
ARTICLE

Testing and isolation to prevent overloaded
healthcare facilities and reduce death rates in the
SARS-CoV-2 pandemic in Italy
Arnab Bandyopadhyay 1,4✉, Marta Schips1,4✉, Tanmay Mitra 1, Sahamoddin Khailaie1,

Sebastian C. Binder 1 & Michael Meyer-Hermann 1,2,3✉

Abstract

Background During the first wave of COVID-19, hospital and intensive care unit beds got

overwhelmed in Italy leading to an increased death burden. Based on data from Italian

regions, we disentangled the impact of various factors contributing to the bottleneck situation

of healthcare facilities, not well addressed in classical SEIR-like models. A particular emphasis

was set on the undetected fraction (dark figure), on the dynamically changing hospital

capacity, and on different testing, contact tracing, quarantine strategies.

Methods We first estimated the dark figure for different Italian regions. Using parameter

estimates from literature and, alternatively, with parameters derived from a fit to the initial

phase of COVID-19 spread, the model was optimized to fit data (infected, hospitalized, ICU,

dead) published by the Italian Civil Protection.

Results We show that testing influenced the infection dynamics by isolation of newly

detected cases and subsequent interruption of infection chains. The time-varying repro-

duction number (Rt) in high testing regions decreased to <1 earlier compared to the low

testing regions. While an early test and isolate (TI) scenario resulted in up to ~31% peak

reduction of hospital occupancy, the late TI scenario resulted in an overwhelmed healthcare

system.

Conclusions An early TI strategy would have decreased the overall hospital usage drastically

and, hence, death toll (∼34% reduction in Lombardia) and could have mitigated the lack of

healthcare facilities in the course of the pandemic, but it would not have kept the hospita-

lization amount within the pre-pandemic hospital limit.
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Plain language summary
Italy was heavily affected early in the

COVID-19 pandemic, with healthcare

facilities becoming overloaded. We

use mathematical models to study

COVID-19 transmission, and factors

contributing to this, on a regional

basis in Italy. We show that testing

and lockdowns were effective in con-

trolling disease spread. We use

regional pre- and post-pandemic

hospital/ICU bed occupancy to

quantify the impact of the over-

whelmed healthcare system upon the

number of deaths. We find that

increased isolation of cases could

have reduced the effect of limited

healthcare facilities but would not

have kept hospitalizations within the

pre-pandemic limit, and an improve-

ment of hospital facilities would still

have been required. We show that

contact tracing and quarantine with-

out testing could also be efficient

strategies when test capacities are

limited. Our findings help us to

understand how to manage COVID-19

or other disease outbreaks in future.
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The COVID-19 outbreak created a worldwide pandemic
causing more than 4,000,000 deaths and over 190 million
total cases worldwide as of July 20211. Many countries

implemented non-pharmaceutical interventions (NPIs), which
were effective in reducing virus spreading. This was further
supported by social distancing, mask duty, and hygiene measures.
Though different models of NPIs and their implementation
methods have been proposed, their impact and effectiveness on
disease dynamics are under scrutiny and remain a matter of
global discussion2–6. Singapore and Hong Kong were able to
contain the virus by aggressive testing7, while South Korea
adopted a trace, test, treatment strategy8. In a different but
similarly effective approach, Japan averted the risk of contagion
by isolating the whole contact clusters and by heavily relying on
the self-awareness and discipline of the population9.

The COVID-19 outbreak originated in Wuhan, People’s
Republic of China, in early December 2019. Within two months,
it erupted and unfolded with tremendous speed in Italy, which
became the European epicenter of disease spreading, forcing the
government to impose a lockdown on March 9th, 2020. On
March 19th, 3405 people had already died in Italy, thereby sur-
passing China, while 41035 people were diagnosed as COVID-19
positive. This induced Italy to shut down all non-essential busi-
nesses on March 21st. Despite the strict measures applied, in
Lombardia alone a total of 28545 symptomatic people were
infected by April 8th, accounting for 12976 hospital admissions,
followed by Emilia Romagna (4130), Piemonte (3196), and
Veneto (1839)10. These large numbers led to the complete col-
lapse of the healthcare system within a few weeks of the first
detection of COVID-19 cases, most notably in Lombardia where
even funeral homes had been overwhelmed and were incapable of
responding in a reasonable time11. Even though the state
expanded the hospital and intensive care unit (ICU) capacities, it
could not prevent the bottleneck situation of the healthcare sys-
tem and presumably caused a large number of deaths for a
prolonged period.

Many factors aggravated the COVID-19 situation in Italy,
among which the distinct demographic structure of Italy with
nearly 23% of the population of age 65 years or older12, larger
household size, and the prevalence of three-generation house-
holds compared to Germany13 as well as limited hospital and ICU
capacities. At the beginning of the pandemic, Italy focused on
testing symptomatic patients only, which resulted in a large
proportion of positive tests and high case fatality rates (CFR)
compared to other countries14. A large proportion of cases
remained undetected, which became a major driver of new
infections. A different study estimates that in Italy the actual
number of total infections was around 30-fold higher than
reported, while for Germany it was less than ten-fold15 (data up
to March 17th 2020).

