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Abstract
Understanding the stability of chloropyromorphite (CPY) is of considerable benefit for

improving risk assessment and remediation strategies in contaminated water and soil. The

stability of CPY in the rhizosphere of phosphorus-deficient ryegrass was evaluated to eluci-

date the role of root-secreted low molecular weight organic acids (LMWOAs) on the dissolu-

tion of CPY. Results showed that CPY treatments significantly reduced the ryegrass

biomass and rhizosphere pH. The presence of calcium nitrate extractable lead (Pb) and

phosphorus (P) suggested that CPY in the rhizosphere could be bioavailable, because P

and Pb uptake by ryegrass potentially provided a significant concentration gradient that

would promote CPY dissolution. Pb accumulation and translocation in ryegrass was found

to be significantly higher in P-sufficient conditions than in P-deficient conditions. CPY treat-

ments significantly enhanced root exudation of LMWOAs irrigated with P-nutrient solution

or P-free nutrient solution. Oxalic acid was the dominant species in root-secreted LMWOAs

of ryegrass under P-free nutrient solution treatments, suggesting that root-secreted oxalic

acid may be the driving force of root-induced dissolution of CPY. Hence, our work, provides

clarifying hints on the role of LMWOAs in controlling the stability of CPY in the rhizosphere.

1. Introduction
The In situ immobilization of lead (Pb) in contaminated soils by phosphorus (P) -based materi-
als including apatite minerals, nanosized hydroxyapatite, bone meal, bone char, inorganic phos-
phate, etc., has been considered as a promising remediation strategy, due to its low cost, high
efficiency, easy-to-implement, and environmental friendly nature [1,2]. The addition of P to
soils can induce rapid kinetic formation of lead phosphate precipitates, especially pyromorphites
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[Pb5(PO4)3(Cl, OH or F)], the most stable lead phosphate minerals encountered in nature
under normal environmental conditions [3]. Thereby, other Pb species such as lead oxide,
galena, anglesite, cerussite, and goethite adsorbed Pb, could react with various P-based materials
and transform into pyromorphite through a dissolution-precipitation mechanism [4–7]. Within
the pyromorphite mineral family, chloropyromorphite [CPY, Pb5(PO4)3Cl] is several orders of
magnitude less soluble than the hydroxyl- and fluoro-pyromorphites [8]. Due to the ubiquity of
chloride in soil, CPY is considered the dominant species of pyromorphite [9]. The formation of
CPY has been confirmed under laboratory and in situ conditions through X-ray diffraction
(XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX), elec-
tron microprobe analysis (EMPA), and synchrotron radiation X-ray spectroscopy [10–15].

P-induced immobilization strategies for Pb are based on the low solubility of CPY. There-
fore, studying the stability of CPY is of great importance for evaluating the remediation effi-
ciency of Pb-contaminated soil by P. The geochemical stability of CPY has been extensively
examined with pivotal research [8,16,17]. Nriagu [8] firstly suggested that the solubility prod-
uct of CPY is approximately 10−84; however, a Ksp = 10−25.05 is more appropriate for soil pH in
the range of 3 to 7 [18]. Nevertheless, CPY is several orders of magnitude less soluble than
most common Pb minerals in soil, suggesting that the transformation of soil Pb to CPY would
reduce the bioavailability and subsequent toxicity of Pb [16]. Until now, numerous studies
have shown that CPY is a fairly stable Pb-mineral in aqueous solutions and bulk soils. For
example, Scheckel and Ryan [19] studied the effects of aging and pH on the dissolution kinetics
and stability of CPY using XRD, X-ray absorption fine structure (XAFS), and high resolution
thermogravimetric analysis (HRTGA). Their results demonstrated that the thermostability of
CPY increased with residence time, and that the dissolution rate of 1-day aged CPY was similar
to the 1-year aged specimen, suggesting that the synthetic CPY could quickly achieve a low
entropy state.

