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Bioinformatics is an interdisciplinary research field that develops tools for the analysis of large biological databases, and, thus,
the use of high performance computing (HPC) platforms is mandatory for the generation of useful biological knowledge. The
latest generation of graphics processing units (GPUs) has democratized the use of HPC as they push desktop computers to cluster-
level performance. Many applications within this field have been developed to leverage these powerful and low-cost architectures.
However, these applications still need to scale to larger GPU-based systems to enable remarkable advances in the fields of healthcare,
drug discovery, genome research, etc. The inclusion of GPUs in HPC systems exacerbates power and temperature issues, increasing
the total cost of ownership (TCO). This paper explores the benefits of volunteer computing to scale bioinformatics applications
as an alternative to own large GPU-based local infrastructures. We use as a benchmark a GPU-based drug discovery application
called BINDSUREF that their computational requirements go beyond a single desktop machine. Volunteer computing is presented
as a cheap and valid HPC system for those bioinformatics applications that need to process huge amounts of data and where the

response time is not a critical factor.

1. Introduction

Integrating the latest breakthroughs in biochemistry, high
performance computing, image processing, and computa-
tional modelling means enabling remarkable advances in the
fields of healthcare, drug discovery, genome research, and so
on. By integrating all these developments together, scientists
are creating new exciting personal therapeutic strategies for
living longer and healthier lifestyles that were unimaginable
some short time ago.

The integration mentioned above spans many different
areas, like life sciences, where there are many examples of
scientific applications for discovering biological and medical
unknown factors that could greatly benefit from increased

computational resources. However, computing resources
available on current systems are constrained, and thus this
fact limits the the next step forward in this field. For instance,
applications such as programs from the molecular modeling
field used for visualizing molecular docking simulations
and describing interatomic interactions for drug discovery
such as BINDSURF [1] or protein folding applications that
unlock the mystery of protein assembly and its relationship to
cancers, Parkinson’s disease, and Alzheimer’s such as GRO-
MACS [2] could clearly benefit from enhanced computing
capabilities.

As can be seen, high performance computing technolo-
gies are at the forefront of those revolutions, making it pos-
sible to realize and accelerate radical biological and medical
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breakthroughs that would directly translate into real benefits
for the society and the environment. In this regard, parallel
computing technologies have brought dramatic changes into
the high performance market [3]. Multicore CPUs (central
processing unit) can now hold a dozen of cores, and many
core GPUs (graphics processing unit) gather a myriad of
stream processors. These components are being combined
to build heterogeneous parallel computers offering a wide
spectrum of high performance processing functions.

GPUs are massively parallel processors, which can
support several thousand concurrent threads. Nowadays,
many general-purpose applications from different fields have
been successfully ported to these platforms achieving good
speedups compared to their corresponding sequential ver-
sions [4-9]. The trend of using GPUs for general purpose
computing has been favoured by the low cost of GPUs, mostly
caused by the gaming business volume. GPUs are democratiz-
ing the high performance market, having a massively parallel
chip for only $200.

Thus, large clusters are therefore adopting the use of these
architectures, as a way to provide enough computational
power to overcome the next century challenges [10]. How-
ever, current GPUs have a great impact on the power con-
sumption of the system, as a high-end GPU may well increase
the power consumption of a cluster node up to 30%, which is
actually a big issue already. This is a critical issue especially for
very large clusters, where the cost dedicated to power supply
to such computers represents an important fraction of the
total cost of ownership (TCO) [11, 12]. Besides, the carbon
footprint from those supercomputers is on the rise, reaching
the levels produced by the global airline industry, and experts
estimate that pollutant emissions derived from the usage of
these machines will quadruple by 2020 [13]. Virtualization
techniques such as volunteer computing [14] may provide
significant energy savings, as they enable a larger resource
usage by sharing a given hardware among several users, thus
reducing the required amount of instances of that particular
device.

