proBNP)
which is however not specific for PPCM diagnosis (12, 146).
Since Hsps are triggered by stress, we hypothesise that Hsp
expression is upregulated to allow the chaperones to form
functional partnerships with markers of inflammation in PPCM
patients. It is important tomonitor Hsp expression levels through
the progression of PPCM as this presents a basis for the potential
use of Hsps as biomarkers. Indeed, STRING analysis predicts
the interaction of Hsp70, Hsp90, sHsps, and Hsp60 with several
PPCM pathophysiology proteins (Figure 7). The prospects of
Hsps as PPCM biomarkers either individually or in a panel with
the already established proBNP marker is promising.

At present, some Hsps have been proposed as biomarkers
in cardiovascular disease. A study by Giannessi and colleagues
(37) demonstrated that circulating Hsp60 and HspA1A levels
correlate with LV dysfunction severity. Interestingly, the same

study also established that HspA1A protein levels are significantly
correlated with BNP levels. Hsp70 and Hsp60 activation and
inflammation markers, such as IL6 are also correlated with
the extent of cardiac and microvascular dysfunction in patients
with angiographically normal coronary arteries (37). Hsps have
also been reported to mediate coronary endothelial dysfunction
and produce microvascular damage in response to metabolic
or infective insults (147). The potential of Hsp60 as a potential
diagnostic or prognostic marker of heart disease has also
been investigated. Veres et al. (148) noted the increased
risk of heart disease when Hsp60 expression is upregulated.
Also, elevated Hsp60 concentrations are positively associated
with the severity of coronary arterial disease and ischemic
heart disease in a dose-dependent fashion (149). Hsp70 levels
were found to be significantly higher in HF and myocardial
infarction, potentially implicating the protein’s role as a CVD
biomarker (150, 151). To date, not many proteomics-based
studies have been conducted to assess the expression levels
of stress proteins in PPCM. Nonetheless, the exacerbated
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stress associated with PPCM may trigger a unique chaperone
response which may be studied toward biomarker design.
Therefore, it may also be necessary to validate the role of
other Hsp families such as the Hsp110 and Hsp40 members
to determine their specific roles in PPCM. Recently, Hsp110
family members have been demonstrated to play important roles
in cancers (152, 153). As such, the differential expression of
Hsps in PPCM patients may lay a foundation toward novel
biomarker identification.

Hsp70 may serve as an important diagnostic or prognostic
biomarker of PPCM since Hsp70 expression levels are correlated
with traditional injury markers such as AST, ALT, γGT and
bilirubin in HF patients (154). Furthermore, a study by Baba et
al. (155) predicted that worse outcomes correlate with increased
Hsp70 levels after heart transplantation. Although similar studies
have not yet been applied to PPCM at present, they are worth
exploring. Given that there are 13 different Hsp70 isoforms
which are subtly distinguished from each other by unique
signature motifs, the Hsp70 family members are promising
PPCMbiomarkers. sHSPs have also been proposed as biomarkers
of congestive HF. It has been demonstrated that Hsp20, Hsp27,
and Hsp32 expression correlates to disease (156). The Hsp70 co-
chaperone, BAG3 is also an attractive potential PPCMbiomarker.
Increased BAG3 levels were observed in sera of patients with end
stage HF, purporting that BAG3 is released by cardiomyocytes
as a stress response (157–159). As such, BAG3 may be a useful
biomarker to monitor HF progression. The aggravated stress
conditions associated with PPCM potentially trigger upregulated
Hsp-expression to maintain proteostasis and alleviate the effects
of cardiotoxicity. We therefore hypothesise an Hsp expression
profile that is unique from other forms of cardiomyopathy
toward the identification of novel PPCM biomarkers of diagnosis
or prognosis. Indeed, while in HF several studies have focused
on the potential role of Hsp60 and Hsp70, there is need to

investigate the role of co-chaperones and other Hsps (e.g., Hsp40
and Hsp110) as PPCM biomarkers.

CONCLUSION

The involvement of Hsps in protein quality control systems
has been reported in several cardiovascular disorders
such as ischaemic heart disease and HF. Given the
exaggerated cardiac stress associated with pregnancy, Hsps
likely play crucial roles in PPCM pathophysiology. Here,
we predicted associations between proteins involved in
PPCM pathogenesis and sHsp, Hsp70 as well as Hsp90.
Furthermore, Hsps and their respective co-chaperones
hold promise as novel candidate PPCM biomarkers.
However, fundamental research is needed in this regard
to experimentally validate the utility of Hsps as PPCM
biomarkers. These associations could also pave the way for
the development of novel Hsp-targeted therapeutic PPCM
drug interventions.
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