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Abstract 

Background:  Kidney renal clear cell carcinoma (KIRC) is the most common type of kidney cell carcinoma which has 
the worst overall survival rate. Almost 30% of patients with localized cancers eventually develop to metastases despite 
of early surgical treatment carried out. MicroRNAs (miRNAs) play a critical role in human cancer initiation, progression, 
and prognosis. The aim of our study was to identify potential prognosis biomarkers to predict overall survival of KIRC.

Methods:  All data were downloaded from an open access database The Cancer Genome Atlas. DESeq2 package in R 
was used to screening the differential expression miRNAs (DEMs) and genes (DEGs). RegParallel and Survival packages 
in R was used to analysis their relationships with the KIRC patients. David version 6.8 and STRING version 11 were used 
to take the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis.

Results:  We found 2 DEGs (TIMP3 and HMGCS1) and 3 DEMs (hsa-miR-21-5p, hsa-miR-223-3p, and hsa-miR-365a-3p) 
could be prognosis biomarkers for the prediction of KIRC patients. The constructed prognostic model based on those 
2 DEGs could effectively predict the survival status of KIRC. And the constructed prognostic model based on those 3 
DEMs could effectively predict the survival status of KIRC in 3-year and 5-year.

Conclusion:  The current study provided novel insights into the miRNA related mRNA network in KIRC and those 2 
DEGs biomarkers and 3 DEMs biomarkers may be independent prognostic signatures in predicting the survival of 
KIRC patients.
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Background
Kidney Cancer is one of the most common malignancies 
which account for 2.2% of all new cancer cases and 1.8% 
of all cancer related death in 2018 globally [1]. Renal cell 
carcinoma (RCC) accounts for 90% of all kidney cancers 
[2]. RCC could be divided into three categories: kidney 
renal clear cell carcinoma (KIRC), kidney renal papillary 

cell carcinoma (KIRP) and kidney chromophobe (KICG). 
Among them, KIRC is the most common type which 
accounts for about 70–75% of RCC [2]. Due to the radio-
therapy and chemotherapy resistance, surgical treatment 
is currently the most effective way for KIRC patients 
[3]. However previous studies indicated that KIRC usu-
ally has the worst overall survival rate [2]. Almost 30% 
of patients with localized cancers eventually develop to 
metastases despite of early surgical treatment carried out 
[4]. Therefore, it is necessary to identify suitable progno-
sis biomarkers for the diagnosis and treatment of KIRC 
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even though many prognosis factors have been reported 
for KIRC.

Cancer stem cells are a subpopulation of cells that has 
the driving force of carcinogenesis which is a complex 
and multistep phenomenon and involves accumulation of 
genetic and epigenetic changes ultimately leading to the 
development of pathological manifestations [5]. MicroR-
NAs (miRNAs) are a family of endogenous, small, non-
codingRNAs. MiRNAs could regulate the expression of 
genes associated with various biological phenomenons 
such as homeostasis, development, proliferation, differ-
entiation, and apoptosis [6, 7]. Deregulated expression 
and signaling of miRNA have been well-studied in the 
pathogenesis of various cancers. Aberrant expressions 
of miRNAs are vital for the initiation and progression of 
human malignancies as they act as both tumor suppres-
sors and oncogenes [8]. In the present study, we aimed to 
identify potential prognosis biomarkers to predict overall 
survival of KIRC.

Methods
Data source and data processing
KIRC (71 controls vs 516 cancers) miRNA sequencing 
data, KIRC (72 controls vs 530 cancers) mRNA sequenc-
ing data and the corresponding clinical information 
were obtained from an open database TCGA. DESeq2 
was used to identify the DEMs and DEGs according to 
|log2FC| > 0.5, basemean > 50, padj < 0.05. And we uti-
lized two different web based tools, miRDB and TargetS-
canHuman 7.2, to screen the target genes of miRNAs. 
The target genes only enriched in two databases could be 
selected as putative target genes for the next analysis.