This paper evaluates a volunteer computing paradigm,
based on the tuple BOINC [15] and Ibercivis, as an
alternative to owning large GPU-based local infrastruc-
tures. We analyze several parameters such as performance,
cost (including energy consumption, collocation cost, and
machine market price), and availability of both architectures
design. We illustrate this comparison for the execution
of a representative GPU-based bioinformatics application
called BINDSURF (we refer the reader to Ibercivis webpage
(http://www.ibercivis.es/)).

The main contributions of this paper include the follow-
ing.

(i) Although the elapsed time to obtain BINDSURF
results in the volunteer computing platform is an
order of magnitude slower than in our local infras-
tructure, the processing time is in the same range for
both platforms thanks to the ubiquity of GPUs which
are present in almost every desktop PC.

(ii) The power consumption of our local infrastructure
when executing BINDSURF is around 200 Watts.
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Moreover, additional costs for our local infrastructure
need to be considered such as collocation cost and
administration, while all of them are saved by the
hardware donation of volunteers.

(iii) The tuple BOINC and Ibercivis are presented as
a valid alternative in the HPC arena for running
bioinformatics applications, which are not real time
but need many computational resources.

The rest of the paper is organized as follows. Section 2
briefly introduces the preliminary knowledge necessary for
the better understanding the experimental results in the rest
of the paper. We also introduce the economic assumptions to
assess our simulations. The experimental environment and
the evaluation in both our local and volunteer computing
infrastructure are shown in Section 3. Section 4 shows the
experimental results, offering an additional analysis of the
cost of our local infrastructure, in terms of power consump-
tion and economic impact, before we discuss these results
in Section 5. Finally, in Section 6 we summarize our findings
and conclude with suggestions for future work.

2. Materials and Methods

2.1. BINDSURF: High-Throughput Parallel Blind Virtual
Screening. In this section, we introduce BINDSURF [1], an
efficient and fast blind methodology for the determination of
protein binding sites depending on the ligand that uses the
massively parallel architecture of GPUs for fast prescreening
of large ligand databases. We first briefly review the main
characteristics of CUDA [16] for the benefit of readers who
are unfamiliar with the programming model. CUDA is based
on a hierarchy of abstraction layers; the thread is the basic
execution unit; threads are grouped into blocks, each of which
runs on a single multiprocessor, where they can share data
on a small but extremely fast memory. A grid is composed of
blocks, which are equally distributed and scheduled among
all multiprocessors. The parallel sections of an application are
executed as kernels in a SIMD (single instruction multiple
data) fashion, that is, with all threads running the same code.
A kernel is therefore executed by a grid of thread blocks,
where threads run simultaneously grouped in batches called
warps, which are the scheduling units.

BINDSURF divides the whole protein surface into arbi-
trary independent regions (also known as spots). Next,
and thanks to the computational power provided by the
efficient exploitation of the parallelism of GPUs, a large
ligand database is screened against the target protein over
its whole surface simultaneously, and docking simulations
for each ligand are performed simultaneously in all the
specified protein spots resulting in new spots found after the
examination of the distribution of scoring function values
over the entire protein surface. Using this approach, it has
been found that BINDSURF predicts accurately and at an
unprecedenteded speed the binding sites to which different
ligands bind to the same protein in known cases that were
problematic to other docking methods.

BINDSUREF is a stochastic methodology that uses the
Monte Carlo energy minimization scheme. One of the most
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important parameters is the number of Monte Carlo steps;
very high values are preferred for this number so that we
have more probabilities of finding the global minima of
the potential energy surface and thus the accuracy of the
prediction increases. Besides, high values for the number
of Monte Carlo steps imply an increase in the number of
required computations, so a compromise must be found for
this number. We show later the use of different typical values
for this parameter.

