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For the stereoselective assembly of bioactive glycans with various functions,

1,2-cis-O-glycosylation is one of the most essential issues in synthetic

carbohydrate chemistry. The cis-configured O-glycosidic linkages to the

substituents at two positions of the non-reducing side residue of the

glycosides such as α-glucopyranoside, α-galactopyranoside, β-
mannopyranoside, β-arabinofuranoside, and other rather rare glycosides are

found in natural glycans, including glycoconjugate (glycoproteins, glycolipids,

proteoglycans, and microbial polysaccharides) and glycoside natural products.

The way to 1,2-trans isomers is well sophisticated by using the effect of

neighboring group participation from the most effective and kinetically

favored C-2 substituent such as an acyl group, although high stereoselective

synthesis of 1,2-cis glycosides without formation of 1,2-trans isomers is far less

straightforward. Although the key factors that control the stereoselectivity of

glycosylation are largely understood since chemical glycosylation was

considered to be one of the useful methods to obtain glycosidic linkages as

the alternative way of isolation from natural sources, strictly controlled

formation of these 1,2-cis glycosides is generally difficult. This minireview

introduces some of the recent advances in the development of 1,2-cis

selective glycosylations, including the quite recent developments in glycosyl

donor modification, reaction conditions, and methods for activation of

intermolecular glycosylation, including the bimodal glycosylation strategy for

1,2-cis and 1,2-trans glycosides, as well as intramolecular glycosylations,

including recent applications of NAP-ether-mediated intramolecular aglycon

delivery.
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Introduction

Stereoselective O-glycosylation is essential for achieving the

facile assembly of biologically relevant oligosaccharides

(Figure 1A). The cis-configured O-glycosidic linkages to the

substituents at two positions of the non-reducing side residue of

the glycosides such as α-glucopyranoside, α-galactopyranoside, β-
mannopyranoside, β-arabinofuranoside, and other rather rare

glycosides are found in natural glycans including glycoconjugates

(glycoproteins, glycolipids, proteoglycans, and microbial

polysaccharides) and glycoside natural products (Figure 1B). The

way to 1,2-trans isomers is well sophisticated due to the effect of

neighboring group participation from the most effective and

kinetically favored C-2 substituent such as an acyl group,

although high stereoselective synthesis of 1,2-cis glycosides

without formation of the 1,2-trans isomer is far less

straightforward. Although the key factors that control the

stereoselectivity of glycosylation are largely understood since

chemical glycosylation was considered to be one of the useful

methods to obtain glycosidic linkages as an alternative way of

isolation from natural sources, controlling the stereoselectivity of

the formation of 1,2-cis glycoside is extremely challenging in

synthetic chemistry, as in the case of α-gluco (2-equatrial)- and

β-manno (2-axial)-type glycoside formations (Figures 1Aa,b). To

overcome this problem, various methods have been developed for

the stereoselective synthesis of more difficult equatorial glycosides

such as β-mannoside found in the core structure of the N-glycans

(recent review; Ding et al., 2022a). This mini review enclosed the

recent advances in stereoselective 1,2-cis-O-glycosylation (recent

reviews; Nigudkar and Demchenko, 2015; Takahashi and

Toshima, 2021; Manabe, 2021; Mukherjee et al., 2022) for the

synthesis of various naturally occurring glycan structures. Donor

structures are mainly focused on versatile glycosylation with various

acceptor molecules (recent review; Leng et al., 2018) although the

acceptor reactivity is also well-known as the important factor in

controlling the selectivity of glycosylations (recent review; van der

Vorm et al., 2019).

Recent advances on 1,2-cis
glycosylations by intermolecular
coupling

Recent development based on glycosyl
donor modifications and reaction
conditions for 1,2-cis glycosylation