Gene ontology (GO) and Kyoto encyclopedia of genes 
and genomes (KEGG) pathway enrichment analysis
DAVID version 6.8 was used to determine the associa-
tion among target genes. To gain insight into the bio-
logical functions of those DEGs, GO and KEGG pathway 
enrichment analyses were performed.

Protein–protein interaction (PPI) network and module 
analysis
STRING version 11 was used to assess PPI informa-
tion. A normal medium confidence interval of 0.4 was 
used as threshold. Cytoscape_v3.7.2 software was used 
to visualize the resulting PPI network. The Molecular 
Complex Detection (MCODE) application was used 
to select significant modules from the PPI network in 
Cytoscape_v3.7.2.

Pathologic TNM correlation analysis
After the classification base on the size and/or extent 
of the main cancer (T1 + 2 and T3 + 4), lymph node 

metastasis (N0 and N1), and distant metastasis (M0 
and M1) respectively, we used Cox regression analysis, 
Kaplan–Meier curve, and log-rank analysis to further 
verify the characteristics of the pathologic TNM and the 
intensity of their correlation with survival. A repeated-
measure ANOVA followed by Bonferroni post hoc tests 
or unpaired two-tail Student’s t test was used exam the 
correlation of DEGs with pathologic TNM.

Survival analysis
Median is the number in the middle of a set of data in 
order. We divided the samples into high expression group 
and low expression group based on the median. We used 
RegParallel and survival packages in R to carry out uni-
variate and multivariate Cox regression analysis.

Specific prognostic model construction
After multivariate Cox regression analysis, we con-
structed specific prognostic models according to previ-
ous reports [9]. KIRC patients were divided into low risk 
group and high risk group depend on the median value 
of the risk score. Patients whose risk values were higher 
than the median were classified as high risk, and Patients 
whose risk values were lower than the median were clas-
sified as low-risk. And then we used survival analysis to 
know the relationship of the models with the survival of 
KIRC patient. And then we constructed time-dependent 
receiver operating characteristic (ROC) curves within 1-, 
3-, and 5-year and estimated its utility as a prognostic 
model for predicting the survival status.

Results
Identification of DEMs and DEGs
TCGA is an open access database containing miRNA/
mRNA profiles and the corresponding clinical informa-
tion. Using Padj < 0.05 and |log2FC|> 0.5 as cut-off cri-
teria for DEMs, 111 DEMs were identified by DESeq2 
analysis, including 62 up-regulated DEMs and 59 
down-regulated DEMs (Fig.  1a). Using basemean > 50, 
Padj < 0.05 and |log2FC| > 0.5 as cut-off criteria for DEGs, 
8694 DEGs were identified by DESeq2 analysis, includ-
ing 5288 up-regulated DEMs and 3406 down-regulated 
DEMs (Fig. 1b). Then we performed survival analysis for 
those 111 DEMs and found that 40 DEMs were corre-
lated with the overall survival of KIRC patients. Of which 
25 DEMs was up-regulated and 15 DEMs was down-reg-
ulated (Table 1).

To ensure the integrity of the target genes, we uti-
lized miRDB and TargetScanHuman7.2 for target gene 
prediction. Following integrated analysis of DEGs and 
target genes of DEMs, a total of 1874 pairs miRNAs-
mRNAs were identified involved 1364 DEGs, includ-
ing 647 up-regulated DEGs and 717 down-regulated 
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DGEs (Fig.  1c). Since the relationship between DEGs 
and DEMs is negatively correlated, we introduced 
the spearman correlation analysis by using p < 0.05 
and r < − 0.3 as cut-off criteria. And we obtained 267 
pairs miRNAs-mRNAs which contained 20 DEMs 
(such as, Top 3 up-regulated DEMs: hsa-miR-155-5p, 
hsa-miR-21-5p, and hsa-miR-584-5p. Top 3 down-
regulated DEMs: hsa-miR-204-5p, hsa-miR-30c-2-3p, 
and hsa-miR-30a-3p) and 252 DEGs (such as, Top 3 
up-regulated DEMs: IGLON5, SOX11, and LOX. Top 
3 down-regulated DEMs: EHF, MUC15, and CALB1) 
(Fig. 1d).