Compartmental models have been widely used to describe the
dynamics of epidemics, for example, SIR models16 that consider
three compartments, namely susceptible, infected, and recovered,
or more complex SEIR models17,18 that take susceptible, exposed,
infectious, and recovered compartments into account. Typically,
these models either exclude the undetected index cases4,17,18, or
ignore their dynamic nature19, and structurally these models are
not developed to address the load on the healthcare system.
Besides these epidemic models, simple algorithms exist in the
literature for estimating the time-varying reproduction number
and have been widely used in the context of many infectious
diseases (e.g., measles, H1N1 swine flu, polio, etc.)20. Several
studies21,22 estimated the undetected case number in Italy, but its
dynamics in the context of different testing strategies and
implications on the healthcare system were not considered. Even
though the general compartmental SIR and SEIR type models are

useful in inferring epidemic spread and public health interven-
tions, we needed to introduce additional compartments to
investigate how the pandemic is shaped by several influential
factors (e.g., dark numbers, regional testing strategies, hospital
beds); for instance, we included a specific compartment for
infected undetected cases (IX) to analyse the impact of the region-
wise undetected cases upon the evolution of the Rt. Similarly,
hospital (HU and HR) and ICU (UD and UR) compartments were
introduced to monitor the load on the healthcare system.

Additionally, the absence of reliable symptom onset data and
heterogeneity in the actual infectious period among the asymp-
tomatic, pre-symptomatic, and symptomatic individuals require a
more complex model that not only can accurately portray the
dynamics of COVID-19 spread but also can disentangle the
impact of intertwined factors like the variation of undetected
components, limited and changing hospital and ICU availability.

Existing modeling studies that analyze the COVID-19 situation
in Italy19,23 or other regions4,24–26, in general, did not address
some fundamental aspects of the ongoing pandemic like temporal
dynamics of undetected infections, the benefits of a high testing
and isolation strategy, or the impact of a limited and dynamically
changing healthcare capacity on the lives lost. In this study, we
address the bottleneck situation of the healthcare facility, the
benefits of extending hospital infrastructure, and the impact of an
early testing and isolation strategy on the healthcare system with
a COVID-19-specific mathematical model. To evaluate the
COVID-19 situation in Italy in a realistic framework, we first
estimated the undetected fraction (dark figure) of infections
across different regions of Italy. We used this information to
determine the parameters of the model and showed that our
model is structurally identifiable. We studied the influence of the
dark figure and implemented NPIs on the time-dependent
reproduction number, Rt. With data about regional hospital
and ICU bed capacities, we estimated that an extra 25% of people
died in Lombardia due to the overwhelmed healthcare system.
We investigated the impact of early testing strategy and, alter-
natively, of contact tracing combined with quarantine (~10 fold
more isolation of infected) policy in the setting of elevated hos-
pital capacity as it currently stands. This strategy would have
reduced the death toll by 20% to 50%.

Methods
SECIRD-model. To understand the impact of potential aggra-
vating factors, namely infections from undetected index cases,
early vs late testing strategy, and limited healthcare facilities on
disease progression, we developed a COVID-19-specific SECIRD-
model parametrized for Italy. The SECIRD-model distinguishes
healthy individuals without immune memory of COVID-19
(susceptible, S), infected individuals without symptoms but not
yet infectious (exposed, E), and infected individuals without
symptoms who are infectious (carrier, CI, CR). The carriers are
distinguished into a fraction α of asymptomatic (CR) and (1− α)
of pre-symptomatic infected (CI). The latter are categorized into a
fraction μ of detected symptomatic (IH and IR) and (1− μ) of
undetected mild-symptomatic (IX). Out of the CI, a fraction ρ gets
hospitalized (IH), and (1− ρ) become symptomatic but recover
without hospitalization (IR). Further, compartments for hospita-
lization (H) and intensive care units (U) were introduced to
monitor the load on the healthcare system. A fraction ϑ of H
requires treatment in ICU (HU) while a fraction (1− ϑ) recovers
from hospital without ICU treatment (HR). δ and (1− δ) repre-
sent the fraction of patients in ICU who subsequently die (UD) or
recover (UR). The compartment (R) consists of patients recovered
from different infection states. The Reference Model (Fig. 1;
equations are in the Supplementary Methods 1.3) was solved with
parameters in Table 1.
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Initial condition. Italian regions started documenting epide-
miological data at different dates, at the earliest February 24th,
2020. As we considered a fixed incubation period of 5.2 days in
our model, we assumed that at minimum, the first entry in the
dataset (number of total cases) was the exposed number 5.2 days
earlier. In addition to the documented infection, we calculated
undocumented cases based on the estimated region-wise dark
number by a Bayesian MCMC framework (Supplementary
Methods 1.2). The sum of documented and undocumented cases
was the initial exposed population. We used regional population
as the initial susceptible population. For all other compartments,
we started the simulation with zero. The simulation began from
−5.2 days with the aforementioned initial conditions, and
undetected cases were split between asymptomatic and sympto-
matic undetected cases according to the parameters used for those
compartments.

Parameterization. We distinguished physiological and beha-
vioral model parameters. Physiological parameters depend on

the nature of the virus (Rx, x= 2, ..., 9) and remain unchanged
throughout the analysis of the pandemic. We first determined the
range of physiological values for each parameter from the
literature27,28 (Table 1) and then estimated parameters’ values
from a fit to the exponential growth of case numbers (infection,
hospitalized, ICUs, and death cases) during the first two weeks of
the pandemic. In total, 56 data points (14 daily data for those
four observables) were used to estimate the physiological para-
meters. This initial phase was not yet affected by NPIs, public
awareness, or an overwhelmed healthcare system and, thus,
reflects viral properties. Some of the physiological parameters
may be internally linked. For instance, hospitalization and ICU
cases increase with infection cases, and disentangling those
internal relations is difficult with limited data availability. It is
likely that the best combination of parameters contains those
internal relations. We assumed that the virus variant remained
the same during the investigation period, therefore we kept
physiological parameters constant throughout. However, envir-
onmental factors, testing policy, interventions, public behavior,
self-isolation, hospitalization, etc. might have distorted such