For controlling the stereoselectivity of glycosylation, the

protective groups on the donor moiety are well studied as one

of the main factors (recent review, Csávás et al., 2021), including

chiral auxiliary at 2-position (recent review, Mensink and Boltje,

2017). The cyclic protective groups on diols for the

conformationally constrained donors (Jeanneret et al., 2020)

could also be used for various glycosyl donors as one of the

key stereocontrolling factors for glycosylation. The di-t-

butylsilylene (DTBS) group, which was used to construct 1,2-

cis glycoside as the protective group of the 4,6-O-galactosyl type

donor (Imamura et al., 2003; Imamura et al., 2008a) and also

used for GalNAc derivatives (Imamura et al., 2008b), was applied

to the synthesis of the all-1,2-cis-linked repeating unit from the

Acinetobacter baumannii D78 capsular polysaccharide (Njeri

and Ragains, 2022). The cyclic protective groups are also

effective in the case of well-studied arabinofuranosylations

(review, Imamura and Lowary, 2011) by using 3,5-O-

(Ishiwata et al., 2006; Zhu et al., 2006; Crich et al., 2007) and

2,3-O- (Ishiwata et al., 2006; Imamura and Lowary, 2010) cyclic

protective groups such as DTBS, benzylidene,

tetraisopropyldisiloxanilidene (TIPDS), and xylylene groups.

These protective groups were used for conformational fixation

of the flexible five-membered furanoside structure (Figure 1Ac) by

the formation of bicyclic fused rings to control the approach of

acceptor molecules. As an alternative use of the cyclic protective

group on the furanoside ring, the 1,4-O-TIPDS-protected

xylurofuranosyl donor has been developed for specific

glycosylation to obtain 1,2-cis glycosides with various acceptors

(Figure 2A1) (Huang and Lowary, 2020a; Huang and Lowary,

2020b) as in the case of a similarly constrained fructofuranosyl

donor whose protective group is blocking one side of the approach

of the acceptor (Oscarson and Sehgelmeble, 2000).

The protective group with hydrogen-bonding property such

as picolinyl and picoloyl groups (Figure 2A2) (Pistorio et al.,

2014; Alex et al., 2020) acts as the stereo-directing group for 1,2-

cis glycosylation (Loh, 2021; recent review, Khanam and Mandal,

2022), which can also be applied to selective β-
arabinofuranosylation (Li S et al., 2018) and synthesis of

natual prodiuct such as Tiacumicin B (Norsikian et al., 2020;

Tresse et al., 2021). The direct intramolecular neighboring and

remote group participation of these groups to glycosyl cation led

to the trans-glycosylation of the substituents as well (Yasomanee

and Demchenko, 2012; McMillan and Crich, 2022).

Bimodal donors (recent review, Ding et al., 2022b) equipped

with C2-o-TsNHbenzyl ether (TAB) not only for gluco-type

glycosylation but also for manno-type glycosylation can be

transformed to both anomers simply by switching reaction

conditions (Figure 2A3) (Ding et al., 2018a; Ding et al., 2018b)

whose optimizations have been carried out, including on the

solvent (Ishiwata et al., 2008a; recent review, Mong et al., 2017)

and on the concentrations (some examples: Chao et al., 2009; 2011;

Ishiwata et al., 2010a; Kononov et al., 2012) of the O-glycosylation.

In the case of gluco-type glycosylation of the trichloroacetimidate

donor, screening of the reaction conditions revealed that TfOH

was the most effective to afford 1,2-cis α-selective glycosylation at a
lower concentration at room temperature and that triflimide

(Tf2NH) (Kowalska and Pedersen, 2017) resulted in nearly

complete 1,2-trans β-selectivity in EtCN at −78°C. On the other

hand in the case of manno-type glycosylation, further screening of
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the catalyst (recent review, Nielsen and Pedersen, 2018) and the

leaving group and thermodynamic conditions (Adamo and Kovác,

2007; Hou and Kovác, 2010) revealed that glycosyl

diphenylphosphite (Kondo et al., 1994) was the best among all

tested and catalytic amounts of Cu(OTf)2 (Mukaiyama et al., 1979;

Sato et al., 1986) at 80°C or two equivalents of ZnI2 at −10°C

afforded 1,2-trans α- or 1,2-cis β-selective glycosylations,

respectively. The experimental results suggest that ZnI2 breaks

the internal hydrogen bonding of the C2-o-TsNH benzyl group

between C2-O and NH by coordination of one equivalent of ZnI2
with ether oxygen at cis-configured 2- and 3-positions of the

mannosyl donor. The applications of this bimodal methodology

to the stereocontrolled assembly of naturally occurring glucans

having α/β-linkages to various positions of acceptors and branches
have been shown recently (Ding et al., 2020).

