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RNA-sequencing (RNA-seq) provides a comprehensive quantification of transcriptomic

activities in biological samples. Formalin-Fixed Paraffin-Embedded (FFPE) samples are

collected as part of routine clinical procedure, and are the most widely available biological

sample format in medical research and patient care. Normalization is an essential step

in RNA-seq data analysis. A number of normalization methods, though developed for

RNA-seq data from fresh frozen (FF) samples, can be used with FFPE samples as

well. The only extant normalization method specifically designed for FFPE RNA-seq

data, MIXnorm, which has been shown to outperform the normalization methods,

but at the cost of a complex mixture model and a high computational burden. It is

therefore important to adapt MIXnorm for simplicity and computational efficiency while

maintaining superior performance. Furthermore, it is critical to develop an integrated tool

that performs commonly used normalization methods for both FF and FFPE RNA-seq

data. We developed a new normalization method for FFPE RNA-seq data, named

SMIXnorm, based on a simplified two-component mixture model compared to MIXnorm

to facilitate computation. The expression levels of expressed genes are modeled by

normal distributions without truncation, and those of non-expressed genes are modeled

by zero-inflated Poisson distributions. The maximum likelihood estimates of the model

parameters are obtained by a nested Expectation-Maximization algorithm with a less

complicated latent variable structure, and closed-form updates are available within each

iteration. Real data applications and simulation studies show that SMIXnorm greatly

reduces computing time compared to MIXnorm, without sacrificing the performance.

More importantly, we developed a web-based tool, RNA-seq Normalization (RSeqNorm),

that offers a simple workflow to compute normalized RNA-seq data for both FFPE and FF

samples. It includes SMIXnorm and MIXnorm for FFPE RNA-seq data, together with five

commonly used normalization methods for FF RNA-seq data. Users can easily upload

a raw RNA-seq count matrix and select one of the seven normalization methods to
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produce a downloadable normalized expression matrix for any downstream analysis. The

R package is available at https://github.com/S-YIN/RSEQNORM. The web-based tool,

RSeqNorm is available at http://lce.biohpc.swmed.edu/rseqnorm with no restriction to

use or redistribute.

Keywords: RNA-sequencing, normalization, FFPE, formalin-fixed paraffin-embedded samples, archived samples,

statistical methods

1. INTRODUCTION

The application of next-generation sequencing (NGS) on
measuring transcript abundance is widely known as RNA-seq.
RNA-seq works by sequencing a library of cDNA fragments in
a high-throughput manner in order to provide a comprehensive
quantification of transcriptomic activities in biological samples
(Quinn et al., 2018). In practice, normalization is an important
step in RNA-seq data analysis since raw counts are often
not directly comparable between samples (Dillies et al., 2013).
Normalization brings out the biologically relevant information
in gene expression by removing the systematic noise that arises
from various experimental reasons (such as batch effect, lane
effect, sequencing bias, etc.). Recent studies have shown that
the raw sequencing data without normalization could cause
invalid inference frommany conventional statistical analyses and
measurements (Quinn et al., 2018).

Fresh-frozen (FF) tissue biospecimens are considered the gold
standard in molecular analysis using gene expression, as freezing
preserves RNA well. A number of normalization methods have
been well-studied on FF bulk RNA-seq data (Dillies et al.,
2013). Most existing methods, including Reads Per Million
(RPM), Upper-Quartile (UQ), DESeq, Trimmed Mean of M-
values (TMM), etc., are based on scaling factor estimation,
where the normalized expression is obtained by dividing the
raw count by an estimate of the sample-specific scaling factor.
For example, RPM (Mortazavi et al., 2008) estimates the scaling
factor for each sample by the total number of reads divided
by 1, 000, 000. Similarly, UQ (Bullard et al., 2010) estimates the
scaling factor by the upper quartile of counts across all genes for
each sample. DESeq (Anders and Huber, 2010) normalization
first calculates the geometric means of the counts for all genes
as an average reference library. Then the ratio of the count
in each sample to that in the reference library is computed.
The scaling factor for each sample is estimated as the median
of this ratio across all genes. TMM (Robinson and Oshlack,
2010) normalization selects one sample as a reference, and the
M-values are calculated as the log ratios of the read count
between each test sample and the reference for all genes. Then
for each test sample, the scaling factor is estimated by the
weighted mean of M-values after removing the genes with
extreme average expression or M-values. On the other hand,
normalization can be done implicitly by accounting for the size
factor as a term in the RNA-seq data model. PoissonSeq (PS)
(Li et al., 2012) models RNA-seq data by a Poisson log-linear
model, where a set of sample-specific parameters is included as
offset parameters in the linear predictor to account for different
sequencing depths.