2.2.  Volunteer Computing Paradigm Applied to Ibercivis.
Volunteer computing (also called peer-to-peer computing
or global computing) is a distributed computing approach
where citizens offer their own computing resources to solve
scientific projects. Recently, volunteer computing has moved
to middleware systems that provide a distributed computing
infrastructure independent of the scientific computation.
Among them, the most popular one is BOINC, developed
at the University of Berkeley. BOINC [15] provides to the
scientific community the opportunity to use the computing
power of thousands of CPUs and GPUs almost for free.
BOINC provides a complete middleware system for volunteer
computing, including a client, client GUI, application run-
time system, server software, and software implementing a
project web site.

Volunteer computing has been successfully used in high-
energy physics, molecular biology, medicine, astrophysics,
climate study, and other areas. Among them, we may high-
light SETI@HOME that has sustained a processing rate
of about 60 TeraFLOPS for several years [17]. Moreover,
other volunteer computing projects have been developed in
the field of bioinformatics such as POEM@HOME, Fight-
Malaria@Home, Docking@Home, or GPUGrid.net (readers
can visit https://boinc.berkeley.edu/projects.php).

This project is developed in the context of Ibercivis [18],
which is an open framework created to deploy new volunteer
computing platforms based on BOINC [15]. One of the
challenges of Ibercivis is to allow the execution of several
applications in the frame of a single BOINC project. We refer
the reader to http://boinc.berkeley.edu/ for insights on how
to run a volunteer project using BOINC.

2.3. Cost Estimation Model for Local GPU-Based Infrastruc-
tures. 'This section establishes the economic assumptions to
assess the cost of our simulations in the local infrastructure.
Equation (1) shows the cost of a given simulation in a local
computer:

Clocalx = Cex + me + ch’ (1)
where Cy,,_is the result of adding:
(i) C,,: energy consumption costs:
Ce)c = Tlocalx “€y P, (2)
where e, is the energy consumption for a given ligand

x and p, is the energy price. Both are expressed per
unit of time.

(ii) C,, : machine market price:

me = B : Tlocalx tm, (3)
A

where p is the physical machine market price and g, is

the amortization per unit time. Typical values for the

amortization period of a machine are 2-3 years. Note

that g, is based on the unit time; that is, if the unit time

is minutes, then a, = years - 365 - 24 - 60.

(iii) C, : machine collocation costs:

m
ch = (Ct'm"'At' ’rm_“>'Tlacalx’ (4)
a

where ¢, is the collocation and A, is the adminis-
trator salary, both of them are expressed in units of
time. The adjustment is completed by specifying how
many physical machines are assigned to an individual
administrator (m,). The expression [x] corresponds
to the ceiling function of x.

3. Experimental Setup

This section introduces the hardware-software environment
for both the local and volunteer computing environments, the
main features and input data sets of BINDSURF.

3.1. Hardware and Software Infrastructure. Our local exper-
iments have been conducted in an Intel-based machine
that is a high-performance platform composed of an Intel
Xeon E5620 processor running at 2.4 GHz and an internal
Nvidia Geforce 7300GT GPU. This card, which is tailored
for graphics, is always connected to the system during the
evaluation. Besides, five different Nvidia GPUs are connected
separately to this system through the PCI express bus as
accelerators; that is, only one of them is connected to the
motherboard during the tests at a given time (see Table 1
for hardware specification). These cards are the following:
the Nvidia GTX 465, which has enabled 11 SMs from the
total of 16 in the GTX400 chip, the Nvidia GTX 480, which
has 15 active SMs, the Nvidia Tesla C2070, which has 14
active SMs, and the Nvidia GTX 590, which is one graphics
card made out of two graphics processors with up to 2 x 16
SMs. Additionally, we have also analyzed the last generation
of Nvidia GPUs, that is, the Tesla K20c. CUDA toolkit 5.0
leverages Nvidia architectures. CPU-side is also targeted
through GCC compiler 4.7.2 version and vectorization. The
vectorization on Intel platforms is enabled by SSE extensions.