However, there is limited knowledge on the long-term stability of CPY in the rhizosphere
where intense interactions with roots, soil organic matter, microbes, and root exudates includ-
ing low molecular weight organic acids (LMWOAs), are expected [20]. LMWOAs concentra-
tions in the rhizosphere are generally considered significantly higher than those in bulk soil
solutions [21,22]. These LMWOAs not only play an important role in the activation of insoluble
phosphates and theacquisition of phosphorus [21,23–25], but also participate in the uptake,
translocation and accumulation of heavy metals by plants [26–28]. Root-induced phosphate
dissolution in the rhizosphere of white lupins has been reported by Hinsinger and Gilkes [29].
In addition, Calvaruso et al. [30] found that the dissolution of apatite and the release of calcium,
phosphorus, zinc and rare earth elements could be facilitated by LMWOAs originating from
tree roots and root-associated microorganisms. Moreover, metal-tolerant fungi could dissolve
toxic metal-phosphate minerals such as hopeite and pyromorphite, and thus enhance the
mobility of zinc and lead by acidolysis and complexolysis through the secretion of LMWOAs
[31,32]. Furthermore, in our previous work [26], LMWOAs were found to promote the uptake
and transportation of heavy metals. On the other hand, it is widely accepted that P deficiency
and Pb stress could induce the secretion of LMWOAs in certain plant species [33–36]. Recently,
Abbaspour et al. [37] and Abbaspour and Arocena [38] reported that vegetation could poten-
tially release Pb from pyromorphite into the environment, and CPY could be transformed into
lanarkite on the root surface of Indian mustard, suggesting that rhizosphere processes could
promote the CPY dissolution. However, they did not collect root exudates or analyze LMWOAs
in the rhizosphere; that is, a direct observation is still missing on the relationship between CPY
dissolution and LMWOAs exudation in the rhizosphere. Therefore, the stability of CPY in the
rhizosphere, especially the role of rhizosphere LMWOAs in the dissolution of CPY and uptake
of Pb and P by plants remain obscure motivating further examination by this study.
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The objective of this work is to investigate the phytoavailability of CPY to ryegrass grown in
sand culture and evaluate the roles of root-secreted LMWOAs on the stability of CPY in the
rhizosphere.

2. Materials and Methods

2.1 Preparation of chloropyromorphite
The CPY used in this study was synthesized in our laboratory according to the method
described by Sayer et al. [31] with modification. In brief, Pb(NO3)2 (200 mL of 0.5 mol L-1) was
mixed with 200 mL of a solution containing 0.3 mol L-1 Na2HPO4 and 0.1 mol L-1 NaCl at
ambient temperature. When cooled, the precipitate was isolated by filtration, washed in deion-
ized water and dried at 60°C. Identification of CPY was confirmed by chemical analysis and
X-ray diffraction (Fig 1).

Fig 1. The XRD patterns of the synthetic CPY and the reference pattern of pure CPY (JCPDS no. 19–0701).

doi:10.1371/journal.pone.0160628.g001
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2.2 Plant cultivation and experimental design
The quartz sand ranged from 0.45 to 1 mm in grain diameter and was initially washed with tap
water, then treated with 2 mol L-1 HCl for 24 h. It was again washed with tap water until the
water was neutral and then sterilized at 170°C for 2 h in an oven. Pots for growing the ryegrass
were each filled with 500 g of the sand.

Ryegrass (Lolium perenne L.) was chosen because of its tolerance and ability to accumulate
Pb [39], as well as its ability to secret LMWOAs under P deficiency or heavy metal stress [40].
Ryegrass seeds were obtained from Jiangsu Academy of Agricultural Sciences, China. To
inhibit microbe growth, the seeds were surface-disinfected by soaking them in a 3% (v/v) solu-
tion of hydrogen peroxide for 15 min and rinsed with sterile distilled water. They were germi-
nated on pledgets in an illuminated incubator at 25°C. The seedlings were transplanted to
greenhouse pots (4 plants per pot) filled with either control or CPY spiked quartz sand after 2
days of emergence, making the beginning of cultivation. The greenhouse was maintained at 20
to 25°C during the day and 10 to 15°C at night. Relative humidity was controlled at 60%.