GO function and KEGG pathway enrichment analysis 
of the DEGs.
To gain a deeper understanding of the selected DEGs, we 
performed GO and KEGG analysis for those 252 DEGs. 
There were 65 biological process (BP), 23 cellular com-
ponent (CC), and 29 molecular functions (MF) that were 
enriched by GO analysis (such as, Top 3 GO-BP, signal 
transduction, negative regulation of transcription from 
RNA polymerase II promoter, and positive regulation of 
transcription from RNA polymerase II promoter. Top 3 
GO-CC, plasma membrane, endoplasmic reticulum, and 
cell surface. Top 3 GO-MF, protein binding, ATP bind-
ing, and transcription factor activity, sequence-specific 
DNA binding) (Fig.  2a–c, Additional file  1: Table  S1). 
And there were 20 KEGG pathways that were enriched 
by KEGG analysis, of which 9 signaling pathway was 
enriched significantly (such as Top 3 signaling pathway, 
hsa04144: Endocytosis, hsa04510: Focal adhesion, and 
hsa04914: Progesterone-mediated oocyte maturation) 
(Fig. 2d, Additional file 1: Table S2).

PPI network construction and module selection.
Using the STRING database and Cytoscape software, 
a total of 252 DEGs were filtered into the PPI net-
work, containing 252 nodes and 274 edges. Accord-
ing to the view that highly connected genes can have a 
major impact on disease, we identified 86 DEGs (with 

Fig. 1  Differential miRNAs and mRNAs expression analysis. a Volcano 
plot of DEMs for KIRC. b Volcano plot of DEGs for KIRC. c Scatter plot 
of Log2FC(miRNA) versus Log2FC(mRNA) in KIRC. d The number of 
miRNAs-mRNAs verified by correlation analysis

Table 1  Candidate prognostic DEMs for KIRP by univariate Cox 
regression analysis

