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Abstract

Purpose: \Volumetric measurements of neonatal brain tissues may be used as a biomarker for later
neurodevelopmental outcome. We propose an automatic method for probabilistic brain segmentation in neonatal
MRIs.

Materials and Methods: In an IRB-approved study axial T1- and T2-weighted MR images were acquired at term-
equivalent age for a preterm cohort of 108 neonates. A method for automatic probabilistic segmentation of the
images into eight cerebral tissue classes was developed: cortical and central grey matter, unmyelinated and
myelinated white matter, cerebrospinal fluid in the ventricles and in the extra cerebral space, brainstem and
cerebellum. Segmentation is based on supervised pixel classification using intensity values and spatial positions of
the image voxels. The method was trained and evaluated using leave-one-out experiments on seven images, for
which an expert had set a reference standard manually. Subsequently, the method was applied to the remaining 101
scans, and the resulting segmentations were evaluated visually by three experts. Finally, volumes of the eight
segmented tissue classes were determined for each patient.

Results: The Dice similarity coefficients of the segmented tissue classes, except myelinated white matter, ranged
from 0.75 to 0.92. Myelinated white matter was difficult to segment and the achieved Dice coefficient was 0.47. Visual
analysis of the results demonstrated accurate segmentations of the eight tissue classes. The probabilistic
segmentation method produced volumes that compared favorably with the reference standard.

Conclusion: The proposed method provides accurate segmentation of neonatal brain MR images into all given
tissue classes, except myelinated white matter. This is the one of the first methods that distinguishes cerebrospinal
fluid in the ventricles from cerebrospinal fluid in the extracerebral space. This method might be helpful in predicting
neurodevelopmental outcome and useful for evaluating neuroprotective clinical trials in neonates.
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Introduction

Cerebral volumetric segmentation and voxel-based
morphometry have been applied to MR images of newborn
infants, and have shown to be of great additional value in
studying brain development at early stages [1-3]. In neonates,
various risk factors such as preterm birth, chronic lung disease
or intra-uterine growth restriction may influence and alter brain
tissue volumes [4-6] . Several studies have illustrated the
correlation between brain volumes and neurodevelopmental
outcome in childhood and adolescence of prematurely born
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subjects [1,7,8] However, data regarding brain volumes at
term-equivalent age (TEA) and long-term neurodevelopmental
outcome are rather limited [9].

To study subtle differences in volumes of brain tissues in
large cohorts, an automatic segmentation method is mandatory
since manual segmentations are very time-consuming and
subjective. To assess brain development and maturation in
newborns, it is necessary to identify different tissue classes. In
the last decade, several semi-automatic [10-12] or automatic
[13-19] neonatal brain segmentation algorithms have been
described. Some segmentation methods distinguished
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unmyelinated white matter (UWM) from myelinated white
matter (MWM) [15-17], and/or central grey matter (CeGM) from
cortical grey matter (CoGM) [11,13,16,17]. While the
cerebellum (CB) was shown to be very important in the
neurodevelopment in preterm infants [20], only a few methods
have segmented it separately [11,17-19,21]. Furthermore,
pronounced or increased ventricles are known to be related to
cerebral atrophy and adverse outcome [22]. Segmentation of
the ventricles separately from CSF was only performed by a
few other groups [10,18,21]. However, some only excluded the
cerebrospinal fluid in the extracerebral space [10,19], although
the interhemispheric subarachnoid space is described to be
increased and of prognostic value in preterm infants. Recently,
Gousias et al. [21] designed a protocol for manual annotation
of neonatal brain into 50 regions. Using this protocol, the
authors compared total and regional brain volumes in preterm-
and term-born infants scanned around TEA and found that
there are only small regional differences between the groups.
However, these conclusions were made based on a relatively
small dataset.