Recently, there has been increasing interest in performing
transcriptome profiling on Formalin-Fixed Paraffin-Embedded
(FFPE) tissues, as they are widely available from routine
diagnostic sample preparation (Morton et al., 2014). Being able
to successfully measure mRNA abundance from FFPE samples
could greatly facilitate biomarker discoveries and genomic
studies of clinical samples (Graw et al., 2015; Grenier et al.,
2017). The major challenge of adapting FFPE biospecimens
in molecular analysis is that the chemical process is designed
to preserve cellular proteins rather than preserving RNA. As
a result, RNA from FFPE tissues is usually degraded, which
could limit gene expression analysis. Studies have shown that
the fixation process, storage time, specimen size and conditions
play important roles in the RNA quality from FFPE samples
(Von Ahlfen et al., 2007). Although such samples may suffer
from the chemical modifications and continued degradation over
time, recent studies have shown that RNA-seq can measure
the RNA expression from FFPE samples in sufficient quality
(Li et al., 2014). Due to chemical modifications and the RNA
degradation, the RNA quality and abundance extracted from the
FFPE samples vary a lot. Therefore, the normalization step is
even more important for RNA-seq data measured from FFPE
samples than those measured from FF samples. Though the
forementioned existing methods are applicable to FFPE RNA-
seq data, none of them were specifically designed and validated
on FFPE samples. The mRNA expression measured from FFPE
can have lower quality and higher sparsity (i.e., many zero
counts occur), compared with FF samples. Consequently, the
zero-inflation makes the assumption of model-based FF RNA-
seq normalization invalid. For most scaling factor-based RNA-
seq normalization, practitioners need to discard genes with
many zeros beforehand, which may be a significant portion of
the data when applied to FFPE samples. To the best of our
knowledge, MIXnorm (Yin et al., 2020) is the only method
that is designed to normalize FFPE RNA-seq data but that is
applicable to FF RNA-seq data as well. MIXnorm addresses
the zero inflation by separately modeling the expressed genes
and non-expressed genes in a mixture model. Yin et al. (2020)
considered normalized expression from paired FF (or like)
samples as a surrogate of the truth and showed quantitatively that
MIXnorm consistently outperforms commonly used FF RNA-
seq normalization methods when applied on FFPE samples by
comparing the gene-wise correlations. In addition, it has been
shown that after MIXnorm normalization, RNA-seq data from
FFPE tissues enable us to detect important up- or down-regulated
genes. However, MIXnorm relies on a complex latent variable
structure for model fitting, which causes a heavy computational
burden for large data sets. We show in this paper that the
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statistical model of MIXnorm can be properly simplified to still
capture the main characteristics of the FFPE RNA-seq data. We
propose a simplified version of MIXnorm, labeled SMIXnorm,
for FFPE RNA-seq data normalization. The fitting of SMIXnorm
requires a less complicated latent variable structure. We show
through simulation studies and real data applications that
SMIXnorm retains almost the same performance as MIXnorm,
while greatly reducing the computing time.

More importantly, there is a lack of platforms that
integrate existing methods and produce normalized data by
different methods. Evans et al. (2018) mentioned that the
selection of normalization methods played an important role
in downstream analysis due to the different assumptions those
methods made. Furthermore, it is important to raise the
awareness of the separate normalization methods for FFPE
samples, as more and more applications involve RNA-seq
data from such samples. We developed a web portal, RNA-
seq Normalization (RSeqNorm) (http://lce.biohpc.swmed.edu/
rseqnorm/), to conduct normalization for both FF and FFPE
RNA-seq data. It offers seven normalization methods, with
accompanying diagnostic plots for users to visually examine the
RNA-seq data quality. Based on this platform, we compared
different normalization methods using both comprehensive
simulation studies and real data applications. These results,
together with the RSeqNorm web portal, will facilitate users to
select the best normalization method for their application.

The paper is structured as follows. In section 2.1, we present
the SMIXnorm method. The statistical model of SMIXnorm
is simplified from that of MIXnorm. An efficient nested
Expectation-Maximization (EM) algorithm is designed for model
fitting. We further justify the simplifications by comparing
SMIXnorm to MIXnorm from a technical point of view. An
introduction of the web portal RSeqNorm is given in section
2.2. Section 3 reports simulation studies and real data analyses.
Finally, a brief concluding discussion is made in section 4.

2. MATERIALS AND METHODS

2.1. The SMIXnorm Method
2.1.1. The Simplified Statistical Model
Assume the RNA-seq count data from FFPE samples can be
summarized by a matrixCI×J , where Cij is the number of reads in
sample i for gene j. We adopt a similar latent variable framework
as in MIXnorm to address the zero inflation of such data. That is,
the binary latent variableDj = 1 indicates gene j is expressed and
Dj = 0 indicates gene j is not expressed in the study for j = 1, ..., J.
Then we model the count data as a mixture of zero-inflated
Poisson (ZIP) and normal distributions,

Cij ∼ ZIP(πj, δ), if Dj = 0, (1)

Lij ∼ N (µi, σ
2
i ), if Dj = 1, (2)

Dj ∼ Ber(φ), (3)

where Lij = log(Cij + 1) denotes the log transformed count,
0 ≤ πj,φ ≤ 1, δ,µi, σi ≥ 0 for i = 1, ..., I and j = 1, ...J.