miRNA HR HRlower HRupper P.adj LogRank.adj

hsa-miR-139-5p 0.407 0.295 0.563 0.000 0.000

hsa-miR-21-5p 2.327 1.700 3.186 0.000 0.000

hsa-miR-365a-3p 2.286 1.654 3.160 0.000 0.000

hsa-miR-365b-3p 2.286 1.654 3.160 0.000 0.000

hsa-miR-223-3p 2.205 1.612 3.017 0.000 0.000

hsa-miR-222-3p 2.053 1.506 2.799 0.000 0.000

hsa-miR-204-5p 0.493 0.361 0.674 0.000 0.000

hsa-miR-10b-3p 0.495 0.363 0.676 0.000 0.000

hsa-miR-221-3p 1.955 1.437 2.660 0.000 0.000

hsa-miR-126-3p 0.535 0.394 0.727 0.001 0.001

hsa-miR-10b-5p 0.542 0.399 0.736 0.001 0.001

hsa-miR-625-3p 1.866 1.368 2.545 0.001 0.001

hsa-miR-99b-5p 0.544 0.399 0.741 0.001 0.001

hsa-miR-146b-5p 1.819 1.338 2.473 0.001 0.001

hsa-miR-30c-2-3p 0.557 0.409 0.759 0.002 0.001

hsa-miR-101-3p 0.562 0.413 0.766 0.002 0.002

hsa-miR-130a-3p 1.759 1.294 2.391 0.002 0.002

hsa-miR-155-5p 1.773 1.300 2.419 0.002 0.002

hsa-miR-335-3p 1.685 1.243 2.284 0.005 0.004

hsa-miR-144-3p 0.594 0.437 0.808 0.005 0.005

hsa-miR-191-5p 1.683 1.236 2.292 0.005 0.005

hsa-miR-1269a 1.667 1.225 2.269 0.006 0.006

hsa-miR-30a-3p 0.615 0.454 0.833 0.008 0.008

hsa-miR-144-5p 0.612 0.451 0.831 0.008 0.008

hsa-miR-142-3p 1.610 1.187 2.184 0.010 0.009

hsa-miR-486-5p 0.619 0.455 0.841 0.010 0.009

hsa-let-7g-5p 1.593 1.173 2.164 0.012 0.011

hsa-miR-106b-5p 1.587 1.171 2.152 0.012 0.011

hsa-miR-451a 0.626 0.461 0.851 0.012 0.011

hsa-miR-146b-3p 1.548 1.143 2.096 0.019 0.018

hsa-let-7f-5p 0.652 0.481 0.885 0.022 0.021

hsa-let-7i-5p 1.534 1.131 2.079 0.022 0.021

hsa-miR-455-5p 0.651 0.479 0.884 0.022 0.021

hsa-miR-27b-3p 0.657 0.484 0.892 0.025 0.024

hsa-miR-21-3p 1.500 1.108 2.031 0.030 0.029

hsa-miR-584-5p 0.678 0.501 0.918 0.039 0.037

hsa-miR-2355-5p 0.678 0.502 0.917 0.039 0.037

hsa-miR-29c-5p 0.686 0.507 0.926 0.044 0.043

hsa-miR-192-3p 0.689 0.510 0.931 0.047 0.045

hsa-miR-342-3p 1.451 1.071 1.967 0.049 0.047
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Fig. 2  Functional enrichment analysis and PPI network construction. a–c The significantly enriched top 10 GO term (p value < 0.05) analyzed by 
David 6.8 for KIRC. d The significantly enriched KEGG pathway (p value < 0.05) analyzed by David 6.8 for KIRC. e PPI network of DEGs with their 
degree higher than the average in KIRC. f PPI network of DEGs verified by MCODE analysis. The orange represents un-regulated genes; the green 
represents down-regulated genes
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degree > average 2.17) as high connectivity genes in our 
study (Fig. 2e). According to their degree of importance, 
10 important modules involved 43 DEGs from the PPI 
network complex were selected for further analysis based 
on Cytoscape MCODE (Fig.  2f ). By cross analysis of 
those 86 DEGs and those 43 DEGs, we identified 10 over-
lap DEGs (ANXA1, BCL11B, CYCS, HLA-G, HMGCS1, 
RAB5C, RNF123, TIMP3, TRPM4, ZEB2).

Pathologic TNM correlation analysis
We classified the pathologic TNM staging of KIRC 
patients and conducted an overall survival correlation 
analysis. The results indicated that pathologic TNM were 
actually correlated with the overall survival. The KIRC 
patients with bigger of the size and/or extent of the main 
cancer (T3 + T4), or lymph node metastasis (N1), or dis-
tant metastasis (M1) displayed the worse overall survival 
rate (Fig.  3a–c). Subsequently, we evaluated their rela-
tionship of those 10 overlap DEGs with pathologic TNM, 
and found that 5 DEGs was confirmed to be associated 
with pathologic T and pathologic M (Fig. 3d–e).

Specific prognostic model construction
After pathologic TNM correlation analysis, we per-
formed univariate Cox regression analysis for those 10 
DEGs. We found that HMGCS1, TIMP3, and RNF123 
were correlated with overall survival. The KIRC patients 
with high expression of HMGCS1, TIMP3, and RNF123 
exhibited a better overall survival (Fig.  4a–c). Then, 
we performed multivariate Cox regression analysis for 
HMGCS1, TIMP3, and RNF123. And the result showed 

that TIMP3 (p = 0.0001) and HMGCS1 (p = 0.0110) were 
still correlated with the overall survival of KIRC patients, 
of which the expression of TIMP3 (logFC = − 0.766, 
p < 0.001) and HMGCS1 (logFC = − 0.643, p < 0.001) were 
decreased significantly.

Followed the multivariate Cox regression analysis, we 
constructed a prognostic model by using TIMP3 and 
HMGCS1. The patients with low risk actually exhibited 
a better overall survival (Fig.  4d). The time-dependent 
receiver operating characteristic (ROC) curves had area 
under curve (AUC) values higher than 0.5, which were 
0.7487, 0.6893, and 0.6893 respectively (Fig. 4e–g).