Automatic methods developed for segmentation of adult
brain with MRI are generally not applicable for segmentation in
neonatal scans. In neonatal brain images the contrast between
different tissue types is lower compared with the contrast in
adult scans because the majority of white matter in neonates is
unmyelinated and has higher water content. In addition, the
scan time in neonatal brain imaging is limited because of
possible motion of the infants, which reduces the signal-to-
noise ratio [6].

We propose an automatic method for segmentation of eight
brain structures in neonatal MRI. The method utilizes a
supervised pixel segmentation approach. Each brain voxel is
described by a set of intensity and spatial features based on
which a supervised pixel classification is performed. The
method segments UWM, MWM, CeGM, CoGM, cerebrospinal
fluid both in the extracerebral space (referred to as ‘CSF’) and
in the ventricles (VENT), brainstem (BS) and CB. The method
is based on an earlier publication by our group [13]. Both
methods perform segmentation of brain tissue classes using
supervised voxel classification utilizing intensity and spatial
information. Here proposed method contains two major
novelties compared to the previous work. First, an average
brain image is introduced which is used for extraction of spatial
features. Second, in addition to earlier presented segmentation
of CoGM, CeGM, total white matter, and cerebrospinal fluid,
this method also performs segmentation of cerebellum,
ventricles separately from CSF, UWM and MWM separately,
and brainstem.

Materials and Methods

Patients and MR images

The study was approved by the Medical Ethics Committee of
our institute and written informed parental consent was
obtained for all infants. This MRI study was performed in
preterm infants around TEA (n=108) [23,24], with a gestational
age at birth <31 weeks, from January 2007 until June 2008.
Seven infants with MRI without cerebral pathology, without
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Table 1. Patient characteristics presented separately for the
large cohort of 101 infants and for the seven infants with
reference brain annotations.

Manual annotated

Variable Total cohort (n=101)scans (n=7)
Gender (male/female) 56/45 1/6
Gestational age (weeks) 28.4[25.1-30.9] 28.9[25.6-30.9]
Birth weight (grams) 1129[630-1910] 1118[650-1705]
Postmenstrual age at scan (weeks)  41.7[39.6-43.6] 41.3[40.6-42.1]
Bronchopulmonary dysplasia (n) 44 (43.6%) 3 (42.9%)
Patent Ductus Arteriosus (n) 35 (35.7%) 1(14.3%)
Culture proven sepsis (n) 49 (48.5%) 3 (42.9%)
Woodward white matter score [38] 8[5-12] 8[5-10]
BSITD-III total motor composite

107[73-142] 105[97-118]
score, corrected age
BSITD-III cognitive composite score,

103[80-140] 109[95-145]

corrected age

Table lists mean value and range is given in brackets (mean[range]), there were no
significant differences between the two groups. BSITD (Bayley scale of infant and
toddler development, third edition [37]).
doi: 10.1371/journal.pone.0081895.t001

movement artifacts and with a normal outcome at two years of
age (BSID-IIl; mean MDI score 109 + 17, mean PDI score 105
+ 7) were chosen for manual segmentation. Patients’
characteristics are shown in Table 1.

For each infant, axial 3DT1-weighted (TR=9.4 ms; TE=4.6
ms; scan time=3.44 min, FOV=180x180; scan matrix=512x512;
consecutive sections with thickness=2.0 mm; number of
sections=50) and axial T2-weighted images (TR=6293 ms;
TE=120 ms; scan time=540 min; FOV=180x180; scan
matrix=512x512; consecutive sections with thickness=2.0 mm;
number of sections=50) were acquired on a 3.0 Tesla MR
system (Philips Healthcare, Best, The Netherlands) using a
sense head coil. The infants were sedated with 50-60 mg/kg
chloralhydrate by gastric tube 15 minutes prior to the
examination. During MR examination, the infants were placed
in a vacuum fixation pillow to reduce movement and hearing
protection was administered while heart rate, transcutaneous
oxygen saturation and respiratory rate were monitored. A
neonatologist was present throughout the procedure.