The model assumes an unobserved variable Dj which follows a
Bernoulli distribution with parameter φ. Genes with Dj = 0 are
considered not expressed. These include low-expression genes
that have abundance below detection limit, or biologically non-
expressed genes that are absent from the biological sample of
interest, or genes that should have been expressed but suffer from
high-level mRNA degradation. The observed counts from non-
expressed genes are due to background noise and are modeled by
a zero-inflated Poisson distribution with gene-specific probability
of extra zeros πj and a common expected Poisson count δ.
Genes with Dj = 1 are expressed genes and we model the log
counts of those genes by a normal distribution with sample-
specific location and scale parameters. Compared to the model
of MIXnorm, we use the normal distribution in (2) instead of
a truncated normal distribution and a common Poisson mean
δ rather than the sample-specific mean δi. As will be discussed
in section 2.1.3, these would greatly facilitate the computation
while not hurting much the performance. Note that the normal
distribution assigns positive densities to negative log counts Lij,
which never occur in real data. However, it is reasonable to
assume that the negative values only take a negligible portion of
the density in modeling expressed genes as the mean (log) counts
of such genes are usually well above zero. Further, SMIXnorm
is directly applicable to FF or like samples based on the same
argument in Yin et al. (2020) that FF samples may be considered
a reduced case of FFPE samples.

2.1.2. Model Fitting
Let 2 = (µ, σ ,π , δ,φ) denote the set of all parameters in the
simplified model. The observed data likelihood as a function of
2 is defined as follow:

L(2|C) =

J
∏

j=1

p(Cj|2)

=

J
∏

j=1

[p(Cj|Dj = 1,µ, σ )p(Dj = 1|φ)

+ p(Cj|Dj = 0,πj, δ)p(Dj = 0|φ)]

=

J
∏

j=1

[

I
∏

i=1

p(Cij|Dj = 1,µi, σi) · φ

+

I
∏

i=1

p(Cij|Dj = 0,πj, δ) · (1− φ)], (4)

where p(Cij|Dj = 1,µi, σi) is the probability density function
(pdf) of Cij for expressed genes such that log(Cij + 1) follows
the normal distribution in (2), and p(Cij|Dj = 0,πj, δ) is the
zero-inflated Poisson probability mass function (pmf) for non-
expressed genes as described in (1). Note that a continuous
distribution is used to approximately model the discrete random
variable log(Cij + 1). See Yin et al. (2020) for a detailed
justification for the approximation.

A common approach to obtain the maximum likelihood
estimate (MLE) of 2 is to treat (C,D) as the complete data and
update the parameter estimates iteratively by an EM algorithm.
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However, direct implementation of the EM algorithm requires
Newton-Raphson type maximization to update the parameters
within the ZIP component, which may cause the EM algorithm
fail to converge due to numerical instability. By a similar
approach in Yin et al. (2020), we update the parameter estimates
from the ZIP component by nesting another EM algorithm and
avoid the Newton-Raphson type optimization. Specifically, we
construct another latent variable Zij for genes not expressed so
that the ZIP distribution can be treated as a mixture of two states,
the perfect zero state and the Poisson state. Assume Zij = 1
when Cij is from the perfect zero state and Zij = 0 when Cij

is from the Poisson state, satisfying Zij|Dj = 0 ∼ Ber(πj). Let
Ycom = (C,D,Z) denotes the complete data. The complete-data
log-likelihood with latent variables D and Z is given by

ℓ(2|C,D,Z) =

J
∑

j=1

I
∑

i=1

{

Dj

[

logφ + logN
(

Lij|µi, σi
)

− log(Cij + 1)
]

+ (1− Dj)
[

log (1− φ) + Zij logπj

+
(

1− Zij
)

log
(

1− πj

)]

+
(

1− Dj

) (

1− Zij
) [

Cij log δ − δ − logCij!
]

}

. (5)

The outer EM treats C as observed data and D as missing data.
Let 2(t) = (µ(t), σ (t),π (t), δ(t),φ(t)) denote the set of current
parameter estimates after t iterations of the algorithm. The
distribution of D given the observed data and 2(t) is

p(D|C,2(t)) =

J
∏

j=1

p(Cj,Dj|2
(t))

p(Cj|2(t))
=

J
∏

j=1

(

w
(t)
j

)Dj
(

1− w
(t)
j

)1−Dj

,

(6)
where

w
(t)
j =

φ(t)p(Cj|Dj = 1,µ(t), σ (t))

φ(t)p(Cj|Dj = 1,µ(t), σ (t))+ (1− φ(t))p(Cj|Dj = 0,π
(t)
j , δ(t))

.

(7)

Note that in (5), the complete-data log-likelihood is linear in
D. Therefore, the outer E step, which calculates the conditional
expectation of the complete-data log-likelihood with respect to

the missing dataD, is reduced to computing w
(t)
j = E(Dj|C,2

(t))

only once per iteration. Within each iteration of the outer EM,
the inner EM repeats K cycles and treats Z as missing data

and (C,w(t)) as observed data, where w
(t) = (w

(t)
1 , ...,w

(t)
J ). By

the similar argument and that
∑I

i=1 Zij is the complete-data
sufficient statistic for πj, the kth cycle of the inner E step involving
Z is reduced to calculating the conditional expectation of Zij

given (C,w(t),2(t+ k−1
K )).

