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Decomposing Simon task BoLD 
activation using a drift-diffusion 
model framework
James R. Mcintosh  1* & paul Sajda  1,2

The Simon effect is observed in spatial conflict tasks where the response time of subjects is increased 
if stimuli are presented in a lateralized manner so that they are incongruous with the response 
information that they represent symbolically. Previous studies have used fMRI to investigate this 
phenomenon, and while some have been driven by considerations of an underlying model, none have 
attempted to directly tie model and BoLD response together. it is likely that this is due to Simon models 
having been predominantly descriptive of the phenomenon rather than capturing the full spectrum 
of behavior at the level of individual subjects. Sequential sampling models (SSM) which capture full 
response distributions for correct and incorrect responses have recently been extended to capture 
conflict tasks. In this study we use our freely available framework for fitting and comparing non-
standard SSMs to fit the Simon effect SSM (SE-SSM) to behavioral data. This model extension includes 
specific estimates of automatic response bias and a conflict counteraction parameter to individual 
subject behavioral data. We apply this approach in order to investigate whether our task specific 
model parameters have a correlate in BOLD response. Under the assumption that the SE-SSM reflects 
aspects of neural processing in this task, we go on to examine the BOLD correlates with the within 
trial expected decision-variable. We find that the SE-SSM captures the behavioral data and that our 
two conflict specific model parameters have clear across subject BOLD correlates, while other model 
parameters, as well as more standard behavioral measures do not. We also find that examining BOLD 
in terms of the expected decision-variable leads to a specific pattern of activation that would not be 
otherwise possible to extract.

It is somewhat surprising that when a stimulus is presented at a location irrelevant to the required response, that 
this location should feed into the decision process. This is what spatial conflict, and specifically the Simon effect1,2 
demonstrates: the average response time (RT) of subjects is increased, and accuracy decreased if stimuli are pre-
sented in a lateralized manner so that they are incongruous with the response information that they represent 
symbolically.

The Simon effect deviates from the behavior that would be predicted by a simple application of the 
drift-diffusion model (DDM)3–5. This deviation appears due to subjects making use of task-irrelevant informa-
tion, and manifests in the shape of subjects’ RT distributions6–9. In recent years sequential sampling models (SSM) 
for conflict10,11 and the Simon task specifically12 have been developed which fully capture RT distributions and 
accuracy.

The explained operation of the Simon effect SSM (SE-SSM12) within a conflict trial is rooted in models of 
cognitive control and prior models of the Simon effect13,14. The SE-SSM, which we make use of here extends the 
SSM in two specific ways. It introduces an initial bias to the decision-variable, which more traditionally would be 
thought of as activation of an automatic15 pathway; and it also adds a conflict counteraction term, which acts to 
boost the decision-variable in conflict trials. From the perspective of model fitting, both of these parameters were 
shown to be essential in previous work12. This is because while a bias term captures the increased mean response 
time in incongruent trials, the conflict counteraction term is needed to capture a compensatory decrease in the 
standard deviation of the RT - a key signature of the Simon effect. We identified the conflict counteraction term 
with a model driven approach, and so make no strong claims regarding its psychological significance, although 
we note that we have previously considered it to be involved in the deployment of attention.
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Such models lend themselves to enhance our understanding of the Simon task16 and enable new analysis in 
neuroimaging studies17. Previous studies have used fMRI to investigate the Simon effect18–23, and while some of 
these have used analyses derived from Simon effect model considerations, none of these models could account 
for full RT and accuracy distributions. These previous analyses have however highlighted potential regions of 
interest such as dorsolateral prefrontal cortex (DLPFC), pre-supplementary motor area (pre-SMA), and anterior 
cingulate cortex (ACC)17. The power of the SSM is not only that it can model behavior, but that it is cast at a level 
of abstraction where its specific components are directly interpretable under the assumption that it captures some 
core principles of decision making used in the brain.

In this work we develop a model fitting framework which can be used to fit non-standard SSMs. We use this 
framework to fit the SE-SSM and show that it captures response time and accuracy of subjects that performed a 
Simon task. We go onto make use of the model fits by directly relating its parameters to fMRI data, and finally we 
exploit the high-temporal resolution of the model to decompose the BOLD signal.