The pots were divided into two groups (Table 1) and watered daily with 25 mL 1/2 strength
modified Hoagland nutrient solution. One group (spiked with 0, 1.31 and 3.93 g CPY) was
watered with a P-nutrient solution, while the other group (spiked with 1.31 and 3.93 g CPY)
was watered with a P-free nutrient solution in which KCl was used in place of KH2PO4 for the
nutrient solution as recommended by Abbaspour et al. [37]. Each treatment was performed in
four replications. The modified Hoagland nutrient solution contained the following nutrients: 1
mmol L-1 KNO3, 1.5 mmol L-1 Ca(NO3)2, 0.5 mmol L-1 MgSO4, 20 μmmol L-1 KH2PO4, 1 μmol
L-1 H3BO3, 0.7 μmol L-1 MnSO4, 0.5 μmol L-1 ZnSO4, 5 μmol L-1 Fe(II)-EDTA,0.01 μmol L-1

(NH4)6Mo7O24, and 0.075 μmol L-1 CuSO4. Moisture in each pot was kept to 60–70% water
holding capacity throughout the experiment. The plants were collected after a 30-day
cultivation.

2.3 Collection of root exudates
The resulting plant roots were washed in deionized water and then submerged in a 100 mL
solution containing 1 mmol L-1 of CaSO4 and 0.5 mg L-1 of thymol, a nontoxic concentration
for the plant [25]. After 4-h growth, root exudates were collected, evaporated until dry under
reduced pressure at 45°C, dissolved in 5 mL of distilled water, and then stored in a refrigerator
at -20°C before undergoing reversed-phase high performance liquid chromatography (RP-
HPLC) analysis.

2.4 Biomass determination
After harvest, each plant was washed with tap water and then divided into root and shoot frac-
tions, placed in paper bags and dried in an air circulation oven at 80°C to a constant weight in
order to determine biomass production.

Table 1. The rates of Pb and P addition to the treatments.

Treatments* Nutriment solution CPY added Pb contained P contained

g/pot

P0PC1PC3PWC3NC1NC3NWC3 PP-free 01.313.933.931.313.933.93 0133133 00.110.270.270.110.270.27

* P: pots irrigated with the P-nutrient solution; N: pots irrigated with the P-free nutrient solution; W: pots without the plant; C: pots containing CPY; 1 or 3 g Pb

as CPY in each pot.

doi:10.1371/journal.pone.0160628.t001
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2.5 pH measurements
The sand culture of the pots was separated into rhizosphere and bulk. Sand that remained
adhered to the roots after gentle shaking was sampled as rhizosphere sands by operating defini-
tion [41]. The pH of the samples was determined in 1:2.5 sand-water suspension using a pH
meter.

2.6 Extraction of available Pb and P
Calcium nitrate (2 g of sand sample and 10 mL of 0.1 mol L-1 Ca(NO3)2) extraction was used
to determine the bioavailability of Pb and P in the sand samples, because weak-electrolyte
extraction using calcium nitrate has shown potential as a surrogate measure of bioavailability
of cadmium, zinc, and Pb in soil [42].

2.7 Pb and P uptake by ryegrass
Vegetal dry samples were mill ground and digested with a mixture of HNO3 and HClO4 (87:13
v/v). Pb and P concentrations in the digested solution were measured using inductively coupled
plasma atomic emission spectroscopy (ICP-AES, Optimal 2100DV, Pekin Elmer).

2.8 LMWOAs determination
LMWOAs in the root exudates were determined by RP-HPLC after solid-phase extraction with
nanosized hydroxyapatite as described previously [26,43]. The HPLC analyses were carried out
on an Agilent 1100 liquid chromatograph equipped with a UV-Vis detector (Agilent, USA). A
Thermo Syncronis aQ C18 column (150 × 4.6 mm, 5 μm particle size) was used. The mobile
phase was a buffer solution containing 50 mmol L-1 (NH4)2HPO4 adjusted to a pH of 2.5 with
H3PO4; it was filtered through a 0.45 μmmembrane filter supplied by XinYa Corporation
(Shanghai, China). This mobile phase solution must be prepared fresh daily. Separation was
carried out by isocratic elution with a flow rate of 1.0 mL min-1 while the column temperature
was maintained at a constant 25°C. The optimum wavelength for determination was 214 nm
with a sensitivity of 0.02 absorbance unit, full scale. The injection volume was 20 μL and each
sample was injected in triplicate. The determination of acids was done in peak area mode.

2.9 Statistical analysis
Data was expressed as means ± standard deviation (SD). All statistical analyses were performed
with SPSS 16.0 for Windows. One-way ANOVA was used to determine any significant differ-
ences among the treatments. Differences between individual means were tested using the least
significant difference test at the 0.05 significance level.