Details of the nested EM algorithm are summarized in section
1 in Supplementary Material. The convergence can be detected
using the change of the observed-data log-likelihood ℓ(2|C) in
two consecutive iterations which is trivial to obtain via (4). We

set the number of inner EM cycles K = 5 within each iteration in
our implementation as in Yin et al. (2020).

Similar to MIXnorm, SMIXnorm normalization relies on the
accurate classification of the genes that are expressed or not.
This is indicated by the latent variable Dj. We estimate Dj by its
conditional expectation given the observed data at the last E-step.
Assume that the majority of genes are not differentially expressed
across samples (Robinson and Oshlack, 2010). Then the means of
the normal distributionsµi’s can be treated as the sample-specific
noises. The normalized expression for sample i and gene j can be
given by

Nij = E
(

Dj|Cj, 2̂
)

× (Lij − µ̂i), (8)

where 2̂ denotes the MLE of 2. In our numerical experiments,
when gene j is not expressed, it is often the case that the

conditional expectation E
(

Dj|Cj, 2̂
)

≈ 0, which makes Nij ≈ 0;

when gene j is expressed, E
(

Dj|Cj, 2̂
)

is often close to 1. Thus,

we may simply output zero for genes with D̂j = 0, and Lij−µ̂i for

genes with D̂j = 1 in the actual implementation. The proposed
method normalizes the data by subtracting the estimated sample-
specific noise from the log count. Therefore, the normalized data
are in the log scale.

2.1.3. SMIXnorm vs. MIXnorm
There are twomajor simplifications when comparing SMIXnorm
to MIXnorm. First, SMIXnorm assumes a common Poisson
mean δ for the non-expressed genes, where MIXnorm allows
the sample-specific Poisson means δi. Note that δ appears in the
normalization step (8) through the conditional expectation of Dj

that can be computed by Equation (7). We observe in practice
that after the nested EM algorithm converges, the conditional

expectation E(Dj|C,2
(t)) [i.e., w

(t)
i in Equation 7] is not sensitive

to the choice of a common or sample specific Poissonmean.With
the parameters set to their MLE, this conditional expectation
mainly depends on the ratio between p(Cj|Dj = 0, π̂j, δ̂) (or

p(Cj|Dj = 0, π̂j, δ̂i) in MIXnorm) and p(Cj|Dj = 1, µ̂, σ̂ ).
The Poisson mean essentially reflects the background noise
level and is supposed to be a small positive number. Thus, the
former distribution, regardless of using δ̂ or δ̂i, puts most of its
probability mass near 0, whereas the latter distribution in practice
has negligible density around small values near 0. Consequently,
the conditional expectation in Equation (7) is close to either 1 or 0
depending on whether the gene is expressed or not and reducing
δi to δ has little effect in the normalization step.

We further simplify the model by ignoring the truncation on
the normal distributions. Compared to MIXnorm, the sample-
specific noise among expressed genes is captured by the mean
of a normal distribution in SMIXnorm instead of the mean of
a truncated normal distribution. However, we argue that these
two estimates are asymptotically identical. Assume we model a
set of continuous positive real numbers X = (X1, ...,XJ) by a
truncated normal distribution TN(θ , τ 2, 0,+∞), where θ and
τ are the mean and standard deviation of the corresponding
normal distribution before truncation. To estimate the mean
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of the truncated normal distribution, which is a function
of θ and τ , say m(θ , τ ), one common approach is to first
obtain the maximum likelihood estimates (θ̂ , τ̂ ), then the
maximum likelihood estimate of the mean is m(θ̂ , τ̂ ) based
on the invariance property of MLE. Another approach for a
point estimate is the method of moments. The method of
moments estimate of m(θ , τ ) is simply the sample mean X̄,
which is essentially the MLE of µ if we ignore the truncation
and model the data with N(µ, σ 2). Under the large sample
situation, as is often the case in RNA-seq data involving many
genes from whole-genome experiments, both m(θ̂ , τ̂ ) and X̄ are
asymptotically consistent estimators for m(θ , τ ). The use of a
normal distribution without truncation is appealing since it has
closed-form parameter updates within the nested EM algorithm,
while a truncated normal distribution requires additional latent
variable structures and data augmentation to obtain closed-
form parameter updates (Yin et al., 2020). Overall, SMIXnorm
produces similar normalized expression compared to MIXnorm
whereas greatly simplifies the model fitting process, as will be
confirmed in section 3 by numerical evidence.