Methods
Data source and task. Data analyzed in this manuscript was obtained from the OpenfMRI database under 
an ODC Public Domain Dedication and License (PDDL). Its accession number is ds00010124. We reproduce here 
relevant details of the data, and refer the reader to the OpenfMRI database for a full description. Healthy adults (n 
= 21, male: 12, female: 9, age mean: 30, age std: 7) were scanned in a Siemens Allegra 3.0 T scanner, with a stand-
ard Siemens head coil, located at the NYU Center for Brain Imaging. 151 contiguous echo planar imaging (EPI) 
whole-brain functional volumes were obtained ( =TR 2000 ms; TE = 30 ms; flip angle = 80, 40 slices, 
matrix = 64 × 64; FOV = 192 mm; acquisition voxel size = 3 × 3 × 4mm3) during each of the two sessions. A 
high-resolution T1-weighted anatomical image was also acquired using a magnetization prepared gradient echo 
sequence (MPRAGE, TR 2500 ms= ; TE = 3.93 ms; TI = 900 ms; flip angle = 8; 176 slices, FOV = 256 mm).

As in a typical Simon task, subjects were presented a box to either the left or right hemifield and were asked to 
respond to its color. Upon presentation of a red box, subjects were asked to respond with their right index finger, 
while upon presentation of a green box they were asked to respond with their left index finger (see Fig. 1a). Two 
sessions were conducted per subject, with each session composed of 48 congruent, 48 incongruent trials and 24 
null trials of 2.5 s. In the null trials, a stimulus was not presented and no response was necessary.

Simon effect model and fitting. Model. In previous work (see supplementary material), a SSM was pro-
posed based on the the exact stimulus presentation (composed of visual hemifield, and color) and response (left 

Figure 1. Task structure and model. (a) Subjects are presented with a green or red square. A green square 
indicates that the subject should make a response with their left hand while a red square indicates that the 
subject should respond with their right hand. Conflict trials are those where the side to which the square is 
presented to is inconsistent with the required response. (b) Top: Decision-variable to bound in the SE-SSM for 
a non-conflict trial. Parameters are explained in Eqs. 1–3. Bottom: Influence of conflict-counteraction on drift 
during conflict trials (c = 1). Variable d increases linearly during the trial, and is scaled by the fitted parameter 
b. During non-conflict trials (c = 0) conflict-counteraction does not impact drift. Decision-variable to bound in 
the SE-SSM for a non-conflict trial.
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or right hand). As this information is not present in the available dataset, here we use a mathematically equivalent, 
accuracy coded form (Fig. 1b) where the model is defined in terms of a single stimulus conflict parameter, and 
consider the response only in terms of whether it was correct or incorrect (Eqs. 1–3): 

x v c b d t s t(1 ) (1)1ξΔ = ⋅ + ⋅ ⋅ Δ + Δ

x x c(1 2 ) (2)b0 = −

t t s (3)
eff

t2ξ= +

The variable x denotes the decision-variable that builds to a threshold xth. The stimulus conflict parameter 
c is set to take a value of 0 when there is no conflict present (i.e. when the stimulus is presented to the visual 
hemifield matching the required response hand), or 1 otherwise. Parameters v, s, t and x0 correspond to the drift, 
noise, non-decision time and starting point bias, while ξ1 represents the Gaussian diffusion process. The effective 
non-decision time on a given trial teff is defined as the sum of a base non-decision time t and a uniform noise 
process ξ2 scaled by the noise in the non-decision time term st. Parameters that are specific to the Simon task are 
b, a conflict counteraction component that enhances the effective drift on conflict trials as the trial duration d 
increases (consequently reducing RT standard deviation). Note that the parameter d is a measure of the instan-
taneous time (measured in seconds) as a trial progresses, and this parameter is not fitted (see Fig. 1b). However, 
its influence is scaled by the parameter b. The parameter xb captures the initial response bias caused by the Simon 
effect. Ultimately, parameters fitted for each subject are v, xth, t, st, b and xb.

Model fitting. Individual subject models were fit by using our SSM fitting framework (see supplementary mate-
rial) which minimizes the negative log-likelihood by using Matlab’s generalized pattern search algorithm25. In 
order to generate the probability density for a specific set of parameters and conditions we resorted to encoding 
the probabilistic model decision-variable updates over time into a transition matrix (see supplementary methods 
and supplementary Fig. S1). We relied on such a method so that we could make use of likelihoods for model 
comparison, as well as it being relatively faster to evaluate (and consequently fit) than methods requiring the full 
simulation of individual decision-variable traces.