Manual segmentation

In the seven infants, chosen for manual segmentation, the
T2-weighted scans were manually annotated slice by slice by
one of the authors (BJMvK). Each brain voxel was assigned to
one of the eight tissue classes (CoGM, CeGM, UWM, MWM,
CSF, VENT, BS and CB) by mouse painting. The labeling was
indicated by a color overlay: each tissue type was represented
by one color. When labeling MWM, both T1- and T2-weighted
images were used to precisely define the tissue border. We
used T1 images for MWM segmentation since early changes of
myelination are best seen on these images in term equivalent
infants. In the manual segmentation process each voxel was
assigned to one tissue type only. The manual segmentation of
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one image-set of one patient took approximately 100 hours.
These manual segmentations were verified independently by
three neonatologists with at least five years of experience in
reading neonatal MRI scans, corrected according to their
findings and reevaluated in a consensus meeting. The manual
segmentations were considered as reference standard for
training and validation of the segmentation method

To estimate inter-observer agreement, a subset of five out of
seven scans was selected for manual annotations by other
observers. In these scans, each of the eight tissue types was
segmented in three slices, determined for each tissue
separately. The selected slices were those numbered as 25"
percentile, median and 75" percentile of the slices visualizing
each given tissue. The manual annotations were performed
following the aforementioned protocol by five medical students
trained specifically for this task performed them. None of them
has been involved in the annotation of the reference standard.
Segmentations were finally checked and corrected by expert
neonatologists.

Automatic segmentation algorithm

The proposed segmentation algorithm is based on
supervised pixel classification [25]. Each voxel was described
with intensity and spatial features. Based on these features,
each brain voxel was assigned to one of the eight tissue
classes using K-nearest neighbor classifier.

Before classification was employed, several preprocessing
steps were carried out. First, to compensate for acquisition
inhomogeneity effects, a shading correction was performed to
the T1- and T2-weighted MR images. This was implemented
following the algorithm by Likar et al. [26].

(Next, intra- subject registration was carried out. Considering
that acquisition takes under 10 minutes, in spite of sedation,
occasionally subjects move during scanning. To enable
exploitation of intensity characteristics from both T1- and T2-
weighted scans, these scans needed to be aligned. Given that
MR imaging results in the distortion of tissue in different
sequences, the scans were registered using affine and
subsequently elastic intra-patient registration. This was
modeled by B-splines at three resolutions (a Gaussian pyramid
with a sub sampling factor of two in each direction) to avoid
local minima in the cost function. As a cost function negative
mutual information was used. For the optimization of the cost
function an iterative stochastic gradient descent optimizer was
employed. At each resolution 200 iterations of the stochastic
gradient descent optimizer were performed. The derivative of
the mutual information was calculated with 5000 image
samples, randomly chosen at every iteration. 32 histogram bins
were used. The affine and elastic registrations were performed
using elastiX (http://elastix.isi.uu.nl) [27].

Finally, to utilize spatial features, scans of all patients
needed to be transformed into a common coordinate system.
For this purpose, an average T2-weighted brain image was
constructed. This was achieved by iterative registration and
summation of the T2-weighted images of all patients in the
cohort. Thus, initial average was obtained by summation of the
T2-weighted scans. Subsequently, all images were aligned with
this initial average by registration. This way transformed
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images were again averaged and this image represented the
current average brain. This process was repeated iteratively
until the stable average brain image was obtained, as
determined by visual inspection. This way bias towards a single
reference image was removed from the average brain image.
To achieve a coarse alignment, affine registration was
performed with the same parameters described above, except
here 16 histogram bins were used when computing the
derivative of the cost function. Subsequently, the alignment
was refined using elastic registration modeled by B-splines.
Again multi-resolution strategy with three resolutions was used.
Final grid spacing was 16 voxels. 16, 32 and 32 histogram bins
were used, respectively. The remaining parameters were the
same as listed above.