We screen the negative related miRNAs of TIMP3 and 
HMGCS1 among those 20 DEMs, and found TIMP3 was 
correlated with hsa-miR-21-5p (r = − 0.520), HMGCS1 
were correlated with hsa-miR-223-3p (r = − 0.318) and 
hsa-miR-365a-3p (r = − 0.340). The result of multivari-
ate Cox regression analysis showed that hsa-miR-21-5p 
[p = 0.0002, HR = 1.854(1.343–2.560)], hsa-miR-223-3p 
[p = 0.0002, HR = 1.821(1.324–2.506)], and hsa-miR-
365a-3p [p = 0.0004, HR = 1.823(1.309–2.538)] were still 
correlated with the overall survival of KIRC. And the 
expression of hsa-miR-21-5p (logFC = 2.167, p < 0.001), 
hsa-miR-223-3p (logFC = 1.000, p < 0.001), and hsa-miR-
365a-3p (logFC = 0.998, p < 0.001) were increased signifi-
cantly. The patient with low risk score actually exhibited 
a better overall survival (Fig. 5a). The AUC of the DEMs 
signature in 1-year was 0.5826 (Fig.  5b). And the time-
dependent ROC curves in 3-year and 5-year had AUC 
values higher than 0.6, which were 0.6016 and 0.6541 
respectively (Fig. 5c, d).

Fig. 3  Pathologic TNM correlation analyses. a–c Survival curves of pathologic TNM for KIRC. d Associated analyses of DEGs with pathologic T stage 
for KIRC. e Associated analyses of DEGs with pathologic M stage for KIRC. *p < 0.05, **p < 0.01, ***p < 0.001
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Discussion
Previous study indicated that 2.2% of all new cancer cases 
and 1.8% of all cancer related death was RCC in 2018 

globally [1]. And almost 30% of KIRC, the main type of 
RCC, with localized cancers eventually develop to metas-
tases despite after surgical treatment [4]. Therefore, it 
is necessary to identify DEGs as suitable prognosis bio-
markers for the diagnosis of KIRC. The expression of 
mRNA was affected by many factors, such as miRNA, 
lncRNA, methylation, and so on. In the present study, 
we just focus on the miRNAs. MiRNAs, a class of small 
noncoding RNAs of ∼22nt in length, are firstly identified 
in 1993 in Caenorhabditis eleganss. Increasing scientific 
reports demonstrate that miRNAs are involved in the 
regulation of almost all the biological phenomena in vari-
ous species which repress the target transcripts through 
partial complementarity [5]. Abnormal expression of 
miRNAs is closely related to the pathogenesis of most 
human diseases, including cancer [8, 10]. Previous stud-
ies have shown that miRNAs are involved in the initia-
tion, progression, and prognosis of various cancers. For 
instance, Zhang et al. found that miR-1246 and miR-1290 
are critical for the tumor initiation and progression of 
lung cancer [11]. Wang et al. found that miR-200c targets 
CDK2 and suppresses tumorigenesis in renal cell carci-
noma [12]. Therefore, the aim of this study was to find 
the biomarkers related correlated to abnormal miRNA 

Fig. 4  Construction of survival risk score system based on DEGs signature. a–c Survival curves of DEGs in KIRC. d Survival curves of prognostic 
model based on DEGs in KIRC. e–g The ROC curve of prognostic model based on DEGs in 1-, 3-, and 5-year with AUC value

Fig. 5  Construction of survival risk score system based on DEMs 
signature. a Survival curves of prognostic model based on DEMs in 
KIRC. b–d The ROC curve of prognostic model based on DEMs in 1-, 
3-, and 5-year with AUC value



Page 7 of 9Huang et al. BMC Med Genomics           (2021) 14:72 	

expression, which has an important role in the diagnosis 
and prognosis for various cancers. In the present study, 
we found 20 DEMs and 252 DEGs through correlation 
analysis. And then, we found 20 KEGG pathways were 
enriched by functional enrichment analysis, of which 9 
signaling pathway was enriched significantly. The other 
11 signaling pathways are not significantly enriched, but 
previous studies also indicated that they also play an 
important role in the pathogenesis of cancers, such as 
metabolic related pathways [13–15].