The transition matrix is fixed on non-conflict trials, and varies in a time dependent manner in conflict trials 
because of the b ⋅ d term. For each probability density evaluation, we discretized an initial decision-variable vec-
tor x so that it would span ± − Δx s t( 5 )th , a range large enough to practically avoid being exceeded in a single 
step of the decision-variable. The x entry equivalent to the closest xb value is set to one. The transition matrix is 
then iteratively defined for the conflict trials, or initially defined for the non-conflict trials by computing the 
expected Gaussian distribution for the decision-variable on the following trial for all possible current values of the 
decision-variable. Entries in the transition matrix outside of the decision thresholds are set to zero, except for 
where the transition leads to itself (i.e. diagonal entries), in which case they are set to one. The cumulative density 
function is then calculated by summing the iterated output above and below the model threshold. In order to 
generate the final density function, the cumulative density is numerically differentiated. We verified that these 
model fitting procedures worked sufficiently well to recover simulated parameters (see supplementary Figs. S3 
and S4). Model fits were randomly initialized from the following set of distributions: v ~ G(3, 1), xth ~ G(0.6, 0.15), 
t ~ G(0.3, 0.075), b ~ HN(2.5), xb ~ G(0.1, 0.06), st ~ U(0, 0.15). Where, G(x, y) represents the Gamma distribution 
parameterized by mean and standard deviation, HN(x) represents the half Normal distribution parameterized by 
the standard deviation, and U(a, b) represents the Uniform distribution parameterized by its two limits. The 
parameter s was fixed to one for all cases.

We initially fitted all our models with the decision-variable resolution set to 0.01, and repeated this five times 
to confirm that our procedure was consistently discovering global minima. After this procedure, we performed 
one further pass using the previous best model as a starting point with the decision-variable resolution set to 
0.005 for more accurate parameter estimates.

BoLD processing. Pre-processing. Standard processing was implemented in FMRIB’s Software Library 
(FSL)26. Separation of non-brain tissue was performed using Brain Extraction Tool (BET)27 with robust brain 
center estimation. Functional images were registered linearly to subject’s structural image (BBR algorithm) and 
non-linearly (FNIRT, 12 DOF, 10 mm warp resolution) to a standard Montreal Neurological Institute (MNI) 
brain template. Functional data was high-pass filtered (0.01 Hz), and spatially smoothed with a 5 mm full-width 
half-maximum Gaussian kernel. The FEAT tool within FSL was used for event-related fMRI analysis. Stimuli 
were modeled as 1 s long step functions to match stimulus presentation length, and motion parameters (gen-
erated by MCFLIRT)28 were added to the model as confounds of no interest. FEAT was set to use a canonical 
double-gamma haemodynamic response function to convolve with our regressors of interest.

Model driven across subject BOLD estimates. We hypothesized that if the SE-SSM is describing core components 
of the Simon effect that we may be able to see correlations between average stimulus activation across subjects 
and Simon task specific parameters (b and xb). To investigate this, our analysis begins by application of a fixed 
effects general linear model (GLM) with a single set of fixed effect regressors generated by all stimuli for correct 
responses. This analysis is carried out at first (trial) level and extended to second (session) level, yielding GLM 
weights, which are then transformed into MNI space. MatlabTFCE29 was used to generate p-values correspond-
ing to each voxel after a mask excluding brain-stem and white matter was applied. Specifically for our applica-
tion, MatlabTFCE calculates the correlation coefficients between GLM weights and parameter values of interest 
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across subjects for each voxel and then applies the Fisher z-transformation. A threshold-free cluster enhancement 
(TFCE)30 transformation (default parameters were used: E = 0.5, H = 2) is then applied to these values, and the 
absolute value is taken (the absolute value is required for the two-tailed test). Generation of voxel p-values is 
then carried out by permutation. The permutation works as follows: at every iteration the z-transformed corre-
lation is calculated from the parameters with respect to shuffled GLM weights, and a maximum z-value across 
voxels is calculated. For each voxel a count normalized by the total number of permutations performed is incre-
mented every time the maximum z-value exceeded the real z-value, resulting in a maximal statistic permutation 
family-wise error rate (MSP FWER) corrected two-tailed p-value for every voxel. The p-value map is then split 
into two dependent on whether the real z-value is positive or negative, in order to generate a positive-tailed 
p-value map and a negative-tailed p-value map, with the complimentary voxels set to a p-value of 1.

To demonstrate that the model based analysis provides insights not accessible by simply examining the RT, we 
repeated the same analysis using the average RT across subjects, as well as the average difference in RT between 
congruent and incongruent trials across subjects.