Fig. 1 Model schemes. a The Reference Model distinguishes healthy individuals with no immune memory of COVID-19 (susceptible, S), infected individuals
without symptoms but not yet infectious (exposed, E), infected individuals without symptoms who are infectious (carrier, CR,I, asymptomatic and pre-
symptomatic, respectively), infected (IX,H,R), hospitalized (HU,R) and Intensive Care Units (ICU) (UD,R) patients, dead (D) and recovered (RX,Z), who are
assumed immune against reinfection. This scheme also applies to the Asymptomatic Model. b The Capacity Model is a modified branch of the Reference
Model to investigate the impact of limited hospital and ICU access onto the death toll. fHlim and fUlim are steep exponential functions diverting the flux from
IH and HU to D, respectively, when hospital and ICU occupancy reached their respective current capacities HlimðtÞ and UlimðtÞ. (c) The Testing Model is a
modified branch of the Reference Model used to evaluate the impact of increasing case detection and isolation onto infection dynamics; IXD and IX describe
newly detected and undetected cases, respectively. Rx with x∈ [2,…,9] are per day transition rates between different states. Behavioral parameters (ρ, ϑ, δ,
R1 and R10) are subject to contingent factors, like Non-Pharmaceutical Interventions (NPIs), self-awareness, availability of hospital beds, etc., and, hence,
are functions of time.
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relations (e.g., the rate of increase in hospital and ICU cases as
infection increases differ in different phases of the pandemic)
and substantially altered the disease dynamics by impacting the
transmission probability, dark number, hospitalizations, and
death rate. These contingent factors affect the behavioral para-
meters (ρ,ϑ,δ, R1, R10). We estimated the behavioral model
parameters by minimizing the sum of squared differences
between the observed data (active infections, hospitalized, ICU
patients, and death numbers (Italy Data on Coronavirus 202029))
and model simulations using Matlab’s nonlinear least-squares
optimizer. This procedure was repeated separately for each
region in Italy in moving time windows of 7 days to account for
local specifics and temporal changes in disease transmission.
This moving-window technique with the size of a calendar week
reduces periodic fluctuations that are an artifact of the unequal
distribution of tests among the weekdays.

Perturbation and parameter identifiability. To generate the
standard deviation for Rt, we perturbed the behavioral para-
meters (ρ, ϑ, δ, R1, R10) 10% of their optimized value and sampled
uniformly within this range such that the total parameter varia-

tion, κ, defined as logðκÞ ¼ ∑L
n¼1 log

kn
k0n

��� ���30, remains within 10% of

its reference value. kn, k0n and L represent the parameters of the
altered system, the reference system and the total number of
parameters, respectively. We generated dynamics for 100 per-
turbed parameter sets for the statistical analysis.

We addressed parameter identifiability in two ways: Structural
identifiability based on synthetic outbreak data and practical
identifiability based on real data. In the first method, we
randomly sampled parameters within a range specified in Table 1

and by using random initial conditions of model state variables.
Then we used the resulting dynamics of the state variables as
model observables and checked for a unique solution in the
parameter space. We repeated this procedure 100 times
(Supplementary Fig. 1 for a typical result). In the second method,
we considered nationwide Italy data for the period February 24th

to May 22nd, 2020, and fixed the physiological parameters as
described in the Parameterization section. As we are estimating
behavioral parameters (ρ, ϑ, δ, R1, R10) by considering a moving
time windows of 7 days, we checked practical identifiability of
these parameters in each time window. We found that the
parameters are identifiable in more than 75% of the cases
(Supplementary Fig. 2 for a typical results when all parameters
are identifiable; and the Supplementary Methods 1.1 for more
details).

Basic reproduction number. The basic reproduction number
R0 is defined as the expected number of secondary infections
produced by a single infection in a population where everyone
(assuming no immune memory) is susceptible31 and reflects
the transmission potential of a disease. For COVID-19, the
dynamics of the pandemic was influenced by several factors, like,
the self-awareness in the community, interventions and policies
implemented by the authorities and immunisation of the
population. Therefore, the time-dependent reproduction num-
ber RðtÞ that describes the expected number of secondary cases
per infected person at a given time of the epidemic, is a more
practically useful quantity to understand the impact of inter-
ventions, behavioral changes, seasonal effects, etc. on the disease
dynamics20,32.

Table 1 Parameter ranges used in the Reference Model: determination of the boundaries for literature-based parameter set was
based on the interpretation of the values given in the references27,28,32.

Parameter Comments/References Description Parameter ranges
from literature

Min Max
R1 Time-dependent transmission probability of COVID-19 per each contact made with an infectious person (CI, CR,IX, IR, and

IH in the model)
R2 54,64–66 the inverse of R2 represents latent, non-infectious period following the transmission of COVID-19. 1/

R2= 5.2− 1/R3; median incubation period is 5.2 days
R3 54,64–66 the inverse of R3 represents the pre-symptomatic infectious period 1

4:2
2
5:2

R4 67–69 the inverse of R4 represents the infectious period for the mild symptomatic
cases without requiring hospitalization (including the undetected
symptomatic people (IX))

1
14

1
7

R5 27,28,70 the inverse of R5 represents the duration for which the hospitalized cases stay
in general hospital care before discharge without requiring further
intensive care

1
16

1
5

R6 28,71 the inverse of R6 represents the duration a patient stays at home before
hospitalization

1
7 0.9

R7 28,70,71 the inverse of R7 represents the time spent in general hospital care before
admission to ICU

1
3:5 1

R8 27,72 the inverse of R8 represents the time spent in ICU before recovery 1
16

1
3

R9 the inverse of R9 represents the duration for which the asymptomatic cases
remained infectious following their latent non-infectious period

1
R9
¼ 1

R3
þ 0:5 ´ 1

R4

� �

R10 Time-dependent28,71,73 the inverse of R10 represents the time spent in ICU before dying 1
10 0.9