The Ibercivis project has many computational resources
available to different scientific projects. Nowadays, the Iber-
civis project offers up to 1597 nodes which include, at
least, a GPU in the system. Those GPUs are classified into
groups depending on their computing capabilities. Table 2
shows different GPUs and operative systems available in
those nodes. BINDSUREF is based on Nvidia GPUs, so this
feature limits the number of resources available for running
our application. In our experiments, we use 16 machines
out of 106 we have available. Finally, the BOINC server is



TABLE 1: Hardware features for our local test-bed infrastructure.
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TaBLE 1: Continued.

Intel system

Intel system

Processor

GPUO

Memory

Maximum power draw

Experimental idle power

Intel Xeon E5620 @ 2.4 GHz
Nvidia 7300GT

16 GB DDR3 @ 1333 MHz
8OW

38W

GPU 1: Nvidia GTX 465

GPU family
Manufacturing process
Core clock

Memory size

Memory clock
Memory bus width
Memory bandwidth
Stream processors
Maximum power draw

Experimental idle power

GF100

40 nm

607 MHz
1024 MB

2 x 1603 MHz
256 bits

102.6 GB/sec
352

200 W

24 W

GPU 5: Nvidia Tesla K20c

GPU family GK110
Manufacturing process 28 nm.

Core clock 705 MHz
Memory size 5120 MB
Memory clock 2 %2600 MHz
Memory bus width 320 bits
Memory bandwidth: 208 GB/sec
Stream processors 2496
Maximum power draw 225W
Experimental idle power 27TW

TaBLE 2: GPU-based machines in the Ibercivis project to date. The
nodes are divided into operative systems and GPU brands.

GPU 2: Nvidia GTX 480

GPU family
Manufacturing process
Core clock

Memory size

Memory clock

Memory bus width
Memory bandwidth
Stream processors
Maximum power draw
Experimental idle power

GF100

40 nm.

700 MHz
1536 MB

2 x 1848 MHz
384 bits

177.4 GB/sec
480

250 W

37W

GPU 3: Nvidia Tesla C2070

GPU family

Process

Core clock

Memory size

Memory clock

Memory bus width
Memory bandwidth
Stream processors
Maximum power draw
Experimental idle power

GF100

40 nm.

573.5 MHz
6143 MB

2 x 1494 MHz
384 bits

143.4 GB/sec
448

247 W

107 W

GPU 4: Nvidia GTX 590

GPU family
Manufacturing process
Core clock

Memory size

Memory clock

Memory bus width
Memory bandwidth
Stream processors
Maximum power draw
Experimental idle power

GF100

40 nm.

1215 MHz

2 x 1536 MB

2 x 1707 MHz

2 x 384 bits

2 x 327.7 GB/sec
1024

365 W

140 W

Windows Linux Darwin Total
Nvidia 918 106 68 1092
ATTI + Intel 445 10 50 505
Total 1363 116 118 1597

configured to send each work up to three times. In case a
work unit fails, the work is forwarded to another client; this
guarantees fault tolerance in the overall system. Regarding the
implementation of BINDSURF in the Ibercivis platform, we
have chosen the GenWrapper option as the most convenient
for allowing us to maintain the application within its original
architecture. We have only made some minor changes in the
source code to let the BOINC client know the percentage of
work performed at a given point.

3.2. BINDSURF Parameters. We carried out VS calculations
using BINDSURF for the prediction of representative ligand-
protein cases. For our evaluations, three different ligand-
protein cases are chosen, whose ligands conveniently repre-
sent chemical diversity of large compound databases. They
are referred to as ligands A, B, and C. Ligand A is a blood
clotting cofactor recently discovered by us [19]. Ligand B and
ligand C have been extracted from their Protein Data Bank
[20] complexes with the respective IDS 2byr and 3 p4w. We
have run 10 executions of BINDSURF per ligand for a given
number of simulation steps.