Within trial BOLD estimates. We proceeded to investigate whether patterns of BOLD activation correspond to 
the development of the expected decision-variable (DV), a method similar in principle to the EEG-fMRI anal-
ysis used by Philiastides and Sajda31. In order to generate the expected decision-variable for each trial, we begin 
by simulating the fitted SE-SSM. Unlike the methods explained in the model fitting procedure, in this case the 
decision-variable is explicitly simulated at every time step until a threshold is reached. This process is repeated 
7.5 × 105 times with the full decision-variable trace being saved, together with corresponding RT, and choice 
(correct or incorrect). For each real trial, we then match all simulated trials with the same choice and RT (up 
to a resolution of 25 ms), align them to their threshold crossing and average in order to generate the expected 
decision-variable trace over time. Once the decision-variable trace has been defined for all trials and for all sub-
jects, we extract the average decision-variable in time windows stepping back from the response time. We set 
the window width to be 50 ms, starting centered at −25 ms and moved it back in 50 ms steps. The expected 
decision-variable was then extracted from a specific time window, z-scored and fed into a first level GLM which 
we term ‘DV-GLM’. These DV based regressors were designed with 100 ms duration, centered on their extraction 
time32. This GLM additionally takes as its first feature, events corresponding to correct trials, and we carried it 
through to second level and third level (across subjects) with a mixed effects GLM). Clusters were thresholded 
at z > 2.5 and corrected for multiple comparisons using Gaussian random field theory (GFT) at p < 0.05. We 
repeated this process for each time window, generating an activation map for each.

Traditional BOLD analysis. We also conducted a more traditional BOLD analysis where we carry over first and 
second level GLM analyses to the third level (across subjects) with a mixed effects GLM. Clusters were thresh-
olded at z > 2.5 and corrected for multiple comparisons using GFT at p < 0.05.

GLMs for this analysis were run with various combinations of variables of interest. A ‘simple GLM’ was ini-
tially implemented to test for whether there is a detectable response specific to incongruent stimuli, by using 
all stimuli as events for a first regressor and only incongruent stimuli as a second regressor. In this analysis, the 
coefficient matching the second regressor is then indicative of the difference in activation between congruent 
and incongruent stimuli. In the ‘RT GLM’, we proceeded to investigate whether the stimulus BOLD response is 
modulated by the RT, by using all stimuli as the first regressor, and the log-transformed and then z-scored RT for 
the second regressor.

Results
Simon effect is present in behavior. The Simon effect is visible in Fig. 2a, and we confirmed its presence 
by performing a Wilcoxon signed-rank test on subject RT averages across conditions (p = 0.0006, n = 21, z = 
3.42). The average (mean) difference in RT between conflict and non-conflict trials was 25.7 ms ± 5.7 ms (SEM). 
Standard deviations of the RT were also different between conflict and non-conflict (p = 0.0087, n = 21, z = 
2.62), a trait common to the Simon effect, and potentially indicative of the involvement of cognitive control. 
As expected, accuracies in conflict trials were decreased with respect to non-conflict trials although the overall 
accuracy in both conditions was very high (non-conflict: 97.3% ± 0.5% (SEM), conflict: 95.6% ± 0.5% (SEM), 
Wilcoxon signed-rank p = 0.0172, n = 21, z = 2.38). The decreased accuracy in conflict trials with respect to 
non-conflict trials is driven by early responses (Fig. 2b,c), an observation which has been incorporated into Simon 
effect models.

Model captures Simon effect. As an informal assessment of the model fit quality for the SE-SSM, we 
re-sampled from it for each subject, and analyzed the data in the same way that we analyzed the behavioral data 
(c.f. Fig. 2a–c to Fig. 3a–c). The model fits demonstrate the Simon effect (Wilcoxon signed-rank test on subject 
RT averages, p = 0.0006, n = 21, z = 3.42). Visual inspection indicates a good match, the main difference being 
the across-subject variability which has a negligible within-subject component for our model. The average (mean) 
difference in RT between conflict and non-conflict trials was 29.2 ms ± 6.0 ms (SEM). Standard deviations of the 
RT were also different between conflict and non-conflict (Wilcoxon signed-rank, p = 0.0046, n = 21, z = 2.83), 
and accuracies in conflict trials were decreased with respect to non-conflict trials (non-conflict: 98.3% ± 0.4% 
(SEM), conflict: 96.6% ± 0.4% (SEM), Wilcoxon signed-rank p = 0.002, n = 21, z = 3.09).

More formally, we computed Akaike information criterion (AIC) and weighted AIC (wAIC)33,34 for the 
SE-SSM (M4), and less complex candidate models. The less complex candidate models considered are: the basic 
SSM (M1), the basic SSM with the conflict counteraction parameter b (M2), the basic SSM with the bias param-
eter xb (M3). The wAIC of a given model can be interpreted as the probability of that model being the best model 
among the candidate set34.
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We found that candidate models M1 and M2 were not well-supported (largest wAIC for 2 subjects each). 
Models M3 and M4 on the other hand were both well-supported, with the largest wAIC coming from M3 for 8 
subjects, and M4 for 9 subjects. This data is summarized in Fig. 4.