Subsequently, we identified that TIMP3 and HMGCS1 
were correlated with the overall survival of KIRC patients 
through bioinformatics analysis. And the constructed 
prognosis model based on TIMP3 and HMGCS1 could 
accurately predict the overall survival rate of KIRC 
patients. TIMP3 (Tissue inhibitor of metalloprotein-
ases-3) belongs to a family of negative regulators of 
matrix metalloproteinase activity. Previous studies indi-
cated that TIMP3 as a tumor suppressor could modulate 
tumor migration, invasion, and tumorigenicity [16]. High 
expression of TIMP3 could promote apoptosis in vari-
ous tumors [16]. Das et al. found that reduced expression 
of TIMP3 was observed in 74% of the human malignant 
melanoma cases [17]. Loss or down regulation of TIMP3 
could promote the metastasis, cell growth and invasion of 
several cancers [18–20]. Moreover, Gu et al. and Mylona 
et al. found that TIMP3 could predict the overall survival 
rate for hepatocellular carcinoma and breast cancer [21, 
22]. In the present study, we also found that the expres-
sion of TIMP3 was decreased significantly in KIRC. And 
the survival analysis also indicated that TIMP3 was cor-
related with the overall survival rate of KIRC patients 
which further reinforce the relationship of TIMP with 
cancers. The KIRC patients with low expression of 
TIMP3 displayed worse overall survival rate. All of these 
results reinforced the relationship of TIMP3 with can-
cers. By retrospective analysis, we found hsa-miR-21-5p 
was also correlated with overall survival which could be a 
potential prognosis biomarker for KIRC. Park et al. found 
hsa-miR-21-5p was more highly expressed in the recur-
rence group than in the nonrecurrence group of gastric 
cancer [23]. Chang et al. found that hsa-miR-21-5p may 
exert protective phenotypes by targeting breast onco-
genes that contribute to patient survival [24].

HMGCS1 (3-hydroxy-3-methylglutaryl-CoA synthase 
1) is a potential regulatory node in the mevalonate path-
way, whose up-regulation is a common transcriptional 
event in cancer stem cell enriched subpopulations of 
breast cancer cell lines [25]. Wang et  al. also found the 
expression of HMGCS1 is increased significantly in 
stomach adenocarcinoma samples of patients and tumor-
spheres of gastric cancer cells [26]. Additionally, previous 
reports demonstrated that krüppel-like factors (KLFs) 

could regulate the expression of various substrates. Yao 
et al. found that KLF13 was downregulated in colorectal 
cancer tissues and colorectal cancer cell line [27]. KLF13 
knockdown could effectively promote cell proliferation 
and colony formation. Opposite results were observed in 
KLF13 overexpressed cells [27]. In the further research, 
Yao et  al. found that KLF13 transcriptionally inhibited 
HMGCS1 and knockdown of HMGCS1 could suppress 
the proliferation of colorectal cancer [27]. But in the pre-
sent study, we found that the expression of HMGCS1 was 
decreased significantly in KIRC. And by retrospective 
analysis, we found HMGCS1 correlated miRNAs hsa-
miR-223-3p and hsa-miR-365a-3p were correlated with 
the overall survival of KIRC. The expression of hsa-miR-
223-3p and hsa-miR-365a-3p were increased significantly 
in KIRC. Previous studies indicated that hsa-miR-223-3p 
and hsa-miR-365a-3p could promote proliferation, 
migration and invasion of cancer cells [28–31]. But what 
very interesting is that previous studies also indicated 
that hsa-miR-223-3p and hsa-miR-365a-3p could inhibit 
the invasion and migration of cancer cells [32–35]. All 
of those results suggested that the same gene or miRNA 
may play different roles in different cancers.

Conclusion
In the present study, we found 2 DEGs and 3 DEMs 
could be the candidate prognosis biomarkers for KIRC 
patients. The constructed risk models based on 2 DEGs 
and 3 DEMs could accurately predict the outcome. We 
just provided an analysis direction depended on theo-
retical knowledge and clinical outcomes, more scientific 
research, especially clinical studies, were needed to con-
firm our findings.
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