Different Monte Carlo steps are taken into account,
ranging from 5 to 50000, as an optimal value for this
parameter does not exist for all different ligand types (A, B,
and C). Therefore, it is convenient to perform VS calculations
using different values of this parameter, since, sometimes, we
might be interested in short simulations (steps = 5, 10, 50) for
obtaining qualitative information about potential hotspots
in the surface screening approach for millions of different
ligands, but in some other situations we might be more
interested in obtaining accurate predictions for a smaller set
of ligands; thus we may use higher number of Monte Carlo
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TABLE 3: Execution time in seconds of BINDSUREF for the execution
of ligand A (llc4), ligand B (2byr), and ligand C (3p4w) in our
local infrastructure with different Monte Carlo steps. Lowest RMSD
values obtained for ligands B and C are 3 and 2 Angstroms, while
there is no crystal structure available for ligand A.

Steps GTX 465 GTX 480 GTX590 Tesla C2070 Tesla K20

Ligand A (l1c4)
5 57.79 57.70 59.11 58.57 68.52
10 57.97 57.97 57.64 59.15 68.78
50 61.66 61.73 62.08 63.68 72.40
500 114.17 114.09 118.37 126.62 116.66
5000  788.52 788.81 842.34 942.35 678.61
50000 8888.45  8890.91  9546.22 10702.00 7371.31
Ligand B (2byr)
5 49.24 49.42 49.69 50.71 60.81
10 49.49 49.65 50.13 51.18 60.87
50 53.39 53.42 54.22 55.73 65.05
500 107.20 107.10 111.58 121.64 114.42
5000  733.35 732.86 783.29 891.92 686.69
50000 7162.95  7163.43  7688.34 8813.30 6569.21
Ligand C (3p4w)
5 75.41 75.35 75.75 76.41 86.44
10 75.53 75.45 76.00 76.70 86.05
50 78.64 79.23 80.20 80.74 89.44
500 127.35 127.52 131.72 139.09 129.28
5000  761.68 761.46 813.74 903.31 640.37
50000 7925.02  7924.22  8520.64 9494.24 6219.92

steps such as 500, 5000 and 50000. Lastly, it should be noted
that, in general, it could be said that the running time is
directly proportional to the number of Monte Carlo steps and
to the type of ligand, as reported previously in the original
BINDSURE publication [1].

4. Experimental Results

4.1. Performance Evaluation in the Local Infrastructure.
Table 3 shows the execution times obtained in our local
infrastructure. The execution times increase along with the
number of simulation steps of Monte Carlo as expected.
However, this increase is not linear since the execution
time is dominated by input data preprocessing and other
computations in BINDSURE

Table 3 shows that the most time consuming simulation is
when the simulation runs in Nvidia GPU GTX 465, whereas
the simulation cost is reduced, as long as the experiments are
executed in the most efficient platform as Tesla K20c.

4.2.  Performance Evaluation in the Volunteer Computing
Environment. Table 4 shows the execution time in seconds
of BINDSUREF for the execution of ligand A (lic4), ligand
B (2byr), and ligand C (3p4w) in the Ibercivis project.
The execution time is divided intototal time andprocessing
time. The latter is actually the percentage of computational
resources used by our application in the client’s computer.

TABLE 4: Execution time in seconds of BINDSUREF for the execution
of ligand A (llc4), ligand B (2byr), and ligand C (3p4w) in Ibercivis
with different Monte Carlo steps. It is divided into total time (i.e.,
including submission overheads) and processing time.

Steps Total time Processing time
Ligand A (1ic4)
5 60.60 30893
10 61.88 24325
50 61.85 28469
500 130.79 31719
5000 1144.02 20840
50000 11467.09 28469
Ligand B (2byr)
5 65.5 24158
10 64.58 24116
50 69.72 43664
500 133.73 91752
5000 1161.78 27727
50000 10895.33 42469
Ligand C (3p4w)
5 72.82 46150
10 76.59 20016
50 86.77 1933
500 177.47 2016
5000 1190.07 31843
50000 12660.21 46150

The former, however, includes the whole process of executing
BINDSURE in the Ibercivis project, that is, including over-
heads previously described in Section 2.2.