There are several points to note here: unsurprisingly, it seems that the addition of a bias term is essential to 
capture the Simon effect. On the other hand, the addition of the conflict counteraction term does not always 
clearly improve the model quality. While the variability between M3 and M4 may be partially due to sampling 
variability, it seems likely that some subjects simply behave more consistently with M3, while others behave more 
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Figure 2. Behavioral data. (a) Subject averaged density estimate of correct RT for conflict and non-conflict 
responses. Simulated data is initially normalized at the individual subject level by dividing by subject standard 
deviation and then multiplying by grand mean RT, density estimation is performed by convolution with a 
Gaussian kernel. (b) Fraction of correct responses within response time percentile bins, plotted against central 
percentile RT. Percentiles bin edges were selected to be [0, 20, 40, 60, 80, 100]%. For example, the right most 
point shows the accuracy for data between the 80th and 100th percentile plotted against the 90th percentile 
response time. Ellipse width signifies SEM in RT across subjects, while ellipse height signifies standard-error in 
accuracy across subjects. (c) Same as (b) but for incorrect responses, a single percentile of 50% was used due to 
the low number of incorrect responses.
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Figure 3. Model fitted simulated data for comparison to Fig. 2. Each subject model fit is used to produce 104 
responses. (a–c) as in Fig. 2.
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consistently with M4. Specifically, it should not be a surprise that there is variability in how subjects deploy con-
flict counteraction during the Simon task, with those that deploy it sparingly being captured best by M3.

Since the SE-SSM (M4) is the best fitting candidate in the largest number of our subjects, and it encompasses 
all other models (specifically, M3 is a special case of M4 when b is close to zero) we proceeded to analyze BOLD 
activity in terms of this model.

SE-SSM Across subject analysis. In this analysis we fitted a GLM with a single series of events corre-
sponding to the stimuli. We then computed the correlation between our two task specific SE-SSM parameters (b, 
xb) and the GLM weight maps across subjects. Activation, as assessed by permutation tests of the TFCE trans-
formed correlations was present in several regions.

We repeated this correlation analysis with average subject RT, as well as the difference in subject RT between 
congruent and incongruent conditions (ΔRT) and found that no voxels were activated (p < 0.05, MSP FWER 
corrected). This demonstrates a clear benefit of the model based approach: RT and ΔRT are dominated by several 
sources of variance which are irrelevant to conflict or act to cancel each other out so that direct analysis may be 
inconclusive, while analysis of the underlying estimates of the contributions shows clear activation.

Correlations with bias xb across subjects (Fig. 5a, orange p < 0.05, MSP FWER corrected) were present in 
multiple regions, most prominently and of particular interest the supplementary motor area (SMA), insular cor-
tex, lingual gyrus, precuneus, posterior and anterior cingulate, the right precentral gyrus as well as the superior 
frontal and paracingulate gyrus and cerebellum.

Correlations with conflict counteraction b across subjects (Fig. 5, blue, p < 0.05, MSP FWER corrected) were 
most prominently present in SMA, insular cortex, lingual gyrus, precuneus, posterior and anterior cingulate, and 
the left and right precentral gyrus and cerebellum.

The partial overlap in brain activation (Fig. 5, green) related to the SE-SSM parameters led us to investigate 
whether across subjects, the parameters b and xb are correlated. Indeed, as shown in Fig. 5b there does appear to 
be some correlation between the two parameters.