α fixed,36–38 undocumented asymptomatic fraction 0.4 0.4
β Assumed the risk of infection from the registered and quarantined (IH+IR) patients 0.05 0.25
ρ Time-dependent the fraction of documented infections that require hospitalization 0.01 0.9
ϑ Time-dependent74–76 the fraction of hospitalized patients that require further intensive treatment 0.01 0.7
δ Time-dependent74–76 the fraction of ICU patients that have fatal outcome 0.3 0.9
�μ this fraction represent the total undocumented infection including the asymptomatic cases, estimated through MLE method of the

Bayesian framework
μ documented symptomatic fraction μ ¼ 1��μ

1�α
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In multi-compartmental epidemic models, R0 can be derived
with the next generation matrix method33–35, where the Jacobian
matrix consists of two factors, rate of appearance of new
infections into the infection compartment (F ) and transfer of
infected into other compartments (V). The elements Gij of G ¼
FV�1 represent the expected number of secondary infections
in compartment i caused by a single infected individual of
compartment j. The reproduction number R0 is given by the
dominant eigenvalue of G (the derivation ofR0 is provided in the
Supplementary Methods 1.4):

R0 ¼ R1
S0
N0

1� α

R3
þ βμρ

1� α

R6
þ α

R9
þ βμð1� ρÞ 1� α

R4
þ ð1� μÞ 1� α

R4

� �
;

ð1Þ
where N0 is the total population and S0 is the susceptible
population, both at the start of the pandemic (parameters are
listed in Table 1). R0 was calculated using the parameter set
estimated by the initial fit that considers only the first two weeks
of data points as described in the Parameterization section. An
ensemble of parameter sets (as described in the Perturbation and
parameter identifiability section) was used to calculate the
standard deviation in the R0.

In order to understand the impact of awareness in the
population, NPIs and policies implemented by the authority upon
the development of the time-varying reproduction number
ðRðtÞÞ20, we fitted the model parameters to data in shifting time
windows of one week. This approach has two advantages: first,
the reproduction numberRðtÞ is determined as a time-dependent
variable and thus reflects the impact of NPIs on the infection
dynamics; second, the moving-window dampens sudden jumps
in the data because of reporting delays. In each time window, a
best fit of the model parameters was found based on the cost
function value (squared difference between data and simulation).
In the next window, the fitting was repeated with initial
conditions given by the model state in the previous time window.
As described in the Perturbation and parameter identifiability
section, an ensemble of perturbed parameter sets was used to
calculate the standard deviation in the Rt.RðtÞ in time window k reads32:

RðtkÞ ¼ R1ðtkÞ
SðtkÞ
NðtkÞ

1� α

R3
þ βμρðtkÞ

1� α

R6

�

þ α

R9
þ βμð1� ρðtkÞÞ

1� α

R4
þ ð1� μÞ 1� α

R4

�
;

ð2Þ

where ρ(tk) denotes the hospitalized fraction of identified
symptomatic cases in the kth time window. Data analysis of the
clinical state of all infected cases (up to June 22nd) by the Istituto
Superiore di Sanità (ISS) showed ~30% asymptomatic cases, with
increasing tendency 36–38. In a study performed in Vo’ Euganeo,

Veneto, the percentage of asymptomatic cases was found to be in
the range of 40%39. We set the asymptomatic fraction to α= 0.4.
The fraction of undetected cases �μ (Estimation of undetected cases
section in the Supplementary Methods 1.2 and Table 2) is by
definition:

�μ :¼ αþ ð1� μÞð1� αÞ ) μ ¼ 1� �μ

1� α
ð3Þ

Asymptomatic Model. In the Asymptomatic Model, all sympto-
matic cases are detected, i.e., μ= 1. We compared the results from
this model with those from the Reference Model to understand, in
an ideal situation, the implication of detecting all symptomatic
cases for the pandemic development.

Testing Model. In order to understand the influence of extra
testing on infection dynamics, we adopted a model where a
fraction of the undetected infected cases (IX) is detected (IXD) via
testing and hence, contained. The newly detected infected (IXD)
contribute to new infections with a frequency reduced by a factor
β (β < 1) but the infectious period remains unaltered (1/R4)
(Testing Model in Figs. 1 and 2). Li et al.40 have demonstrated, in
the context of COVID-19 transmission in China, that strict
control measures (travel restrictions, enhanced testing, self-
quarantine, contact precautions, etc.) helped in improving the
fraction of all documented infections from 14% to 65%, ~4−5
fold. For Italy, we estimated that 90% of the infections remained
undetected (Table 2). We assumed that enhanced testing reduced
this dark figure by daily 2% until reaching 60% (assuming similar
efficiency as in China, i.e., documented infections increasing 10%
to 40%). We introduced a time-dependent fraction μ0 of unde-
tected infections, which, starting from �μ, was decreased daily by
steps of 2% down to 60%. The asymptomatic fraction was fixed as
in the Reference Model (α= 0.4). The undetected portion of
symptomatic is instead modified so that the fraction of unde-
tected cases, μ1(t), and the fraction of newly detected cases, μ2(t),
satisfies:

μ1ðtÞ þ μ2ðtÞ ¼ 1� μ; ð4Þ

with

μ1ðtÞ ¼
μ0ðtÞ � α

1� α
; μ2ðtÞ ¼

�μ� μ0ðtÞ
1� α

: ð5Þ

The parameters obtained by fitting the data with the Reference
Model were transferred into the Testing Model. This maintains the
compartmental flow of the Reference Model and thus ensures that
the result reflects the sole effect of isolating a fraction of

Table 2 Estimation of the total number of infections, the Infection Rate (IR), the Infection fatality rate (IFR)1.