3. Results

3.1 Biomass production of ryegrass
Fig 2 shows biomass production of ryegrass (dry weight) treated with P-nutrient solution and
P-free nutrient solution spiked with different CPY levels. It indicated that CPY treated seed-
lings showed lower values of both shoot and root dry weights than the control (P0). In compar-
ison to the control, shoot and root dry weights decreased by 21.3% and 14.6% for PC1, and
45.1% and 5.0% for PC3, respectively. Furthermore, in pots treated with P-free nutrient solu-
tion, the addition of CPY (NC1 and NC3) significantly decreased the shoot and root dry
weights of ryegrass. Shoot and root dry weight decreased by 88.1% and 71.7% for NC1, and
84.5% and 73.3% for NC3, as compared with that of the control.

Stability of Chloropyromorphite in Ryegrass Rhizosphere
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3.2 pH values in the bulk and rhizosphere of ryegrass
Values for pH in the rhizosphere and bulk ryegrass under different treatments are shown in Fig
3. Results indicated that ryegrass vegetation could significantly affect rhizosphere and bulk pH
when compared with non-vegetated treatments (PWC3 and NWC3). Roots increased bulk pH
by 0.2–0.7 and 0.3–0.5 units in pots treated with P-nutrient solution and P-free nutrient solu-
tion, respectively. Fig 3 also showed that the ryegrass rhizosphere pH was slightly lower than
bulk pH under CPY treatments.

The results of this study also show that the ryegrass rhizosphere pH was slightly lower than
bulk pH under CPY treatments, which is in contrast to the results reported by Abbaspour and
Arocena [38] even though more NO3

- was supplied than NH4
+. Similarly, Grinsted et al. [44]

had found that rhizosphere pH could decrease even though NO3
- was supplied exclusively,

suggesting that other processes such as organic anion release, root exudation and respiration,
and redox-coupled processes might be involved in root-induced pH changes in the rhizo-
sphere [45]. There is considerable evidence that P deficiency or Pb stress could induce the

Fig 2. Effect of CPY treatments on the dry weight of ryegrass. Error bars represent standard deviation.

doi:10.1371/journal.pone.0160628.g002
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secretion of LMWOAs by some plants [33–36]. For example, Qiao et al. [40] indicated that
ryegrass was capable of releasing large amounts of organic acids into the rhizosphere in
response to Pb stress. Therefore, root-secreted LMWOAs might play a more significant role
than other factors, in decreasing ryegrass rhizosphere pH, due to P deficiency and Pb stress
under CPY treatments.

3.3 Calcium nitrate-extractable P and Pb
Calcium nitrate-extractable P and Pb in the bulk and rhizosphere of ryegrass are shown in Fig
4. It was clear that extractable P in pots treated with P-nutrient solution were much higher
than in pots treated with P-free nutrient solution. In addition, the content of extractable P in
pots treated with P-nutrient solution was the lowest in PWC3, while that in P-free treatments
was the lowest in NWC3.

Fig 4 also shows that Ca(NO3)2 extractable Pb was less than 0.1 mg kg-1 in pots treated with
P-nutrient solution, which is much lower than those treated with P-free nutrient solution.
However, in pots treated with P-free nutrient solution, Ca(NO3)2 extractable Pb levels were
0.15, 0.26 mg kg-1 (NC1) and 0.69, 1.88 mg kg-1 (NC3) for the rhizosphere and bulk matter,
respectively. On the other hand, there was a significant difference in the concentration of Ca
(NO3)2 extractable Pb of unplanted pots between PWC3 and NWC3. A higher concentration
of Ca(NO3)2 extractable Pb was found in NWC3 (1.40 mg kg-1) than PWC3 (0.09 mg kg-1).

Fig 3. Effect of CPY treatments on pH values in the bulk and rhizosphere of ryegrass. Error bars represent the
standard deviation.

doi:10.1371/journal.pone.0160628.g003
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3.4 Uptake of Pb and P by ryegrass
The uptake of Pb and P by ryegrass under CPY treatments is shown in Fig 5. On one hand,
compared with the control (P0), the shoot P content in NC1 and NC3 significantly decreased
by 40.8% and 31.7%, respectively. On the other hand, compared with P0, the root P content in
NC1 and NC3 significantly decreased by 62.4% and 54.5%, respectively. In addition, there was
no significant difference in shoot and root P content between control (P0) and PC1; however,
shoot and root P content increased by 26.1% and 18.2%, respectively, in PC3 treatment as com-
pared with P0.