2.2. RSeqNorm Web Portal
The RSeqNorm web portal (http://lce.biohpc.swmed.edu/
rseqnorm) provides a set of analysis routines for normalization
of RNA-seq data from either FF or FFPE samples. The workflow
is illustrated in Figure 1. Users provide raw sequence read
count data (e.g., from RNA-seq experiments) in the form of
an integer-valued matrix C. The web portal can compute the
normalized expression as well as diagnostic information for
download. We implement SMIXnorm, MIXnorm and five
commonly used normalization methods, including Reads Per
Million (RPM), Upper-Quartile (UQ), DESeq, Trimmed Mean
of M-values (TMM) and PoissonSeq (PS). Though developed
for FFPE data, SMIXnorm and MIXnorm are directly applicable
to FF data normalization. For FF data normalization, there
seems to have no unanimously best normalization method. We
suggest using the methods offered by RSeqNorm and evaluating
the normalization performance using prior information or
known biological knowledge. For example, users may conduct a
differential expression (DE) test following the normalization step
and select the method that detects more genes that are known to
be differentially expressed in the literature.

RSeqNorm accepts the raw read count matrix in a comma-
separated values (CSV) file. The (i, j) element of the count matrix
records how many reads have been assigned to gene j in sample

FIGURE 1 | Summary of RSeqNorm web-portal process.

i. An example input file is downloadable from the RSeqNorm
website. Detailed file requirements are shown in Figure 2.
SMIXnorm and MIXnorm require additional input arguments
including the maximum number of iterations [range (10, 50),
default value 15] and the convergence threshold [recommend
range (1e−5, 1), default value 0.01] for the nested EM algorithm.
We note that the observed-data log-likelihood as a function
of all parameters may have a large curvature near the MLE.
However, the SMIXnorm and MIXnorm normalized expression
values are not sensitive to small variations of the parameter
estimates. Therefore, the convergence criterion here is defined as
the maximum absolute change in the parameter updates between
the previous and current iterations, instead of using the change
in the observed-data log-likelihood. The algorithm stops when
the absolute change is smaller than the predetermined threshold
value or the maximum number of iterations is reached. We
mentioned in section 2.1.3 that the conditional probability of
being expressed is often close to either 0 or 1. As a consequence,
the normalized expression level for a non-expressed gene is
usually a trivial number (< 10e−10 in our implementation to real
data). Therefore, an approximate set of normalized expression is
also available for SMIXnorm and MIXnorm, which normalizes
genes with D̂j = 0 directly to 0 across all samples, where

D̂j = I(w
(t)
j > cw) at convergence, I(·) is the indicator function

and cw is set to 0.5 in RSeqNorm. In practice, we observe that
the choice of cw is not sensitive in identifying expressed genes.

The conditional probability of being expressed (w
(t)
j ) and the

proportion of expressed genes identified (φ̂) are returned in the R
package RSEQNORM, which is downloadable from our website.
Note that φ̂ may reflect the overall data quality for an RNA-seq
experiment (i.e., a value close to 1 indicates high quality).

RSeqNorm returns the normalized expression in a CSV file
with the same dimension as the user input file. User may leave
the web portal after successfully submitting the job and an email
notification will be sent to the user with a download link when the
normalization is finished. A histogram of zero-count proportions
is also returned as shown in Figure 3, where SMIXnorm is used
on the example data provided by RSeqNorm. The histogram
shows the distribution of zero-count proportions among all
samples (represented by the horizontal axis) over all input genes.
High frequencies near 0 indicate that most biologically expressed
genes are actually expressed in all samples in the experiment and
so the data are of high quality. Ideally, one would expect that
a gene is either expressed among all samples or not expressed
in any of the samples. In this ideal case, the histogram shows
frequencies only at 0 and 1 on the horizontal axis.

3. RESULTS

3.1. Simulation
We conducted simulation study to show that SMIXnorm greatly
reduces computing time and maintains performance comparable
to MIXnorm that is better than all FF RNA-seq normalization
methods. Our simulation study evaluates the computing time
of SMIXnorm and MIXnorm with different sample sizes. Note
that the SMIXnorm model cannot be used to simulate the data
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FIGURE 2 | RSeqNorm upload file requirements.

FIGURE 3 | Diagnostic plot returned by RSeqNorm using SMIXnorm.

since it permits negative log transformed counts that do not
exist in practice. Here, a modified MIXnorm model was used
to generate synthetic data sets (under the same settings as in
Simulation VI in Yin et al., 2020). The model parameters were
set to their MLEs estimated from a public RNA-seq dataset for
FFPE soft tissue sarcomas samples (Lesluyes et al., 2016), which
contains expression levels for 20, 242 protein-coding genes from
41 patients.

The sample size was set to a multiple of 41 from 41 to 2, 050.
The average computing time for SMIXnorm and MIXnorm over
50 replicates is plotted against sample size in Figure 4. Both
SMIXnorm and MIXnorm show a linear relationship between
the average computing time and the sample size with Pearson
correlations greater than 0.99. The linear regression fit of the
SMIXnorm computing time against sample size results in a
slope estimate of 0.051, compared to 0.297 from MIXnorm. To
evaluate the performance of SMIXnorm and MIXnorm together
with five commonly used FF RNA-seq normalization methods
(PS, UQ, DESeq, RPM, and TMM), we calculated the gene-
wise Pearson correlations for the 20, 242 genes between the
normalized and true expression for each of the 50 simulated
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data set under the setting of 41 samples. The results are
reported in Supplementary Figure 1, showing that SMIXnorm
and MIXnorm have almost identical performance and they
consistently beat the other methods.