Areas IFR in % (95% CI) Estimated total Infections (Undetected %) IR in % (95% CI) CFR in % Detected Infections

Italy 1.58 (1.04–1.84) 2627807 (93.73%) 4.37 (3.8–6.64) 13.11 165155
Emilia Romagna 1.84 (1.03–2.24) 252985 (91.69%) 5.79 (4.84–10.22) 13.26 21029
Liguria 2.08 (1.15–2.6) 85924 (93.09%) 5.63 (4.57–10.01) 13.6 5936
Lombardia 1.66 (1.03–1.9) 1390759 (95.53%) 13.83 (12.16–22.19) 18.3 62153
Marche 1.88 (0.88–2.47) 58555 (90.62%) 3.93 (3.05–8.11) 13.56 5503
Piemonte 1.73 (0.78–2.12) 258792 (92.94%) 6.1 (5.06–13.4) 11.05 18229
Toscana 1.63 (0.69–2.36) 62671 (87.77%) 1.43 (0.99–3) 7.25 7666
Valle d’Aosta 1.54 (0.73–2.34) 9785 (90.19%) 9.74 (6.4–17.94) 12.63 958
Veneto 1.3 (0.57–1.71) 141466 (89.67%) 2.77 (2.19–6.09) 6.43 14624

1Based on the data provided by ISTAT up to April 15th42,43. Age specific IFRs are reported in Supplementary Fig. 5.
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undetected infections. Correspondingly, RðtkÞ becomes:

RðtkÞ ¼ R1ðtkÞ
SðtkÞ
NðtkÞ

1� α

R3
þ βμρðtkÞ

1� α

R6
þ α

R9
þ

�

þβμð1� ρðtkÞÞ
1� α

R4
þ βμ2ðtkÞ

1� α

R4
þ μ1ðtkÞ

1� α

R4

�
:

ð6Þ
Capacity Model. To estimate the impact of capacity limitations of
the healthcare system, we implemented time-varying capacity
constraints on the hospital (HlimðtÞ) and ICU (U limðtÞ) accessi-
bility (Capacity Model in Figs. 1 and 2), using available data for
the number of hospital and ICU beds in the different regions.
Table 3 reports the pre-pandemic capacity and the increased
capacity, specifically allocated to COVID-19 patients, together
with the date of accomplished installation. Some regions doubled
their capacity and, presumably, this extension of infrastructure
has been implemented in a step-wise manner. We assumed a
linear increase of the hospital (HlimðtÞ) and ICU (U limðtÞ) capacity
from three days before exhaustion until reaching the maximum

capacity on the date of accomplished installation. This new
capacity was available thereafter. The exhaustion date was
determined from the data and refers to the day at which the
number of hospitalized and ICU patients became larger than the
initial capacity. Before the pandemic, 85% of the hospital beds
and 50% of the ICU beds were occupied41. In the Capacity Model,
15% and 50% of the pre-pandemic total capacity (Table 3) was
considered as the baseline capacity of hospital and ICU beds, i.e.,
the starting values of HlimðtÞ and U limðtÞ, respectively.

Upon reaching the capacity limit, the influx should be stopped
until a vacant bed is available. This could be achieved by
introducing a Heaviside step function or any other piecewise
method, but this type of function introduces discontinuities and
makes solving the ODEs computationally demanding and error-
prone. Here, we introduced two functions (fHlim and fUlim) that
behave like a step function but are continuous in nature. fHlim and
fUlim return 1 as long as there are free hospital or ICU beds and 0
otherwise. In the Capacity Model, we introduced the compart-
ment ID, to which the flux from IH is directed when the hospital
capacity is reached. Then, in a sharp transition, patient access to

Fig. 2 Flowchart of the study design including features and purposes of the SECIRD models. The flowchart illustrates the steps followed to obtain the
results. Each solid arrow points to the result obtained through the step from which the arrow starts, while each dotted arrow links the input to the step
where that input was used.
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the hospital or ICU is reduced by the fractions f HlimðtÞ and
f UlimðtÞ, respectively:

f Hlim ¼ exp HR þ HU � Hlim

� �� �10
1þ exp HR þHU � Hlim

� �� �10� �10 ð7Þ

f Ulim ¼ exp UR þ UD � U lim

� �� �10
1þ exp UR þ UD � U lim

� �� �10� �10 : ð8Þ

Both factors increase fatal outcomes of infections when
hospital and ICU capacities are reached. We assumed that
inaccessibility of hospital or ICU leads to faster and more
frequent death. In particular, when the ICU capacity is reached,
people in the hospital compartment (HU) die after 1/R7 days
which is faster than via the hospital-ICU-dead route ((1/R7+ 1/
R10)). Similarly, when the hospital capacity is reached, people in
the infected compartment (IH) die after 1/R6+ 1/R7 days,
satisfying 1/R6 < 1/R6+ 1/R7 < 1/R6+ 1/R7+ 1/R10 (see Reference
Model in the Supplementary Methods 1.3).

The MaxCap Model is defined by the same equations as the
Capacity Model, but the parameters, Hlim and U lim were set to the
maximum hospital and ICU capacity, respectively, from the
beginning of the simulations.