The BINDSURF processing times in the computers
offered by Ibercivis are equivalent to our lowest-line GPUs,
which make sense as the major percentage of computers
offered by Ibercivis clients are desktop machines which
include only gamer-level cards. These GPUs offer great
performance at a very low-cost price and, sometimes, even
improve the performance results of the high performance
line of Nvidia GPUs, code-named Tesla. This fact is shown
for our smallest workloads, that is, below 500 Monte Carlo
iterations. Table 4 also shows that the BINDUREF total time is
much higher than the processing time in Ibercivis. The total
time involves several different tasks, including the processing
time as previously explained in Section 2.2.

4.3. Cost Evaluation of Our Local Infrastructure. This section
takes several economic assumptions to assess the cost of our
simulations. They are as follows.

(1) A machine from the local infrastructure costs $3,000
and the cost for the Nvidia GPUs is: $250 the GTX
465, $350 the GTX 480, $400 the GTX 590, $1300 the
12 Tesla C2070 and $3,000 the Tesla K20.

(2) The amortization period of each of these machines is
3 years.



(3) The KW/h price is that of Spain (http://www.sta-
tista.com/statistics/13020/electricity-prices-in-selec-
ted-countries/): $0.1352.

(4) The collocation price per machine/year in the local
infrastructure is $12,000.

(5) The administrator salary is $3,300/month and each
administrator is assigned to 100 machines from the
local infrastructure.

The local infrastructure has two other additional costs
due to the power consumption of our infrastructure and
the economic costs that are included to buy and maintain
such infrastructure. The real-time measurement of individual
GPU components using a software approach is new and is
only supported by the Nvidia GPU K20. This is done by using
NVML (Nvidia management library) [21] and it reports the
GPU'’s real-time power usage.

For the other cards, power dissipation measurements
are obtained using the Watts up? .Net power meter [22].
This device is connected between the power source and the
power supply of the system and provides power dissipation
information every second. Power information is logged by
a different machine on the same room. Room temperature
is controlled and set to 26°C during the measurements to
minimize temperature impact on static power.

Table 5 shows the power consumption in our local infras-
tructure for the running times shown in Table 3. These values
are the average for each set of experiments. The energy
consumption in the local infrastructure increases along with
the Monte Carlo simulation steps as expected.

Table 6 shows the economic costs of the BINDSURF
simulation when processing 6000 redocking simulations of
ligands of different types, that is, A, B, and C, and varying the
number of Monte Carlo steps. These costs are based on (1),
which have three main components as previously explained:
energy consumption, machine market price, and collocation
cost. The cost is averaged per unit of time.

5. Discussion

Volunteer computing is a distributed computing approach
where citizens offer their own computing resources to solve
scientific projects. Actually, this is the main advantage we find
in this computational environment: the great computational
power available for our project at no cost. Moreover, the ubiq-
uity of GPUs and the ingenuity of the simulation community
augur well for the scale and scope of future computational
studies of biomolecules.

Table 6 shows the execution of BINDSURF costs in
the range of 19K-33K$ for the largest simulation (50000
Monte Carlo steps) we have targeted in our experiments. The
execution time for this simulation in our local infrastructure
takes 2.5 hours on average (see Table 3). In Ibercivis, however,
users have to wait up to 10.8 hours until the results of our
simulation are returned back (see Table 4), although at no
cost. It is also noteworthy that the cost of our simulations
decreases along with the execution time and energy efficiency
as expected (see Tables 3 and 6). As shown in Table 1, power
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TABLE 5: Averaged power consumption in Watts when processing
ligand A (llc4), ligand B (2byr), and ligand C (3p4w) in a local
machine with different Monte Carlo steps. The runtimes are shown
in Table 3.