Se-SSM within trial analysis. Given the RT and whether the choice was correct on a given trial, we esti-
mated the progression of the expected decision-variable (Fig. 6). We then used these values averaged over succes-
sive 50 ms windows as part of a GLM (see work by Philiastides and Sajda31 for a variation of this method applied 
in EEG-fMRI) in order to extract details regarding the progression of information during a trial. We found clus-
ters of BOLD activity (p < 0.05, GFP FWER corrected, not corrected for multiple comparisons across time) 
with the expected decision-variable extracted from windows centered at −25 ms and −175 ms. Early activation 
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Figure 4. wAIC for the basic SSM (M1), the basic SSM with the conflict counteraction parameter b (M2), the 
basic SSM with the bias parameter xb (M3) and the SE-SSM (conflict counteraction parameter b and bias 
parameter xb, M4). M3 and M4 are the best candidate models.
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Figure 5. Regions where activity is related to SE-SSM parameters across subjects. (a) Regions where activity is 
positively correlated with (p < 0.05, MSP FWER corrected) the conflict counteraction parameter b are shaded 
in blue, while regions where activity is positively correlated with (p < 0.05, MSP FWER corrected) the bias 
parameter xb are shaded in orange. Regions where both parameters highlight significant regions are shaded in 
green (p < 0.05, MSP FWER corrected). No negative correlations were found in this analysis. (b) While regions 
in a are mainly distinct, some overlap may be accounted for by the correlation between the bias and conflict 
counteraction parameter across subjects (Spearman’s CC = 0.48, p = 0.029).
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at −175 ms includes the influence of the decision-variable jump (due to the bias term), smoothed by the 50 ms 
window, and may represent activation of the automatic pathway15 - itself a signature of conflict. It is therefore 
consistent, that the activated region at this stage is the paracingulate and superior frontal gyrus, neighboring both 
SMA and ACC. At −25 ms activation appears to be dominant in intracalcarine cortex and lingual gyrus.

To examine this further, we repeated our DV-GLM but split the expected decision-variable by whether it came 
from a congruent or incongruent trial. This analysis ensures that only the decision-variable variability within the 
congruent and, separately within the incongruent conditions can account for BOLD activation, thus removing 
the direct contribution of conflict. As well as assessing the statistical significance of the two decision-variable 
regressors, we also examined the contrast of their sum. While the non-conflict decision-variable did not yield any 
statistically significant BOLD activation, interestingly, both the conflict decision-variable and sum contrast did. 
The sum contrast activates regions largely overlapping to those activated by the single decision-variable GLM at 
−25 ms, although earlier with respect to the response and extending into cuneal cortex and precuneus.

Stimulus-response GLM analysis. We also performed a more traditional set of analyses which we termed 
‘Simple GLM’ and ‘RT GLM’.

Figure 6. Expected decision-variable BOLD activation relative to response. Top: from left to right, transverse 
slices showing positive activation (p < 0.05, GFP FWER corrected, not corrected for multiple comparisons 
across time) from GLM with decision-variable taken from corresponding time. Activation shaded in green 
stems from GLM using decision-variable pooled from both conditions (we note additional activation at −175 
ms, and a negative activation in yellow at −125 ms). Activation shaded in red and blue stem from GLM with 
the decision-variable split by condition, with red corresponding to a sum contrast, and blue corresponding to 
conflict only (non-conflict only did not yield any statistically significant regions). Bottom subplot shows an 
example decision-variable progression for one subject, and an axial slice at −175 ms. Orange: non-conflict, blue: 
conflict, shading dependent on RT rank.
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The simple GLM consists of modeling stimulus presentation as a single series of events, with incongruent 
events as an additional series. The stimulus presentation appears to positively activate clusters in the visual areas 
(large sections of occipital and lateral occipital cortex), response related regions such as the SMA, pre- and post 
central gyrus, the left central opercular cortex, as well as cerebellum. Negative activation was also visible in this 
analysis in insular cortex (bilaterally), middle temporal regions and precuneus.

In contrast, when examining coefficients coding for incongruence relative to stimulus presentation no clusters 
were present. This suggests (as has been found in previous work21) that the activation present due to conflict is 
subtle and may require more sophisticated analysis as we have presented here.

While incongruent stimuli may not directly lead to clear activation, we considered that RT may in part reflect 
the process of conflict detection. To test this, we performed a GLM with one event variable related to stimulus 
as before, and another event variable set to be the z-scored log-RT. The stimulus event clusters for this analysis 
are broadly similar to those presented for the previous analysis (stimuli and incongruent events, compare Fig. 7a 
to Fig. 7b). The z-scored log-RT event however appears to elicit activity in ACC, as well as bilaterally in insular 
cortex, and occipital-parietal areas ‘upstream’ to those visible for the stimulus event. These regions include intra/
supracalcarine cortex and superior lateral occipital cortex.

Discussion
In this study, we consider the Simon effect to emerge out of three main components: (1) a representation of the 
choice relevant stimulus (color), stimulus laterality, and conflict with respect to choice; (2) evidence accumulators 
for each choice wherein their relative activation is the decision-variable; (3) cognitive control to appropriately 
distribute the computation across these components. We found that the SE-SSM which incorporates these com-
ponents yields parameters which correlate with stimulus BOLD activation, while equivalent analysis based on 
RT does not.