As shown in many cases with donor modifications, reagent-

controlled glycosylation (Yao et al., 2019) is also an important

way for 1,2-cis glycosides. Recently, some practical methodologies

have been reported. Additives such as DMF (Koto et al., 1984;

Sato et al., 1986) and Ph3P=O were effectively used for the

stereoselective construction of α-glucosyl linkages to secondary

alcohols with TMSOTf and primary alcohols with TMSI,

respectively (Wang et al., 2018; Njeri et al., 2021). The

alternative nucleophilic additive for α-glycosylation methyl

(phenyl) formamide (MPF) was found and applied to the

synthesis of α-(1,4)-glucosamine and α-(1,4)-galactosamine

linkages (Figure 2A4) (Wang et al., 2020; Zhang C et al.,

2022). A simple ZnI2-directed strategy for 1,2-cis glycosylation

bearing 4,6-O-tethered (Crich and Chandrasekera, 2004) glucosyl

and mannosyl trichloroacetimidate donors has been developed

with excellent stereoselectivity (Ding et al., 2021; Zhong et al.,

2021). This simple strategy by the direction of SnCl4 instead of

ZnI2 at −40°C afforded 1,2-cis glycoside when 0.1 equivalent was

used, and by using three equivalents of SnCl4 at room

temperature, we obtained 1,2-trans glycoside via product

isomerization through plausible endo-cleavage supported by

DFT calculations (Zhong et al., 2022). This also provides a

more simple, mild, and effective bimodal glycosylation method.

On the other hand, the recent examples for remote group

participation (Hansen et al., 2020; Hettikankanamalage et al.,

2020; Upadhyaya et al., 2021) introduced the 1,2-cis

glycosylations selectively and practically from 6- [2,2-dimethyl-

2-(ortho-nitrophenyl)acetyl: Liu et al., 2019; benzoyl: Shadrick

et al., 2020; -C(=NPh)CF3: Liu et al., 2022a], 4- (levulinoyl:

Zhang et al., 2021), and 3- [2-(diphenylphosphinoyl) acetyl: Liu

et al., 2022a; Liu et al., 2022b] positions.

FIGURE 1
(A) Various types of glycosylations and (B) 1,2-cis glycosides in nature (high mannose-type N-glycan is shown as the example).
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FIGURE 2
Recent advances in 1,2-cis glycosylations: some examples. (A) Recent examples of intermolecular approaches: Glycosyl donor modifications
and reaction conditions. a-1) Recent example of donor modification approachs; a-2) Picolinyl and picoloyl groups and remote group participation;
a-3) C2-o-TsNHbenzyl ether (TAB) [Bimodal] and inorganic salts (ZnI2, SnCl4) catalyst (not shown); a-4) Formamide as additives. (B) Recent examples
of intermolecular approaches: Method for activation. b-1) Thiourea catalyst with phosphate donor; b-2) Pyrilium salt catalyst with
trichloroacetimidate; b-3) Phenanthroline catalysts fromglycosyl halide; b-4) halogen-bond-assisted radical activation of allyl glycosyl sulphones via
glycosyl halide: b-5) From hemiacetal via glycosyl halide; b-6) Through 1,2-anhydro sugar. (C) Recent examples of intramolecular approaches for
1,2-cis glycosylations. c-1) Use of formylphenylthioglycoside; c-2) Intramolecular aglycon delivery (IAD) through silaketal; c-3) Recent example of 2-
NAP ether-mediated IAD.
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Recent advances in the method for
activation of 1,2-cis glycosylation

In addition to various furanosyl phosphate donors (Figures

1Ac,d, 2B1) (Mayfield et al., 2020), the suitably protected

mannosyl and rhamnosyl diphenylphosphate donors have

been reported to be activated with the bis-thiourea catalyst as

one of the organocatalytic approaches (Bradshaw et al., 2018; Xu

and Loh, 2018 recent reviews, Mayfield et al., 2020; Park et al.,

2017; ) afforded 1,2-cis glycoside in a highly selective manner (Li

et al., 2020). It is noteworthy that a Schreiner thiourea catalyst

with a halogen bond donor such as 2-iodoimidazolium salt has

been developed to afford 1,2-cis N-glycoside from glycosyl

trichloroacetimidate and amide of protected Asn (Li G et al.,

2018). Pyrilium salt as an alternative organocatalyst effectively

promotes the glycosylation of α and β-glycosyl
trichloroacetimidate via SN2-type inversion to afford β- (1,2-

cis manno-) and α- (1,2-cis gluco-) glycosides, respectively

(Figure 2B2) (Nielsen et al., 2022).