The uptake of Pb by ryegrass spiked with sparingly soluble CPY is shown in Fig 5. It was
clear that the shoot Pb content in all CPY treatments was significantly lower than correspond-
ing root Pb content. The results in Fig 4 also show that the uptake and accumulation of Pb in
ryegrass tissue vary depending on the P source added (Table 1). Pb uptake in shoot and roots
was 523.8 and 1334.1 mg kg-1 for PC1, and 845.3 and 8954 mg kg-1 for PC3, respectively. In
contrast, Pb uptake in shoot and roots for NC1 was 39.3% and 41.2% lower than PC1, respec-
tively. While the accumulation of Pb in shoot and roots for NC3 was 51.5% and 90.5% lower
than PC3, respectively. Moreover, there was no significant difference in the accumulation of Pb
between NC1 and NC3, which were irrigated with P-free nutrient solution.

Fig 4. Calcium nitrate-extractable P and Pb in the bulk and rhizosphere of ryegrass. Error bars represent the standard deviation.

doi:10.1371/journal.pone.0160628.g004
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3.5 Root secretion of LMWOAs by ryegrass
Fig 6a shows the RP-HPLC chromatogram of a mixed standard solution of five organic acids
(oxalic, tartaric, malic, acetic, and citric acids). It was evident that these organic acids could be
efficiently separated under present HPLC conditions. The HPLC chromatogram of ryegrass
root exudates under CPY treatments irrigated with P-nutrient solution and P-free nutrient
solution are shown in Fig 6b and 6c, respectively. These results indicated that oxalic, malic, ace-
tic, and citric acids in root exudates could be separated and identified in one injection by
HPLC. Tartaric acid could not be detected due to its low concentration.

As shown in Fig 6b, concentrations of root-secreted organic acids in PC1 and PC3 increased
significantly compared with the control P0. However, in pots treated with P-free nutrient solu-
tion, concentrations of root-secreted oxalic acid in NC1 and NC3 reached 798.7 and 1080
μmol L-1, respectively (Fig 6c and 6d), which were much higher than other organic acids.

4. Discussion

4.1 Stability of CPY in ryegrass rhizosphere
To achieve the remediation of a Pb-contaminated environment, the transformation of Pb to
CPY with extremely high stability, using phosphorus-bearing materials, has gained extensive

Fig 5. Effect of CPY treatments on the accumulation of P and Pb in the shoot and roots of ryegrass. Error bars represent the
standard deviation.

doi:10.1371/journal.pone.0160628.g005
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attention and recognition over the world [18]. However, although CPY was considered to be
fairly stable in bulk soil, the long term stability of CPY in rhizosphere was not fully understood.

A decrease in the dry weight of ryegrass (Fig 2) induced by CPY treatments was in agree-
ment with Abbaspour et al. [37] who reported that the addition of CPY significantly decreased
the dry weight production of Brassica juncea andMedicago sativa treated with P-free nutrient
solution. In the present study CPY decreased the dry weight of plants irrigated with P-contain-
ing nutrient solution in comparison with controls. Although there was no CPY-free and P-free
controls, the dry weight of plants irrigated with P-free nutrient solution were lower than plants
irrigated with P-containing nutrient solution. In most of the previous studies, a decrease in dry
plant weight was reported under Pb treatment [46,47]. The results also indicated that although
CPY was considered sparingly soluble and a less toxic Pb-bearing mineral [8,18,19], it still
exhibited some phytotoxicity towards ryegrass just like free Pb ions, as reflected by the reduced

Fig 6. (a) RP-HPLC chromatogram of a standard mixture of five organic acids. Effect of CPY treatments on root-secreted LMWOAs by ryegrass treated
with (b) P-nutrient solution and (c) P-free nutrient solution. (d) Concentrations of root-secreted LMWOAs by ryegrass irrigated with P-nutrient solution and
P-free nutrient solution under CPY treatments.

doi:10.1371/journal.pone.0160628.g006
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biomass. However, it was clear that P deficiency or lower P bioavailability reduced growth
more than Pb uptake.