Data and code. Italy COVID-19 data of infected cases, hospita-
lized and ICU patients, and death numbers were provided by the
Protezione Civile Italiana29. Demographic and mortality data
used to estimate IFR, are available from the Italian Institute of
Statistics (ISTAT) website42,43. ISTAT collects mortality data
from the Italian National register office for the resident population
(ANPR). An automated method was implemented, and para-
meter estimation was carried out in Matlab 2019b44 with a
combination of the Data2Dynamics framework45. The code is
available at https://github.com/arnabbandyopadhyay/COVID-19-
in-Italy, and has been archived on Zenodo at ref. 46. For the

Bayesian estimation of COVID-19 IFR of Italian regions, see
Supplementary Methods 1.2.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Region-wise infection fatality rate (IFR). To estimate unde-
tected infections amid the COVID-19 pandemic, we analyzed the
mortality rate of previous years and the deaths in 2020. Demo-
graphic and death data of the Italian regions have been collected
from the Italian Institute of Statistics (ISTAT). The observed
mortality of 2020 was substantially higher than in previous years
in those Italian regions where the pandemic started—e.g., Lom-
bardia, Veneto, Piemonte (Supplementary Fig. 3). We estimated
the total number of infections, including undetected cases, and
the associated IFR (defined as the percentage of deaths among all
infections, including the undiagnosed infections) for each region
with a Bayesian framework by adapting a standard binomial
model (Supplementary Methods 1.2, Supplementary Fig. 4).
Though literature is available on IFR estimates in Italy, the impact
of the undetected infections on the healthcare facilities and
infection dynamics, considering different testing strategies
adopted by the regions, were not sufficiently addressed21,22.

The regional IFR, the estimated total infections, Infection rate
(IR), and the undetected fractions were summarised in Table 2. In
the northern regions where the outbreak occurred first—e.g.,
Emilia Romagna, Piemonte, and Veneto—the undetected infec-
tions were nearly 10-fold more than the reported cases, and in
Lombardia, it was more than 21 fold. We observed substantial
heterogeneity of the IFR across different age groups (Supple-
mentary Fig. 5). For ages below 60, it was as low as 0.05%. The
IFR was drastically higher in the 81+ age group (9.5% to 20%,
Supplementary Fig. 5). Despite Italy having the highest COVID-
19 deaths in Europe, the estimated infection rates (IR) were
relatively low (highest in Lombardia ~13%[12.16−22.19%, 95%

Table 3 Hospital bed and ICU capacity before and in the course of the pandemic41,77 1,2.

Regions ICU Beds Added ICU Date ICU Added beds Date beds

Abruzzo 109 4410 67 31/03/2020 537 23/04/2020
Basilicata 49 1861 24 17/03/2020 139 17/03/2020
Calabria 153 5739 60 11/04/2020 126 11/04/2020
Campania 506 17977 104 11/04/2020 773 14/04/2020
Emilia Romagna 449 17295 259 24/03/2020 2189 24/03/2020
Friuli Venezia Giulia 127 4333 102 02/04/2020 358 08/05/2020
Lazio 557 20817 323 24/04/2020 1527 21/04/2020
Liguria 186 5690 127 07/04/2020 1241 01/04/2020
Lombardia 859 37767 939 03/04/2020 11673 12/04/2020
Marche 115 5183 132 31/03/2020 638 06/04/2020
Molise 31 1225 12 28/03/2020 31 07/04/2020
Piemonte 317 16313 500 08/03/2020 4451 16/04/2020
Puglia 302 12531 297 11/04/2020 1027 26/04/2020
Sardegna 123 5739 40 14/04/2020 92 07/04/2020
Sicilia 392 15821 312 23/04/2020 1632 04/05/2020
Toscana 377 12021 247 06/04/2020 1350 05/04/2020
Umbria 70 3259 35 25/03/2020 131 11/04/2020
Valle d’Aosta 12 481 25 03/04/2020 262 03/04/2020
Veneto 487 17512 331 17/03/2020 1910 17/03/2020
Bolzano (AP)2 40 2047 66 16/04/2020 442 03/04/2020
Trento (AP)2 32 2113 70 02/04/2020 382 07/04/2020

1ICU and normal Beds represent the pre-pandemic total beds. In the simulation we used 50% of ICU and 15% of normal beds as baseline capacity. Added ICU and Added beds represent increased allocation
specifically for COVID-19 patients. Date ICU and Date beds is the date when the additional beds and ICUs were in place.
2AP autonomous province.
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CI]) across all regions, and hence the population was far from
reaching the herd immunity threshold (~70% with formula
1� 1

R0
, assuming no previous immune memory and considering

the lowest mean of reported R0 for Covid-19 is ~3)47–49. Our
estimated total infections (detected+ undetected), IR, and IFR
are close to the Imperial College London report 20 on Italy22.

During the early outbreak, different northern regions in Italy
adopted different testing strategies, which heavily influenced
the infection dynamics. Lombardia and Piemonte followed the
World Health Organization (WHO) and central health authority
recommendations by mainly testing symptomatic cases, while
Veneto implemented a more extensive population testing.
Lombardia (~10 million inhabitants) has suffered around
14,000 deaths by the end of April, which is more than half of
all COVID-19 deaths in Italy. In comparison, Veneto, with a
population of 5 million, has suffered around 1,400 deaths. This
difference is reflected in the CFR and IR values (Table 2):
respectively, 6.43% and 2.77% in Veneto, while 18.30% and
13.83% in Lombardia, despite the geographical proximity.

To understand whether implementing different testing strate-
gies succeeded in keeping undetected and the overall infection
amount under control, we investigated the association between
the tests performed by regions with the total number of infections
(detected and undetected, Table 2) in the early phase of the
pandemic. According to the null hypothesis, the total number of
infections would be uncorrelated with the testing volume, as
testing only discovers undetected infections and therefore should
not impact the total infection. This hypothesis holds when testing
does not influence the infection dynamics. We measured the
Kendall and distance correlation between total infection per
capita and total tests performed (up to April 15th, 2020) per
reported infection. This yielded a significant correlation in both
tests (Fig. 3, Supplementary Fig. 6). The negative correlation
indicates that testing influenced the infection dynamics by
isolation of newly detected cases and subsequent interruption of
infection chains (similar results obtained with CFR/IFR and Tests
per detected infected, Supplementary Fig. 6). The impact of

testing is further supported by the observed infection dynamics.
Regions with intense testing, like Veneto and Toscana, flattened
the infection curve by the middle of April, while for Lombardia,
Liguria, and Piemonte with inadequate testing, this was delayed
by three weeks (first week of May 2020, Fig. 4a).