3.2. Real Data Analysis
When dealing with real data where true expression is unknown,
researchers often consider frozen sections as the gold standard
for most molecular assays. As mentioned in the introduction,
the frozen process maintains RNA well, compared to the FFPE
process. Therefore, we used the paired FF RNA-seq expression
after normalization as a surrogate to the true gene expression in
our three data examples, in order to evaluate the performance of
different normalization methods.

3.2.1. Colorectal Cancer Data
The colorectal cancer data (Omolo et al., 2016) contains 54
selected FFPE tumor specimens from a larger multi-center
cohort with paired FF samples. Gene expression levels were
measured by whole genome RNA-seq (RNA-Acc) assay and
Affymetrix GeneChip (Affy) platform on the FFPE samples and
FF samples, respectively.

The activation of RAS signaling pathway is frequent in human
cancer. Recent studies have shown that RAS mutations account
for approximately 40% of colorectal cancers and lung cancers
(Omolo et al., 2016). A number of RAS pathway activation
gene expression signatures have been identified using multiple
types of cancer cell lines and human FF samples. Omolo et al.
(2016) evaluated an 18-gene RAS pathway signature on FFPE
samples in five technology platforms. We focus on the Illumina
whole genome RNA-seq of FFPE samples and the gold standard
FF samples measured by Affymetrix GeneChip. The Affy_FF
samples were normalized using the RMA method (Irizarry et al.,
2003; Omolo et al., 2016).

To assess the performance of the translation of the gene
signature from FF to FFPE samples, we considered the same
metric as in Omolo et al. (2016). The RAS pathway activation
score is defined as the mean normalized expression levels
of the 18 RAS genes for each sample. We calculated the

FIGURE 4 | Simulation study. Average computing time of SMIXnorm and

MIXnorm vs. sample size.

Spearman correlation using the 54 pairs of FF and FFPE RAS
pathway activation scores for each normalization method and
summarized the results in Table 1. The raw data give the
lowest correlation as expected. SMIXnorm and MIXnorm give
almost the same results and the highest correlations. The p-
value based on a two-sided permutation test for the hypothesis
H0 : ρ = 0 is reported in the parenthesis. SMIXnorm, MIXnorm,
PS, DESeq, RPM and UQ report significant correlations at
the significance level of 0.05. MIXnorm takes about 42 s to
normalize the colorectal cancer data, while SMIXnorm only takes
about 7.5 s.

3.2.2. Soft Tissue Sarcomas Data
The soft tissue sarcomas data (Lesluyes et al., 2016) measure
the expression levels of 20, 242 protein-coding genes from 41
patients with paired FF and FFPE samples. To evaluate the
normalization performance, the gene-wise Pearson correlations
between normalized FFPE and FF expression levels (in the
log scale) were computed and compared among the seven
different methods (SMIXnorm, MIXnorm, DESeq, RPM, TMM,
PS, and UQ). A gene expression signature, Complexity INdex
in SARComas (CINSARC), which contains 67 genes, has
been identified as an important prognostic factor in sarcomas
using fresh frozen samples. Lesluyes et al. (2016) showed that
CINSARC remains a potential prognostic factor using the FFPE
RNA-seq data. Therefore, we evaluated the performance of
different normalization methods on all the 20, 242 genes as well
as the 67 genes in the CINSARC gene signature.

Figure 5 shows the gene-wise Pearson correlations for all
the 20, 242 genes using violin plots. The dot and line in each
violin plot represent the mean and standard deviation of the
gene-wise Pearson correlations. The gene-wise correlations from
the 67 genes in the CINSARC signature are summarized in
Table 2 using the first, second, and third quartiles. Note that
UQ failed to normalize the data as the scaling factor estimates
equal 0 for some samples due to the excess zero counts. The
genes in the gene signature have higher correlations than those
calculated from the population of all protein-coding genes for
all the normalization methods. The shapes of the violin plots
suggest that SMIXnorm and MIXnorm have almost identical
results and SMIXnorm gives the highest mean correlation while
PS gives the lowest among all the methods. The three commonly
used FF RNA-seq normalization methods, TMM, DESeq, and
RPM, give similar results on all protein-coding genes and there
is no clear improvement compared to the original correlations

TABLE 1 | Correlations ρ between normalized FF and FFPE RAS pathway

activation scores.

SMIXnorm MIXnorm PS DESeq

ρ 0.343 (0.012) 0.343 (0.011) 0.324 (0.017) 0.298 (0.029)

RPM UQ TMM Raw

ρ 0.286 (0.036) 0.270 (0.049) 0.153 (0.269) 0.125 (0.366)

p-values in the parenthesis are based on a two-sided permutation test for the hypothesis

H0 : ρ = 0.