Each voxel was described by the features to perform
classification, i.e. to assign each voxel in the image to one of
the given tissue classes. T1- and T2-weighted images provided
intensity information, and voxel position i.e. x-, y- and z-
coordinates in the coordinate system of the average brain gave
spatial characteristics. For that purpose, the T2-weighted scan
of each patient was elastically registered to the average brain
using affine and elastic registration. The registration was
performed using the same parameters described above.

To account for different ranges of features, all features were
scaled to zero mean and unit variance prior to classification
[25]. Pilot experiments showed that the best results were
obtained using a k-nearest-neighbor classifier (kNN) with k set
to 50 in the former method [13,28]. The classifier assigned
each voxel a posterior probability for each tissue type and
background. This way, probabilistic segmentation was
generated for each tissue.

Finally, to obtain brain segmentation in the original T2-
weighted scan, probabilistic segmentation result was
transferred from the space of the average brain to the patient’s
T2-weighted image coordinate system by inverse registration
transformation. To obtain binary segmentations, each voxel
was assigned to the tissue class with the highest posterior
probability determined by the using kNN classifier [25].

Note that due to different sizes of brain tissue classes,
images and consequently training data, consisted of unequal
number of voxels, thus training samples, per brain tissue class.
It has been shown that in an unbalanced data set, i.e. data set
in which minority class is represented by small number of
samples and maijority class by large portion of all samples, the
classification performance often decreases [29]. To improve
the performance different sampling strategies have been
proposed [30-32]. We have performed local correction by
inspecting neighborhood of each sample in the feature space
proposed by Tan [30]. This approach assigns larger weight to
neighbors of small classes and little weight to neighbors from
large classes. This way correction for differences in the a priori
probabilities of different classes in the neighborhood of a given
sample is performed. The weight w; of the class i is determined
using the following formula:
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.....

where Num denotes the cardinality, and C; neighbors of
class i in the neighborhood of the observed sample among N
nearest neighbors. exponent is a parameter >1.

Given the weight w,, the corrected posterior probability of a
voxel for each class i was determined by multiplying the
posterior probability of the voxel for class i determined by the
kNN classifier by the corresponding class weight w;.

Experiments

To perform segmentation seven patients with a manually set
reference standard were used. Evaluation was performed in a
‘leave-one-out’ fashion. This means that each patient brain was
classified using the training set composed from the images of
the remaining six patients. This was performed seven times, so
each scan was once a test scan. Owing to the large number of
samples, i.e. voxels in each brain, 20% of brain voxels were
randomly selected from each training image. The selected
samples were merged into one set and used for training the
classifier. This reduced computation time and computer
memory usage.

To determine whether the correction for the unbalanced data
is needed in this task, segmentation was determined by
assigning each sample class label with the largest a posteriori
probability determined by the classification without correction
(i.e. using posterior probabilities determined by standard kNN
classification) and with correction (i.e. using the above
described weights to obtain corrected posterior probabilities).
When applying correction, several values between 1 and 75
were evaluated to find the exponent giving the best
performance.

After the best classification strategy was determined,
automatic results were compared with the manual
segmentations to quantitatively evaluate the performance of
the method. Since the voxels in the manually set reference
standard were assigned to a single tissue type, binary
segmentations were compared with the reference standard
using the Dice similarity coefficient (DSC) determined as
follows:

2XTP

DSC= 5 TP FPTFN

where TP was the number of true positive, TN number of
true negative, FP number of false positive, and FN number of
false negative voxels.

TP
In addition, the sensitivity (W), and specificity

TN
(TN—+FP) of the segmentation were calculated.

Subsequently, volumes of the different brain tissues were
calculated in two ways: 1) directly from the probability maps,
and 2) using the binary majority class segmentations. For both
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methods, the volume per tissue class was compared with the
manual segmentations.

To establish whether the proposed method is robust on a
large set of images, it was subsequently applied to the
remaining 101 infants of the cohort. The training set was in this
case created using all seven images with manual reference
annotations. As in leave-one-out experiments, 20% of the brain
voxels were randomly selected from each of the seven images
and subsequently merged into the training set.