Influence of undetected cases on Rt. To understand the influ-
ence of undetected cases and installed NPIs on infection
dynamics across different regions in Italy, we used the COVID-
19-specific Reference Model to explain the dynamics of infected,
hospitalized, ICUs, and death numbers provided by the Prote-
zione Civile Italiana29 (Fig. 4a, Supplementary Fig. 7). As
described in the Parametrization section, based on the ensemble
of parameters estimated by using the first two weeks of data, we
calculated the basic reproduction number R0 according to
equation (1). Estimated behavioral parameters in every window
(keeping the physiological parameters constant) were used to
calculate the reproduction number Rt (Fig. 4b, Supplementary
Fig. 8) according to equation (2). The sudden increase in reported
cases resulted in an overshoot in the Rt curve at the beginning.
Due to the nationwide NPIs, increased public awareness inducing
self-isolation and social distancing, the reproduction number
continuously decreased, approaching unity at the end of April. In
the regions with many undetected infections, like Emilia
Romagna, Lombardia and Piemonte, the reproduction number
reached unity in the first week of May, while in Veneto and
Toscana it reached unity in the middle of April and was sub-
stantially lower by the first week of May. As Rt functionally
depends on many factors (see Rt formula in the Methods sec-
tion), we opted for a sensitivity analysis to find the important
factors that regulate Rt. It revealed that Rt is highly sensitive to
the transmission probability R1 and the dark figure �μ (Supple-
mentary Fig. 9). The influence of installed NPIs, social distancing,
awareness etc. are embedded within R1 and therefore, their
impact is reflected in the decreasing trend of Rt in all regions.
The benefits of testing and the impact of undetected cases on the
Rt evolution can as well be inferred by comparison of Rt in the

Fig. 3 Impact of tests on the total infections. Kendall and distance correlation between the number of tests performed per infection and total infections
per capita. By considering 16 regions and Italy, a significant negative correlation confirms that the infection dynamics can be controlled by aggressive
testing, which is further supported by the infection epidemic curve in Fig. 4a. Data are considered up to April 15th. Light blue line: linear regression fit; gray
shaded area: standard error; black dots: region-specific values; red dot: nationwide value; R: correlation coefficient; p: significance.
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Reference and the Asymptomatic Model with less undetected cases
(�μ ¼ α, μ= 1).

In the Asymptomatic Model, all symptomatic infections are
detected and, hence, this reduces secondary infections (β << 1).
Removal of the highly infectious compartment (IX), causes a
lower turnover from susceptible to exposed. This effect is
apparent in the initial phase of the pandemic when Rt in the
Asymptomatic Model is much lower than in the Reference Model
(iris-blue and red line, respectively, in Fig. 4b). In the long term,
the Rt curves from the two models converge, despite the fraction
of undetected cases being constant throughout the simulations: �μ

in the Reference Model and α in the Asymptomatic Model. This is
consistent with the effect of the restriction measures, limiting the
spreading through undetected cases. The difference in the Rt
curves of these two models is larger in the pre-lockdown period.
As soon as people’s behavior has started changing either by self-
awareness or by imposed restrictions, the turnover from
susceptible to exposed is reduced. This caused the adjustment
of R1 and the merging of Rt in both models. Thus, the influence
of undetected infections on Rt wanes (Fig. 4b) because of two
reasons, first, restricted contacts due to the nationwide lockdown,
and second, the enhanced testing strategy adopted by the regions.

Fig. 4 Reference Model and time-dependent reproduction number Rt in different regions of Italy. a Active infections, hospitalized, Intensive Care Units
(ICU) and death data (nationwide and region-wise) were fitted in a sliding one week time window. Parameter ranges listed in Table 1 were used and the
behavioral parameters (R1, R10, ρ, ϑ, δ) were estimated in each time window (see Methods); dots: data; continuous lines and shaded area: respectively,
mean and standard deviation of all dynamics generated by using 100 perturbed parameter sets (see Methods). b Dynamics of the time-dependent
reproduction-number, Rt, resulting from the fit with the Reference (red) and the Asymptomatic Model (blue). Statistics of Rt were obtained by fitting the
data with 100 perturbed parameter sets; continuous lines and shaded area are, respectively, mean and standard deviation. Vertical lines correspond to the
Lockdown implementation (dark red) and release (dark green). Black horizontal line represents Rt ¼ 1.
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Increased Test and Isolate (TI) strategy to reduce hospitaliza-
tions. As the impact of undetected cases on Rt faded with time,
we wanted to quantify the benefit of an increased test and isolate
(TI) strategy by implementing an early (from March 2nd, 2020,
i.e., one week before lockdown) and late (from March 15th, 2020)
testing strategy. Many countries have implemented a Test, Trace
and Isolate (TTI) strategy that has a high detection rate, and
several modeling studies indicate that a high proportion of cases
would need to isolate to control the pandemic50,51. In our case, an
increased test and isolate strategy with a high success rate of
detection and isolation (as mentioned in the Methods section) is a
phenomenological implementation of a TTI strategy. In the
Testing Model, we assumed that a fraction (μ2(t)) of the symp-
tomatic undetected cases, IX, was detected by tests (IXD) and,
hence, became less infectious (β << 1, Methods, Fig. 1). We
maintained the compartmental flow from the Reference Model by
using the same parameter set in order to determine the impact of
isolating undetected infections by targeted testing and home
quarantine of contact clusters around identified infections. This
in silico experiment resulted in a substantial increase in the
number of detected infections but reduced the number of
required hospitalizations. The early TI scenario resulted in up to
~32% peak reduction of hospital bed occupancy, which reduced
death numbers by up to ~44% (Fig. 5a, b) depending on the
region. The late TI scenario resulted in a situation similar to
reality, namely, an overwhelmed healthcare system with little
decrease in peak hospital occupancy. However, late TI still
reduced death numbers by up to ~24%. Although enhanced
testing increased the total number of detected infections in
comparison to the real number of detected cases, Rt fell and
reached unity three weeks earlier (Supplementary Fig. 10). In line
with previous results50, this result suggests that TTI strategies are
efficient in decreasing disease propagation. South Korea suc-
cessfully mounted a targeted testing strategy to contain disease
spreading without imposing strict measures, like lockdowns or
immigration control8.