Frontiers in Genetics | www.frontiersin.org 7 March 2021 | Volume 12 | Article 650795

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Yin et al. SMIXnorm RNA-Seq Normalization

FIGURE 5 | Gene-wise correlations between normalized FFPE and FF expression for soft tissue sarcomas data on all 20, 242 protein coding genes. The UQ method

failed to normalize the data due to excess zero counts.

TABLE 2 | Gene-wise correlations between normalized FFPE and FF expression

for soft tissue sarcomas data on the CINSARC gene signature.

First Qu. Median Third Qu.

SMIXnorm 0.344 0.465 0.529

MIXnorm 0.333 0.455 0.517

DESeq 0.165 0.260 0.354

RPM 0.146 0.243 0.350

TMM 0.010 0.098 0.161

PS −0.126 0.002 0.154

UQ – – –

Original 0.020 0.107 0.181

The UQ method failed to normalize the data due to excess zero counts.

calculated without any normalization. However, DESeq and
RPM show much higher correlations on the CINSARC gene
signature compared to TMM.Overall, SMIXnorm andMIXnorm
show similar results and are consistently better than the other
methods. We further note that in this example, a poor choice of
normalization method (e.g., UQ, TMM, or PS) may yield results
worse than those from original unnormalized data. MIXnorm
takes about 5 min to normalize the soft tissue sarcomas data
and we note that the algorithm reaches the default maximum
number of iterations before convergence. On the other hand,
SMIXnorm converges in 6 iterations and takes about 10 s to
normalize the data.

3.2.3. Clear Cell Renal Cell Carcinoma Data
The clear cell renal cell carcinoma (ccRCC) data are available
in the repository Gene Expression Omnibus from a published
study (Eikrem et al., 2016). ccRCC is the most common and
aggressive histological type among the primary renal neoplasms.
Metastasis is a major cause of ccRCC patient death due to the
resistance to standard chemotherapy and radiotherapy. Hence,
much effort has been made to unravel the underlying molecular
mechanisms of ccRCC, for example, by applying gene expression
analysis to develop molecular signatures of disease progression,
which plays an important role in assessing the carcinogenesis
and development of disease as well as guiding clinical decisions.
The ccRCC RNA-seq data contain 32 pairs of FFPE and
RNAlater samples with 18, 458 protein-coding genes converted
from 64, 253 Ensembl annotated genes. Following Yin et al.
(2020), the RNAlater samples were considered the gold standard
in this study and gene-wise Pearson correlations were computed
to compare the performance of the seven normalizationmethods.
The results are shown via violin plots in Figure 6. Again, we
observe that SMIXnorm and MIXnorm give almost the same
results and consistently perform the best among all methods. It
is interesting to note that TMM, which performs the best among
existing FF normalization methods in soft tissue sarcomas data
on all protein-coding genes, gives worse results than DESeq,
RPM, and UQ in this application. In fact, TMM and PS show
no advantage compared to the original correlations without any
normalization. MIXnorm takes about 10.5 s to normalize the
ccRCC FFPE data, while SMIXnorm only takes about 3.3 s.
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FIGURE 6 | Gene-wise correlations between normalized FFPE and RNAlater for ccRCC data on 18, 458 protein coding genes.

The paired design of the ccRCC study allows us to conduct
differential expression (DE) analysis between ccRCC and normal
tissues. Specifically, two ccRCC and two adjacent normal tissues
were obtained from each of the 16 patient. The two pairs were
then stored in FFPE and RNAlater, respectively. We identified
DE genes [Benjamini–Hochberg adjusted P < 0.05 from paired
t-tests and absolute log 2 fold change (FC) > 2] from FF
and FFPE samples based on normalized expression levels and
summarize results in Table 3. We find that SMIXnorm and
MIXnorm give similar numbers of common DE genes from the
two sources, and are much higher than the numbers from the
other methods. Among the common DE genes identified from
MIXnorm, SMIXnorm is able to identify 999 out of the 1, 036
genes (i.e., 96.4%). Furthermore, among the two sets of top 20 DE
genes identified from RNAlater and FFPE samples, SMIXnorm
and MIXnorm share the same common genes and show almost
identical log 2 FC (Table 4). Our analysis shows that using either
SMIXnorm or MIXnorm for normalization, we are able to detect
a set of up- or down-regulated genes from FFPE RNA-seq data
that is similar to that from FF or like RNA-seq data.

4. DISCUSSIONS

We have developed an efficient normalization method, named
SMIXnorm, for FFPE RNA-seq data normalization. Modified
from the MIXnorm statistical model, we use a similar two-
component mixture model to separately model the expressed
and non-expressed genes. The simplifications of the statistical

TABLE 3 | Summary of differential expression analysis based on different

normalization methods from the ccRCC data.