Considering that the reference standard was not available in
these scans, the probabilistic segmentation results were
evaluated by visual inspection of expert observers. Three
observers performed the analysis and each scan was
presented to only one of them, The visual inspection of all
images was performed slice by slice on the complete scan
using mainly T2-weighted scans for 7 structures, and both T1-
and T2-weighted image when evaluating MWM segmentation.
The segmentation result of each tissue was graded on a scale
from 1 to 5 (1=very poor, 2=poor, 3=moderate, 4=good, 5=very
good). The observers were allowed to assign values from 1 to
5 with 0.5 increments.

In addition, automatic segmentations of the seven scans with
reference annotations were also evaluated visually. Results of
the visual assessment were related to the quantitative
evaluation.

Results

Figure 1 shows sections from the average brain image. As
illustrated in the figure, major brain structures can be clearly
identified. Visual inspection of the alignment between test T2-
weighted scan and the average brain showed good alignment.

In the segmentation, optimal classification strategy was first
determined. In comparison to the segmentation without
correction for differences in the prior probabilities for different
tissue classes, increasing the exponent in the correction
strategy, resulted in larger probabilities for tissues with a small
percentage of samples in the data set at the expense of lower
probabilities for the segmentation of tissues represented by
many samples. This was most pronounced in the segmentation
result of the myelinated white matter and cerebellum.
Nevertheless, weighting did not influence the binary
segmentation result. When increasing the exponent (i.e. when
its value was getting closer to the maximal tested value), visual
inspection of the segmentation results showed that the
segmentations were becoming more similar to those obtained
without the correction. The same trend was observed by
computation of the resulting tissue volumes. Because this
correction has not led to the improvement in the segmentation
performance, results without the correction were used for
further analysis.

Next, automatically obtained binary segmentation was
compared to the reference standard. Note again that the binary
segmentation was obtained from the probabilistic results using
majority class segmentation. Table 2 lists the results in terms of
DSC, sensitivity and specificity. Figure 2 shows probabilistic
segmentations at three levels in the brain in one randomly
selected infant. Performance of the second observer
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Figure 1. Several slices showing average brain image. This was achieved by iterative registration and summation of the T2-

weighted images of all patients in the cohort.
doi: 10.1371/journal.pone.0081895.g001

Table 2. Binary segmentation result evaluated in terms of
Dice overlap measure, sensitivity and specificity averaged
over seven patients.

Tissue type DSC Sensitivity Specificity
Cerebellum 0.919 (0.008) 0.924 0.999
Myelinated white matter 0.470 (0.125) 0.422 1.000
Central grey matter 0.911 (0.012) 0.918 0.995
Ventricles 0.838 (0.035) 0.828 0.997
Unmyelinated white matter 0.854 (0.021) 0.870 0.923
Brainstem 0.838 (0.024) 0.833 0.998
Cortical grey matter 0.827 (0.030) 0.870 0.894
Cerebrospinal fluid 0.751 (0.071) 0.727 0.930

Standard deviations are given in brackets. The binary segmentations were
obtained from the probabilistic segmentations using majority class voting.
doi: 10.1371/journal.pone.0081895.t002

segmentation was evaluated using the same metric and the
results are listed in Table 3. Results indicate that for most
tissues agreement between an observer and the reference
standard is similar to the agreement between the automatic
segmentation and the reference standard. Exceptions are
CoGM and CSF. Retrospective analysis revealed that the
annotations of the second observer mostly differ from the
reference annotations along cortical surface, especially in sulci
where CSF is poorly visible and grey matter forms closed
shape.

PLOS ONE | www.plosone.org

After the segmentation was evaluated, volumes of the
segmented brain tissues were computed. Table 4 lists brain
tissue volumes calculated from the manually set reference
standard and automatically obtained probabilistic and binary
segmentations. Average results over all seven patients are
presented. No significant differences with the reference
standard were observed for tissue volumes calculated using
probabilistic segmentation results. However, the volumes
calculated by binary majority class segmentation differ
significantly from the reference values for CB and CoGM.