Changes in bulk and rhizosphere pH values (Fig 3) were ascribed to an imbalance between
soluble cations and anions in the rhizosphere because soil pH was mainly controlled by the
presence of soluble or exchangeable cations and anions [48]. There was considerable evidence
that P deficiency or Pb stress could induce the secretion of LMWOAs by some plants [33–36].
For example, Qiao et al. [40] indicated that ryegrass was capable of releasing large amounts of
organic acids into the rhizosphere in response to Pb stress. Therefore, root-secreted LMWOAs
might play an important role in decreasing rhizosphere pH, which further affected the stability
of CPY in the ryegrass rhizosphere.

The higher values of Ca(NO3)2 extractable P in vegetation treatments suggested that rhizo-
sphere processes could promote the dissolution of CPY. Similarly, Hinsinger and Gilkes [29]
have reported root-induced dissolution of phosphate rock in the rhizosphere of white lupins.
Furthermore, in all the vegetation treatments, Ca(NO3)2 extractable P levels in the rhizosphere
were lower than those in the bulk matter, which might be due to the acquisition of P by rye-
grass. On the other hand, considerable amounts of Ca(NO3)2 extractable P were found in pots
treated with P-free nutrient solution, suggesting that CPY might not be as stable as expected by
its Ksp, and could be partly dissolved in rhizosphere processes. Similar results were also found
by Sayer et al [31], who reported that CPY could be solubilized by organic acid producing fungi
and transformed into lead oxalate dihydrate. The Ca(NO3)2 extractable Pb in pots treated with
P-free nutrient solution is considered to have originated from the Pb adsorbed on the CPY sur-
face. As reported by Martínez et al. [49], there were excessive Pb ions on the CPY surface due
to oversaturation with respect to CPY synthesis, and thus the Ca(NO3)2 extractable Pb in pots
treated with P-free nutrient solution was higher than in those treated with P-nutrient solution.
In contrast, less Ca(NO3)2 extractable Pb in pots irrigated with P-nutrient solution were attrib-
uted to the probable precipitation of CPY by excessive P.

Compared with P0, the relatively low P content in the shoots and roots of ryegrass treated
with P-free nutriment solution indicated that the P supply had poor efficiency and that CPY
had high stability. However, considerable amounts of P in shoot and roots (NC1 and NC3)
strongly suggest that, in the absence of other soluble sources of phosphate, plants could induce
the dissolution of CPY while P remained free and available for plant uptake. In contrast, the
irrigation of P-nutrient solution could improve P uptake by ryegrass under CPY treatments.

The accumulation of Pb by ryegrass has been demonstrated in numerous reports [50,51].
However, the uptake and translocation of Pb by plants could be simultaneously affected by var-
ious factors, such as plant species, growth conditions and Pb speciation. Lower contents of
shoot Pb in the CPY treatments were consistent with the previous study where Pb was pre-
ferred to accumulate in the roots with little translocation to the shoots [52]. Previous research
suggested that some plants used an exclusion mechanism to accumulate Pb in their roots and
limit its transport to the shoots. Electron microscopy and XRD studies indicated that Pb accu-
mulated in the root by binding to root cell walls or by precipitating as lead phosphate [13].
Uptake and accumulation of Pb in the ryegrass tissues varied depending on the P source used.
It was worth noting that although the Ca(NO3)2 extractable Pb (Fig 4) in NC1 and NC3 were
higher than PC1 and PC3, respectively, the shoot and root Pb contents (Fig 5) were lower in
NC1 and NC3 than that in CPY treatments irrigated with P nutriment solution, which sug-
gested that Pb accumulation and translocation in the ryegrass was significantly higher in P-suf-
ficient conditions than in P-deficient conditions. This may have occurred due to the large,
most supreme under P-sufficient conditions. Similar findings were reported by Abbaspour
et al. [37], who also founded that P supplied by hydroxyapatite or P-nutrient solution was
more effective in Pb acquisition by Indian mustard and alfalfa from CPY than P deficient
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conditions. Furthermore, lower values of Ca(NO3)2 extractable Pb in the growing medium and
higher Pb accumulation by ryegrass in PC1 and PC3 might also be attributable to the uptake,
translocation and accumulation of Pb by ryegrass, which has been widely reported for its toler-
ance and ability to accumulate Pb [39,50,51].