Glycosyl halides are still considered one of the most useful

and reactive intermediates for glycosidic bond formation as

follows. First of all, promoted by phenanthroline catalysts as a

recent alternative organocatalytic approach, various glycosyl

bromide glycosides including both pyrano- and furanosides

(as well as 2-fluoro sugars ) afforded 1,2-cis glycoside through

glycosyl phenanthrolinium ion intermediates (Figure 2B3) (Yu

et al., 2019; DeMent et al., 2021; Li and Nguyen, 2021; Xu et al.,

2022). Second, halogen bond-assisted radical activation of allyl

glycosyl sulphones was employed by forming halogen bond

(review, Cavallo et al., 2016) complexes with perfluoroalkyl

iodides under visible light irradiation conditions (Wan et al.,

2021) via glycosyl radical intermediates (recent review, Chen

et al., 2021) to give glycosyl iodides as the intermediate for

glycosylation. Subsequent glycosylation in one pot afforded

1,2-cis glycoside by the effect of the ether solvent (Figure 2B4)

(Zhang Y et al., 2022). Third, from the hemiacetal of mannose

and rhamnose, 1,2-cis-β glycosides were obtained via dehydrative
halogenation, followed by α-iodide formation mediated by

lithium iodide (Figure 2B5) (Pongener et al., 2021). Since

halide was used as the key intermediate in the latter two

cases, the well-studied chemistry of halides for stereoselective

glycosylation could be simply applied.

1,2-Anhydro sugar (Halcomb and Danishefsky., 1989; recent

review; Li H et al., 2018), one of the activated forms of the 2-

hydroxy-hemiacetal as an ultimately participated epoxide

structure to give stereoelectronically favored 1,2-trans isomer,

reacted from the opposite side of oxygen of epoxide, applied

recently to regioselective (Tomita et al., 2020) and

diastereoselective desymmetric 1,2-cis glycoside formations

(Figure 2B6) (Tanaka et al., 2020) by the action of

tetrahydroxydiboron with trans-diol and p-nitrophenylboronic

acid with meso-diol, respectively (recent review, Takahashi et al.,

2022). This SNi-type approach to 1,2-cis products supported by

mechanistic studies was applied to the synthesis of core

structures of phosphatidylinositolmannosides (PIMs) and

glycosylphosphatidylinositol (GPI) anchors, as well as the

common β-mannoside structure of the LLBM-782 series of

antibiotics from meso-diol of m-inositol derivatives.

Recent examples using intramolecular
coupling for 1,2-cis glycosylation

In order to get the 1,2-cis glycoside, stereospecifically, the

procedure based on intramolecular aglycon delivery (IAD)

(Barresi and Hindsgaul, 1991) (recent reviews, Ishiwata and

Ito, 2017; Ishiwata, 2019; Fairbanks, 2021) is still one of the

most promising methodologies despite the initial tethering

between the glycosyl donor and acceptor residues before the

intramolecular glycosidic bond formation reaction. However, a

two-step procedure can precisely control the approach of the

oxygen atom of the hydroxy group in the acceptor residue which

was linked as the mixed acetal to the donor residue. IAD had

been applied, especially to the β-mannoside linkage found in the

core structure of the N-glycans, as one of the most difficult and

attractive synthetic targets on stereoselective glycosylation.