Steps GTX 465 GTX 480 GTX590 TeslaC2070 Tesla K20

5 240.57 246.45 270.99 291.78 192.95
10 236.79 246.50 271.44 293.32 193.72
50 240.92 251.37 274.40 297.85 195.93
500 276.09 293.75 309.07 325.52 214.83
5000  312.79 351.90 355.19 357.10 245.57
50000 318.79 362.36 364.24 356.14 253.95

TABLE 6: Averaged economic costs in $ for processing 6000
redocking simulations of ligands (ligand A (llc4), ligand B (2byr),
and ligand C (3p4w)) in a local machine. We also vary the number
of Monte Carlo steps to increase the computational cost.

Steps GTX 465 GTX 480 GTX590 Tesla C2070 Tesla K20

5 167.74 159.81 162.16 166.99 200.20
10 166.28 160.33 161.48 168.22 200.13
50 181.50 170.30 172.72 180.08 210.55
500 394.53 306.64 318.83 349.33 334.95
5000 3063.61 2017.71 2158.96 2475.37 1868.84
50000 33020.51 21209.85 22812.22 26228.97 18797.83

consumption has been drastically improved in Tesla K20 and
this is reflected in the overall simulation cost.

Several drawbacks are behind the use of volunteer com-
puting as a platform to develop scientific computations.
Firstly, it is a fully heterogeneous environment, making it
difficult to leverage performance of the targeted architectures.
However, the processing times obtained in the volunteer
computing environment (see Table 4) are not that far from
those taken in our local machines. At this stage of our
research, we only focus on CUDA architectures that are
relatively similar to each other. This would be a harder issue
in an OpenCL-based machine as different kind of processors
(i.e., CPUs, GPUs, and DSPs) might be targeted. Secondly,
the success of the simulations depends on citizen’s resources
which are not always available. This is solved by having a large
community of participants dedicated to a concrete project
like we do in the Ibercivis project.

6. Conclusions and Future Work

Bioinformatics is an emerging research area which produces
a great amount of HPC applications. Achieving the most
performance in their execution is important but optimization
through cost reduction is crucial. Researchers now have
access to a seamless resource provision technology that is
volunteer computing. Volunteer computing is a donation-
based infrastructure applied to solving scientific projects and
permits the user to forget about certain costs associated
with physical infrastructures and also helps disseminate the
project to the general public.
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In this contribution we have evaluated the tuple BOINC
and the Ibercivis Project for the drug discovery application
BINDSURF running several relevant benchmarks. Focusing
on the physical infrastructure, we have shown the execution
times of our application for both the local and the Iber-
civis infrastructure, finding that the processing times are in
the same order of magnitude. We have provided with the
information about power consumption measurements that
our local infrastructure supports in order to run the BIND-
SURF application, and we have also provided an exhaustive
cost model that considers a wide variety of elements and
factors, allowing a detailed comparison with the execution
of the same application on the infrastructure provided by
Ibercivs. Besides, conclusions obtained from our study can
be extrapolated to other GPU-based VS methodologies and
bioinformatics applications.

However, volunteer computing is not the panacea, since
it depends strongly on certain factors such as the concrete
bioinformatics application, the size of the problem, and the
compatible resources that are available for a project, and, thus,
the optimal infrastructure may vary and it does not need to
be always volunteer-based.

As future work, we plan to port BINDSURF to OpenCL
[23], allowing its execution in a wider variety of hetero-
geneous computational systems such as multicore CPUs.
This way, more work units types from Ibercivis partici-
pants could be harnessed, thus increasing the peak per-
formance available for our application and also reaching
broader public to disseminate our work. Moreover, a hybrid
approach that mixes the use of public cloud providers, like
Amazon, with the use of projects, such as Ibercivis, may
improve the fault tolerance ratio of our simulations at low
price.
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