4.2 Effect of CPY on root secretion of LMWOAs by ryegrass
LMWOAs are natural products of root exudates, microbial secretions, and plant and animal
residue decomposition in soils [20]. It is well known that the secretion of LMWOAs (such as
oxalic, tartaric, malic, acetic and citric acids) by roots plays a significant role in root nutrient
acquisition, mineral weathering, microbial chemotaxis and metal detoxification [53]. There-
fore, analyses of root-secreted LMWOAs by Ryegrass under CPY treatments are essential to
elucidate the role of LMWOAs in the dissolution of CPY and to evaluate the stability of CPY in
the rhizosphere.

Previous studies have well documented that root exudation of LMWOAs, mainly including
acetic, citric, fumaric, malic, oxalic, and succinic acids, were enhanced in many plant species
under P deficiency or metal stress [36,40,53]. However, considering the irrigation of P-nutrient
solution in these treatments, the enhanced root exudation of LMWOAs in PC1 and PC3 was
probably due to the Pb-containing CPY stress, suggesting the potential phytotoxicity of CPY.
There exists overwhelming evidence implying that some plants could directly modify the rhizo-
sphere via root exudation of LMWOAs in order to gain access to previously unavailable P
reserves [21,23]. For instance, P-deficient white lupin and rape roots exuded striking amounts
of citric and malic acid, which could be a highly effective strategy for plant roots to enhance P
uptake from insoluble phosphate [23,54]. The root-secreted organic acids resulted in the
increasing availability of P and micronutrients because organic anions could compete with P
for complexation by Fe, Al, and Ca [29,55]. However, the nature of root-secreted LMWOAs
varied significantly in response to environmental stresses, especially under P nutrient defi-
ciency [21,23,54]. In the present study, concentrations of LMWOAs in root exudates of rye-
grass under CPY treatments are summarized in Fig 6d. CPY could significantly increase the
acetic, oxalic, citric and malic acids exudation when irrigated with P-nutrient solution, but
oxalic acid was the dominant species in root-secreted LMWOAs in NC1 and NC3 treatments
(Fig 6d). In our previous work [2], it was found that oxalic acid was capable of inhibiting the
precipitation of CPY and enhancing the dissolution of CPY through complexation with surface
Pb on CPY. Therefore, the secretion of oxalic acid by ryegrass was probably a specific response
to stress deficiency. The present results also suggest that P and Pb uptake and LMWOAs (espe-
cially oxalic acid) secretion by ryegrass root might be the driving forces for root-induced disso-
lution of CPY. Nevertheless, it should be pointed out that many microorganisms could make
insoluble soil phosphate bioavailable, for example the dissolution of insoluble metal phosphates
by free-living and symbiotic fungi has been reported [56,57]. Therefore, the importance of con-
sidering microbial processes when evaluating the long-term stability of CPY in the rhizosphere
also needs to be emphasized in future study.

5. Conclusions
To achieve the remediation of Pb-contaminated soil, transformation of Pb to extremely stable
CPY using P-bearing materials, has gained extensive attention and recognition over the world.
Therefore, understanding the stability of CPY has considerable benefits for risk assessment and
remediation strategies in contaminated water and soil. In this study, the stability of CPY in rye-
grass rhizosphere was evaluated with results showing that the stability of CPY in the rhizo-
sphere may be not as high as previously reported. This reduction in the stability of CPY in the
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rhizosphere may be due to root exudation of LMWOAs caused by P-deficiency under CPY
treatments. Decreases in ryegrass biomass and rhizosphere pH indicated the potential phyto-
toxicity of CPY. Continuous production of LMWOAs in the rhizosphere would subject CPY to
several dissolution reactions that might lead to the possible release of Pb and P into the envi-
ronment. Root-secreted oxalic acid was firstly introduced by this study to play an important
role in root-induced dissolution and reduced the stability of CPY. Remediation technology
employing phosphate-induced immobilization of Pb should, therefore, be reconsidered due to
the ubiquity of soil LMWOAs, which can release Pb from CPY and increase its bioavailability.
Whereas, the effect of other factors, such as dissolved organic matter, on the long-term stability
of CPY in the rhizosphere zone, as well as the transport and transformation of CPY in soils,
needs further study.
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