Although the effort on various intramolecular glycosylations

via tethering using two non-reacting functional groups of

both donors and acceptors has also been carried out for both

1,2-cis and 1,2-trans selective glycosylations (Jia and

Demchenko, 2017), it has been shown as one of the

alternative intramolecular methods that the leaving group

functionalization in the donor moiety as in the case of

o-formylphenyl thioglycoside obtained from non-malodurous

calicyl-type thioglycoside (Dohi et al., 2021) can be used for

the tethering with the diol acceptor and regioselective ring

opening of S-donor-substituted benzylidene acetal, followed by

intramolecular glycosylation with the resultant exposed hydroxy

group to afford 1,2-cis glycosides over three steps (Figure 2C1)

(Dohi et al., 2017). Improvements for IAD have also been

achieved by tethering to hydroxy groups on both residues

through the silaketal (Stork and Kim, 1992) from sugar silanes

(Figure 2C2) (Walk et al., 2015; Sati et al., 2020). In the case of the

IAD, the 2-O-mixed acetal linkage and the axial O-mixed acetal

substituent as the precursor for intramolecular transfer seem to

be kinetically and stereoelectronically favored as in the case of

neighboring group participation of acyl groups.

p-Methoxybenzyl (PMB) ether-mediated IAD was well known

as the most practical method to be applied for the synthesis of β-
mannoside in N-glycan (Ito and Ogawa, 1994). The effective

oxidative one-step linking of axially configured 2-O-PMB ether

to produce a corresponding p-methoxybenzylidene mixed acetal

at the 2-O-position of the mannosy donor with the acceptor as an

aglycone. For this method to be more versatile, suitable

stabilization of the mixed acetal intermediate by introducing

the 2-naphthylidene acetal (Ishiwata et al., 2008b; reviews,
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Ishiwata et al., 2010b; Ishiwata and Ito, 2012) has been developed

for various 1,2-cis linkages for application to the synthesis of

plant β-L-arabinofuranosides (Figure 2C3) (Kaeothip et al.,

2013a; Kaeothip et al., 2013b; Ishiwata et al., 2014; Ishiwata

et al., 2022) and various other types of glycosides (Ishiwata et al.,

2011; Ishiwata and Ito, 2011; Tamigney et al., 2014; Robinson

et al., 2020) including β-L-rhamnosyl linkage (Lee et al., 2008; Yu

et al., 2016; recent review, Rai and Kulkarni, 2021).

Summary

This minireview introduced some of the recent advances in

the development of stereoselective 1,2-cis-O-glycosylation, for

the synthesis of various naturally occurring glycan structures

possessing α-glucopyranoside, α-galactopyranoside, β-
mannopyranoside, β-arabinofuranoside, and other rare

glycosides. Donor structures that mainly focused on versatile

glycosylation with various acceptor molecules were shown from

recent examples and from further matured ones, such as

controlling by glycosyl donor modification and reaction

conditions and novel methods for activation of

intermolecular glycosylation including the bimodal

glycosylation strategy for 1,2-cis and 1,2-trans glycosides, as

well as intramolecular glycosylations, including recent

applications of NAP-ether-mediated intramolecular aglycon

delivery. As in the case of novel methods for activation

through glycosyl halides shown in this minireview, it was

strongly suggested that the previously studied chemistry of

known glycosyl donors for stereoselective glycosylation,

including 1,2-cis glycosylation, has similar potential to be

simply applied in combination with the novel activation

methodology, although it must be well optimized as

demonstrated previously for practical use. In many recent

cases, the results of stereoselectivity and the pathways of

glycosylations have been explained by mechanistic studies

using highly optimized density functional theory (DFT)

calculations and other organic and enzymatic reactions for

our better understanding. In the case of many examples

shown in this minireview, hybrid functionals such as B3LYP

andM06, as well as double hybrid, ωB97X-D were selected to be

used as various basis sets [6-31 + G(d,p), 6-31G(d), 6-31G*, 6-

31 + G**, Def2SVPP and Def2TZVP] with/without D3BJ

dispersion corrections and in combination with a polarizable

continuum model (PCM) or implicit solvation model based on

density (SMD) for each solvent. DFT calculations could discuss

the evidence of glycosyl cation species as well (review, Merino

et al., 2021). However, it is still difficult to compare with other

experimental results in different studies as we always had a

difficult time understanding the outcome of glycosylation and

predicting the reactivity, especially stereoselectivity (Chang

et al., 2020; Chang et al., 2021). Only through our

continuous effort to gain a clear understanding of it from a

multidirectional point of view, 1,2-cis glycosylations would be

finally controlled to be well-predictable as 1,2-trans

glycosylation.
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