Interpreting the SE-SSM in light of previously developed cognitive models6,13,14 we suggest that the 
decision-variable should be considered as equivalent to the relative activation of response accumulators, with the 
bias term representing the relative strength of the automatic pathway, and the conflict counteraction term linked 
to attention, monitoring and regulation. Across subject activation may depended on generic traits of the subject 
and should correspond to global parameter settings that project to regions where an individual trial is being pro-
cessed, or targets of such regions. We also used the model to analyze the within BOLD correlates of the evolution 
of the expected decision-variable.

Because the RT distribution of the SE-SSM cannot be written analytically, in previous work we resorted to 
minimization of the χ2 statistic35 calculated from binned RT data which is generated by direct simulation of the 
SE-SSM process. Additionally, model comparison was done by examining the χ2 statistic and application of cross 
validation, leading to a computationally expensive procedure. In this work, we developed a SSM framework to fit 
non-standard extensions of the SSM more efficiently. To do this, we encode the transition matrix of the SE-SSM 
and propagate this forwards in time in order to generate the model likelihoods. Such a method allows for a sub-
stantial speed up in model fitting so that we could be confident that we were avoiding local minima by repeating 
simulations. The method also directly allows us to use existing model comparison techniques without resorting 
to further simulations. We also note that the model estimation procedure employed, including the calculation 
of likelihood functions from a non-standard SSM could lend themselves to being incorporated into hierarchical 
SSM frameworks such as the HDDM36.

We found that SE-SSM in general provided a good explanation for the behavioral data. However, the sepa-
ration between the SE-SSM and SSM including conflict dependent bias was not as clear as we were expecting, 
with some subject models favoring the simpler form. Indeed, when applying the current methods to data from 
McIntosh et al.12 (data not shown), we find that the SE-SSM is strongly preferred over all other candidate models 
(as had been previously shown using cross-validation). We hypothesize that this inconsistency may be due to 
the relatively weaker maximum trial time constraints placed on subjects in the current data set, providing less 
necessity for a strong counter active role of conflict counteraction on bias, however further experiments will be 
required to investigate this.

Using a GLM with all events, and additionally incongruent events as regressors, only yielded a statistically 
significant pattern of activation in response to all events. Performing a similar GLM with RT as opposed to 

Figure 7. Standard GLM analyses. (a) Clusters for simple GLM. Orange clusters represent positive activation 
in response to stimulus, while blue clusters represent negative activation in response to stimulus. No additional 
clusters are present in response to an incongruent event. (b) Clusters for RT GLM. Orange and blue clusters 
represent activation in response to stimulus, similar to (a), while green clusters represent activation dependent 
on z-scored log-RT events. No negative activation in relation to z-scored log-RT was found.
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specifically modeling incongruent stimuli yielded a statistically significant ACC cluster. However, it is not clear 
whether this should be directly related to conflict as the RT ultimately is dependent on a variety of factors. This 
highlights a potential advantage of the model based approach: decomposition of accuracy and RT into model 
parameters acts to isolate concepts of conflict counteraction and bias which can then be used to interpret the data.

The ACC which we find to be clearly activated in our across subject analysis has been implicated in conflict 
monitoring37 and resultant specification of a control signal13, which we hypothsesise should be related to conflict 
counteraction. It is also generally found to be activated in several previous Simon effect fMRI studies18–20,38, and 
is known to be activated with insular cortex39. Aside from sensorimotor areas, other clear regions of activation 
are precuneus and the posterior cingulate. In previous work, we ascribed the concept of attention to our conflict 
counteraction model parameter b, and so it is interesting to note that precuneus has also been found to be active 
in previous Simon effect studies, and has been implicated in shifting attention to different spatial locations40. 
However, we currently make no strong claims regarding specific theories of attention41.

While activation related to the bias term was present in frontal and paracingulate giri, we found that its acti-
vation largely overlapped with the activation of the conflict counteraction parameter. This would be partially 
predicted by the correlation between conflict counteraction and bias, which we speculate may be due to a strategy 
by subjects with a strong bias, compensating by enhancing their conflict counteraction. This study, and previous 
work12 suggests that two task specific parameters are required to fully capture behavior in the Simon task, so we 
hypothesize that the overlap of the brain activity is due to the interwoven and distributed nature of the decision 
making process. We cannot however rule out that there is a more parsimonious model structure that would allow 
the Simon effect to be captured with a single variable which itself optimally reflects brain activity. This question 
will need to be resolved in future studies where the conflict counteraction parameter is modulated experimentally.