Finally, visual inspection of the automatic segmentation in
the remaining cohort was performed. Results are listed in Table
5. Note that manually set reference standard for those 101
scans was not available, because manual segmentations are
extremely time-consuming, and therefore, quantitative
evaluation was not feasible. The results show that the method
is robust. No automatic segmentation has been assigned grade
1 which would have indicated a very poor result. Minimum
grade of 2 was assigned in segmentation of Vent, CoGM, and
CeGM to only one scan, and twice in segmentation of BS. This
automatic segmentation of the ventricles was poor likely due to
substantial motion artifacts in the images. Boundaries of these
ventricles are blurry and automatic segmentation
overestimated their volume. Segmentation of CoGM followed
tissue well, but posterior probabilities were often low where the
CoGM was clearly present (see Figure 2: 3™ row, 3 column).

Minimum grade of 2.5 was assigned to one case in
segmentation of CSF where the tissue was automatically
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Figure 2. Probabilistic segmentations of intracranial tissues on several levels. Abbreviations: T2: T2-weighted image; CB:
Cerebellum; CoGM: Cortical gray matter; BS: Brainstem; T1: T1-weighted image; UWM: Unmyelinated white matter; MWM:
myelinated white matter; CSF: Cerebrospinal fluid.

doi: 10.1371/journal.pone.0081895.g002

segmented out of the brain, probably due to inaccurately respectively. Most of the segmentations were assigned grades
generated brain mask. Segmentations of CB and UWM were between 4 and 5, showing good overall performance in a large
graded with minimal grade 4 assigned to six and ten scans, set.
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Table 3. Binary segmentation result performed by the
second observer evaluated in terms of Dice overlap
measure, sensitivity and specificity averaged over seven
patients.

Tissue type DSC Sensitivity Specificity
Cerebellum 0.935(0.006) 0.905 0.999
Myelinated white matter 0.465 (0.127) 0.409 0.999
Central grey matter 0.939 (0.010) 0.928 0.999
Ventricles 0.880 (0.028) 0.898 0.999
Unmyelinated white matter 0.895 (0.337) 0.953 0.986
Brainstem 0.843 (0.636) 0.830 0.999
Cortical grey matter 0.759 (0.062) 0.650 0.996
Cerebrospinal fluid 0.687 (0.062) 0.908 0.977

Here evaluated manual annotations were performed for each tissue in three slices
in a subset of five images. Standard deviations are given in brackets.
doi: 10.1371/journal.pone.0081895.t003

Table 4. Brain tissue volumes (in cc) averaged over seven
patients with reference standard calculated by two different
approaches: 1) probabilistic segmentation and 2) binary
segmentation obtained using majority class.

Tissue type Reference standard Probability map Majority
Cerebellum 28.6 28.9 32.6*
Myelinated white matter 1.7 2.0 1.3
Central gray matter 22.6 22.7 23.3
Ventricles 8.3 8.7 8.5
Unmyelinated white matter 164.7 171.0 173.0
Brainstem 6.3 6.1 6.4
Cortical gray matter 152.2 152.6 174.4*
Cerebrospinal fluid 92.2 82.2 99.0

The automatically obtained volumes were compared with the reference volumes.
Statistically significant different volumes are marked with a *.

*.: p-value < 0.01 paired samples t-test, with bonferroni correction

doi: 10.1371/journal.pone.0081895.t004

Visual evaluation of the automatic segmentations was also
performed in seven scans with manual annotations. The results
are also listed in Table 5. They show that higher scores were
obtained in this subset of seven selected images than in the
large set of 101 scans. This is likely because these seven
images were selected so that no cerebral pathology was visible
and no movement artefacts were present. These infants had
normal outcome at two years of age. Therefore, the scans were
likely easier for the automatic segmentation. However, relating
these grades to the quantitative evaluation is difficult.
Quantitative evaluation of the MWM segmentation revealed low
DC, while visual assessment had a median score of 5.