FFPE RNAlater Common Common

DE genes DE genes DE genes top 20 DE

SMIXnorm 1,490 1,486 1,023 13

MIXnorm 1,488 1,482 1,036 13

DESeq 1,014 951 680 7

RPM 999 926 676 9

TMM 1,073 1,067 632 7

PS 1,001 1,300 652 8

UQ 1,002 943 679 8

Original 1,041 1,096 646 9

The second column is the number of DE genes identified from the FFPE data; the third

column is the number of DE genes identified from the RNAlater data; the fourth column

is the number of common genes between the two sets of DE genes; the last column is

the number of common genes among the two sets of top 20 DE genes from FFPE and

RNAlater.

model avoid the complex likelihood function and the need of
a complicated latent variable structure to invoke the nested
EM algorithm. We have shown through real data applications
and simulation studies that SMIXnorm greatly reduces the
complexity of the likelihood function and the computing
time without sacrificing the performance. Though other FF
normalization methods take only about 1 s to normalize each
dataset in our three data applications, their performance is
not comparable to that of SMIXnorm and MIXnorm for FFPE
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TABLE 4 | Shared DE genes among the two sets of top 20 DE genes from FFPE

and RNAlater samples in the ccRCC data, ordered by the absolute value of the

SMIXnorm normalized RNAlater log2 FC.

SMIXnorm

RNAlater

log2 FC

MIXnorm

RNAlater

log2 FC

SMIXnorm

FFPE log2

FC

MIXnorm

FFPE log2

FC

CA9 8.02 8.04 5.66 5.66

SLC6A3 7.20 7.22 6.30 6.31

NDUFA4L2 6.38 6.39 4.88 4.89

UMOD −6.17 −6.15 −5.63 −5.62

GP2 −5.53 −5.51 −4.96 −4.96

CLCNKA −5.29 −5.28 −5.70 −5.69

CDCA2 5.21 5.23 5.04 5.05

TNFAIP6 5.16 5.17 5.45 5.45

SLC4A11 −5.10 −5.08 −5.23 −5.22

KNG1 −5.04 −5.02 −5.04 −5.03

SLC12A1 −4.96 −4.95 −4.90 −4.89

AQP2 −4.94 −4.92 −4.90 −4.89

NELL1 −4.79 −4.77 −5.03 −5.02

samples. Some FF normalization methods perform even worse
than the use of original data without any normalization.

We mentioned in the soft tissue sarcomas application
that MIXnorm failed to converge at the default maximum
number of iterations and tolerance level. Due to the severely
different RNA degradation levels among the 41 soft tissue
sarcomas FFPE samples, 10 FFPE samples have more than
10, 000 zero counts and 9 FFPE samples have less than 3, 000
zero counts. Consequently, MIXnorm gives negative estimated
sample-specific location parameters of the truncated normal
distributions for those samples with a higher proportion of
zero counts, which blurs the distinction between expressed and
non-expressed genes. SMIXnorm models the expressed genes
by normal distributions without truncation, which naturally
constrains the location parameters to be non-negative in all the
EM iterations as sample means are used for estimation. Thus,
SMIXnorm seems to be more robust and converges faster than
MIXnorm.

Recently, single-cell RNA sequencing (scRNA-seq) becomes
an important technology in molecular analysis. While bulk RNA-
seq measures the expression in the population level across cells,
scRNA-seq allows for the cell level resolution and therefore,
reveals heterogeneity of cell subpopulations. Similar to FFPE
RNA-seq data, a prominent feature of scRNA-seq data is the
sparsity. The high proportion of zero count arises for both
biological reasons and technical reasons (Lun et al., 2016;
Vallejos et al., 2017). The most commonly used scRNA-seq
normalization method is SCnorm (Bacher et al., 2017), which
uses quantile regression to group genes by estimated count-depth
relationships, and then estimates different scaling factors within
each group via a second quantile regression. Other popular

scRNA-seq normalization methods, including BASiCS (Vallejos
et al., 2015), SAMstrt (Katayama et al., 2013), and GRM (Vallejos
et al., 2017), rely on spike-ins. Therefore, most scRNA-seq
normalization methods are not directly applicable to the FFPE
RNA-seq data that typically do not have spike-ins.

With the rapid adaption of FFPE samples in RNA-seq
analysis, it is important for users to realize that different
normalization procedures should be used for FFPE vs. FF
data. We offer RSeqNorm, a comprehensive and user-friendly
normalization toolkit for RNA-seq data. To the best of our
knowledge, RSeqNorm is the only available web-based tool that
integrates different normalization methods for both FFPE and
FF RNA-seq data. It includes seven normalization methods,
among which five are commonly used (RPM, UQ, DESeq,
TMM, and PS) for FF or like RNA-seq data. Though MIXnorm
and SMIXnorm are specifically designed for FFPE RNA-
seq normalization, they can be applied to FF data directly.
However, it is generally inappropriate to implement other
existing methods on FFPE data. The input for all methods
is a read count matrix at the gene level. The output is an
expression matrix after normalization with the same dimension
as the input data. The R package, RSEQNORM, which
implements SMIXnorm andMIXnorm is downloadable from the
website (http://lce.biohpc.swmed.edu/rseqnorm).
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