Within a trial, the consistent activation of a single region shows a location where a decision-variable could be 
directly represented, or where components required for its calculation are represented. For example, regions acti-
vating during the early representation of the decision-variable progression could be related to automatic activa-
tion, while later activation could be related to evidence integration and conflict counteraction. An example of our 
interpretation for the specific process that is occurring during a Simon effect trial is as follows: a left indicating 
stimulus is presented to the right hemifield. An automatic pathway is activated, and feeds into a response accu-
mulator. This pathway is quickly inhibited indirectly, or its activity is inherently transient so that while an impact 
has been made on the current state of the accumulators, further impact is reduced. We model this as a delta func-
tion at a moment corresponding to the non-decision time - although a more natural process starting somewhat 
earlier is likely to occur in reality. The non-automatic, task specific process is activated less quickly - and begins to 
feed into the pre-motor accumulators once the automatic pathway is no longer having a novel impact. On some 
occasions the inhibition is not fully deployed, or noise in the decision process acts to initiate an action at this early 
stage. Usually however, this is not the case and evidence from the non-automatic pathway gradually pushes the 
correct response accumulator towards its threshold. Due to time constraints of the task, or the inherent cost of 
time however, a compensation mechanism takes hold to reduce the influence of the initial bias. Such a mechanism 
should make use of the representation of the decision-variable in terms of the initial stimulus laterality: a measure 
of conflict which changes as the trial progresses. Monitoring of this conflict could in turn be used to accelerate the 
decision-variable towards a bound.

In our within trial analysis, we attempt to examine the progression of the decision with high temporal res-
olution despite fMRI’s low temporal resolution using a method inspired by EEG-fMRI analysis31 and the con-
cept of examining the expected decision-variable42. We found clear representation of the decision-variable early 
and late relative to the response. Early activation (175 ms prior to response) appears to be in paracingulate and 
superior frontal gyri which neighbors SMA and ACC. It seems possible that this corresponds to early detection 
of conflict, or deployment of conflict counteraction in response to conflict, which would be represented in the 
decision-variable at an early stage in a graded manner due to the smoothing effect of our temporal windows. 
We also detect late activation relative to response time (−25 ms) of intracalcarine cortex. This type of activation 
would be consistent with full representation of a decision-variable like feature prior to response, although its pres-
ence in early visual areas late in the decision is surprising. We were curious as to whether we might find a separate 
representation of the conflict specific decision-variable, and found that unlike the decision-variable taken from all 
trials, activation is more strongly represented in precuneus. One interpretation of this progression is consequently 
that posterior medial frontal cortex monitors conflict37 for the purposes of modulating an autonomic pathway13, 
or up-regulating task relevant (color) information in visual areas43. In general, our time resolved BOLD analysis 
method may hold promise for extracting temporal information from slowly changing BOLD responses within a 
trial, rather than relying on across trial changes induced by task conditions43. In particular, we believe this may be 
the case with appropriately designed paradigms that allow for a complex progression of the expected DV allowing 
GLMs conducted at different time points to be uncorrelated.

A weakness of the current study, particularly relevant for the time resolved analysis stems from the data being 
cast in terms of conflict and accuracy, rather than stimulus and response: stimulus and response laterality influ-
ence the decision-variable in different ways than conflict and accuracy producing potentially different patterns 
of activation. For example, we would expect the early stimulus-response decision-variable to be lateralized in 
the occipital region, while the late decision-variable may be lateralized in the motor or pre-motor region. In this 
study, we detect early ACC activation in our within-trial analysis, potentially corresponding to conflict detec-
tion. While it may be the case that conflict detection is occurring early in the trial, an alternative explanation 
is that early expected decision-variable is just an indirect signature of conflict (much like RT is), which is itself 
only represented later in a trial. This possibility can be analyzed more carefully with exact stimulus and choice 
information, where conflict is not directly confounded with the early decision-variable. We also note that the 
GLM analyses conducted across time were not corrected for multiple comparisons relative to each other, so the 
possibility of type II error in the interpretation of some of these clusters is inflated. In future work, we intend to 
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address these points, and note that improved experimental conditions may also allow us to analyze the across 
trial intermediate temporal domain and influence of conflict history in the context of the proposed model (see 
supplementary material Figs. S4 and S5).

We introduced a novel method to fit our conflict based Simon effect model (SE-SSM), and have demonstrated 
that the SE-SSM captures behavioral data. The two conflict specific model parameters it introduces have clear 
across-subject BOLD correlates, and, furthermore we have shown that SSM type models can be used to decom-
pose the BOLD activation via the lens of what would be expected at different time points during a trial.

Data availability
The datasets analyzed during the current study are available from the OpenfMRI database under an ODC Public 
Domain Dedication and License (PDDL). Its accession number is ds00010124. Our model fitting framework is 
available at https://github.com/jrmxn/malleable-ssm.
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