Discussion
This study presents an automatic brain segmentation and

quantification of eight cerebral tissue classes in neonatal MRI
scans acquired at TEA. The method segmented CSF,
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Table 5. Evaluation of automatic segmentation in 101
scans performed by visual assessment.

Images without reference Images with reference

Tissue type Median P25 P75 Median P25 P75
Cerebellum 4 4 4.5 4.5 425 5
Myelinated white matter 4 3 4.5 5 4 5
Central gray matter 4 4 5 5 475 5
Ventricles 4.5 4 5] 5 475 5
Unmyelinated white matter 4 4 4.5 5 4.5 5
Brainstem 4 4 4.5 5 475 5
Cortical gray matter 4 3.5 4 5 425 5
Cerebrospinal fluid 4 &5 4.5 5 425 5

Segmentation of each tissue was graded on scale from 1 to 5 (1=very poor,
2=poor, 3=moderate, 4=good, 5=very good). Evaluation is presented separately for
images without the reference annotations and for seven images with the reference
annotations.

P25, 25t percentile; P75, 75t percentile

doi: 10.1371/journal.pone.0081895.t005

ventricles and cerebellum, separately. The generated
automatic segmentations in a large set of 108 infant scans
were accurate according to expert visual inspection.

Several methods for (semi-)automatic brain segmentation in
neonatal MRI scans have been presented earlier [10-19,21].
These algorithms were based on pattern recognition, image
registration, mathematical morphology, or a combination. The
method that is proposed here is an extension of an earlier
publication by our group [13] describing a method for automatic
segmentation of neonatal MRI scans which is also based on
supervised pixel classification using intensity and spatial
information. There are two major novelties of the method
described in this work. First, an average brain image was
introduced which was used for extraction of spatial features.
Second, segmentation of cerebellum, ventricles separately
from CSF, UWM and MWM separately, and brainstem was
performed next to the segmentation of central and cortical grey
matter, total white matter, and cerebrospinal fluid.

The presented method distinguishes VENT from CSF. This
distinction is important in preterm infants, as an increased
amount of CSF due to a large subarachnoid space could be an
indicator of e.g. brain atrophy [22]. An increase in total CSF or
solitary increased ventricular volumes at TEA is associated
with  an impaired outcome in preterm infants [9,22].
Furthermore, in previous publications segmentation of the
cerebellum has often been omitted. Besides the method
presented here, manual and automatic cerebellar segmentation
have been described [10.11,17,19,21]. The CB volume has
shown to be very important in especially the cognitive
development of the preterm infant [20]. Segmentation of the CB
is a difficult issue, since this structure shows inhomogeneous
signal intensities on both T1- and T2-weighted scans, varying
from values similar to UWM to intensities of GM. The use of
spatial information in the proposed method was helpful.
However, separation of occipital CoGM and cerebellum
remained difficult. A similar problem was observed in the
segmentation of CoGM and CeGM. These tissues have similar
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intensities and can only be distinguished by spatial information
and shape. Misclassifications were observed as
oversegmentation of CB and CeGM, where some CoGM
voxels were detected as CB or CeGM. Nevertheless, the
achieved overlap measures (DSCs) of CB, CoGM and CeGM
segmentations were high.

Considering that the previously published methods were
applied to different sets of images acquired using different
parameters (image resolution, magnetic field strength, scan
orientation), and that they segmented different tissue classes, it
is difficult to directly compare the segmentation results. In
addition, in different studies validations were performed in a
single, or only in several sections [15-17]. In the present study,
evaluation of all eight structures was performed slice by slice
on the complete scan. Because manual annotations of all eight
tissue types in all image sections are extremely time
consuming (about 100 hours/scan), the manual reference
standard was set in a subset of seven scans. Quantitative
evaluation could only be performed in these images, and the
remaining segmentations in 101 scans were checked by visual
inspection.

Although it is difficult to compare, the obtained average DSC
values (0.71 - 0.92, except 0.47 for MWM) are similar to those
reported earlier (0.56-0.75 by Prastawa et al. [15], 0.72-0.92 by
Weisenfeld and Warfield [16]'¢, 0.75-0.90 by Gui et al. [17], and
0.84-0.88 by Yu et al. [11]). We obtained the lowest DSCs for
MWM. The segmentation of MWM in the preterm brain around
TEA is a challenge. The maturation of the preterm brain is an
ongoing process showing different degrees of myelination over
a short period of time and it is difficult to define the exact
ending of MWM and the beginning of CeGM. Additionally, the
volume of MWM in the preterm infant at TEA is relatively small.
This implies that a small difference in segmented volume
compared with the reference volume resulted in a low DSC. It
is questionable whether T1- and T2-weighted scans provide
sufficient information for the segmentation of MWM. Since
MWM is related to the volumetric analysis of fiber tracts in the
developing brain, it may be better to determine MWM volume
using diffusion tensor imaging [33].

The presented method showed some segmentation
inaccuracies. First, a classification error was seen in UWM
areas where the signal intensity approached that of CSF. A
diffuse high signal intensity in UWM is a common finding in
preterm infants at TEA [34,35]. In those infants, UWM was
misclassified as CSF. This issue was also described by Yu et
al. [11]. To correct for this, the authors performed a manual
correction as the final step in their segmentation process.
Second, misclassification error was observed at the border
between CSF and CoGM. Owing to partial volume effects, the
signal intensities of these border voxels were similar to UWM.
The method used by Xue et al. [14] corrected voxels belonging
to CSF that were misclassified as WM using expectation-
maximization algorithm. Gui et al. [17] set anatomical
conditions on voxel neighborhood to correct misclassification
as UWM at the interface between CoGM and CSF. Weisenfeld
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and Warfield [16] corrected for partial volume effect by iterative
relaxation labeling. Considering that the goal of our
segmentation method is determination of brain tissue volumes,
and the fact that these inaccuracies were negligible in
volumetric measurements, to this end we have not performed
any correction. However, future work will focus on improving
these misclassifications as they would be important in
reconstruction of the cortical surface.

From the obtained segmentations, the volume of each tissue
type was calculated using probabilistic segmentation results
and binary segmentation obtained using majority class voting.
Considering that no statistically significant differences were
found between the volumes calculated using the probabilistic
and binary segmentation results, and that in addition,
probabilistic segmentations were visually more appealing, we
consider probabilistic segmentation the method of choice for
obtaining volumetric measurements.

Execution times of segmentation algorithms were often not
reported. The method of Weisenfeld and Warfield [16] reported
run-time of about 120 min. Yu et al. [11] reported execution
time of two hours per infant. The entire segmentation process
of our method took about 20 minutes per infant on a standard
PC.

Our method has limitations. We described an algorithm that
results in a probabilistic segmentation of brain tissue types.
However, we evaluated our method using manually set binary
reference standard. Setting the probabilistic reference standard
manually would be theoretically possible. An observer could
have been asked to assign each voxel a probability that it
belongs to a certain tissue type. Alternatively, a number of
observers could have been asked to delineate a given tissue
type, and averaging their segmentations could have served as
an approximation of a manually set probabilistic segmentation
[36]. However, considering work load this would require from a
human expert, obtaining the probabilistic manually set
segmentation was not feasible. Therefore, we have
quantitatively evaluated binary segmentation result obtained
from the probabilistic segmentation, and thereafter visually
inspected both segmentations.

To conclude, this neonatal automatic brain segmentation
method allows to distinguish cerebrospinal fluid from ventricles,
as well as to segment cortical and central grey matter,
(un)myelinated white matter, cerebellum and brainstem.
Distinguishing these tissue classes is of great clinical value.
Evaluation in a large set of patients indicates its applicability in
clinical settings.
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