Having established that increased detection and isolation lower
hospitalization rates, we investigated whether the same relation
can be inferred from the data directly. We calculated the
correlation between the median hospital occupancy and the total
number of tests performed per infected up to May 22nd, 2020
(Fig. 5c). Regions with low testing were associated with the
healthcare system hitting its capacity limits, while regions with
intense testing kept a functional healthcare system. The northern
regions of Italy faced bottleneck situations in hospitals, which is
well reflected by the analysis (Fig. 5c, red color). Especially
in Lombardia, where only symptomatic patients were tested,
the healthcare system was overwhelmed. In contrast, Veneto
performed ~4 times more tests per infected than Lombardia,
which reduced the number of infections and hospitalizations.

In summary, the hospitalization and testing data resolved per
region suggest the benefit of intense testing strategies to mitigate
the load on the healthcare system. The in silico experiments add
evidence that this relationship is induced by the interruption of
infection chains, in particular, by the detection of undetected
cases. Thus, testing not only improves knowledge on the infection
state but also directly impacts the dynamics of the pandemic.

Capacity Model and excess dead due to the shortage of hospital
beds. Besides NPIs and promoting social distancing, self-isolation
etc., strengthening the healthcare system is also an inevitable part
of the government response. According to the data published by
the Italian Ministry of Health, Italy had 3.18 beds per 1000 people
with an average occupancy of 75-90% before the pandemic41.
Between March 1st and March 11th, 2020, 9–11% of the infected

people were admitted to ICU. Out of total ~5200 ICU beds (pre-
pandemic) in Italy, 2500 were already occupied by March 20th. To
cope with this critical situation, each region increased the hospital
and ICU facilities (Table 3). Despite the considerable increase in
hospital and ICU capacity, the unexpected huge wave of patients
and the necessary time to adapt the facilities added to the diffi-
culties of crisis management.

To investigate the impact of the limited healthcare capacities,
we developed the Capacity and the MaxCap Model (Figs. 1 and
2). As of May 22nd, all regions had increased the number of
available beds, and the epidemic curves were in a downward
phase. Therefore, we investigated a possible impact on the
pandemic of hospital overload in the previous months, consider-
ing data from February 24th to May 22nd.

In the Capacity Model, the pre-pandemic occupancy of hospital
beds and ICUs was considered 85% and 50%41, and the baseline
number of available hospital and ICU beds was set to 15% and
50% of the total capacity (Table 3), respectively. The capacity that
was increased during the crises was described by a region-specific
linear function with a daily increment so that the capacity
reached its target value at the date indicated in Table 3. We
assumed that the unavailability of hospital or ICU beds leads to
faster and more frequent death (see Methods). Parameters were
determined using the same protocol as for the Reference
Model. The Capacity Model fit is shown in Fig. 6a and
Supplementary Fig. 11.

In the MaxCap Model, the hospital and ICU capacities were
fixed to their maximum from the very beginning. The compart-
mental flow in both models was kept identical by using the same
parameter set as for the Capacity Model. We quantified the
impact of the limited capacity on COVID-19-associated deaths by
subtracting the death numbers in the MaxCap Model from those
in the Capacity Model. This difference represents the number of
people that would have benefited from a system with a
substantially higher capacity at the beginning of the epidemic.
The effect of limited healthcare facilities was dramatic in
Lombardia with a ~26% difference in the number of deaths,
corresponding to ~4500 people (Fig. 6b).

A combined strategy. In reality, many regions ramped up facil-
ities to test the immediate contacts of an identified infection, e.g.,
Veneto52 and also strengthen healthcare facilities to accom-
modate more patients. Previously we observed the benefits of an
early TI strategy that reduces the load upon the healthcare sys-
tem, thereby reducing death numbers (Testing Model, Fig. 5a, b).
We also observed a reduction in fatal outcomes in the case of a
functional healthcare system that is not overwhelmed (Capacity
Model, Fig. 6a, b). Given these observations, we sought to
investigate the combined effects of an improved healthcare facility
with intense testing by considering the following four scenarios:

1. linear increase of hospital capacity combined with early TI;
2. linear increase of hospital capacity combined with late TI;
3. maximum hospital capacity from the beginning combined

with early TI;
4. maximum hospital capacity from the beginning combined

with late
TI.

Thereby, early/late was assumed one week before/after the
lockdown.

To simulate scenarios 1 and 2, we transferred the Capacity
Model parameters into the TestCap Model (Fig. 2) to keep the
compartmental flow intact. To simulate scenarios 3 and 4, we
evaluated the TestCap Model assuming the hospital and ICU
capacity at their maximum levels from the beginning. In all
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scenarios, improved TI was simulated as a step-wise reduction of
undetected cases by 2% per day (μ0ðtÞ, Testing Model in Methods),
which is equivalent to ~10-fold increased detection.

Figure 7 reveals several interesting facets. The importance of
testing in a realistic situation where the step-wise extension of the
healthcare facility has been installed is depicted in Fig. 7a. It
reveals that an early TI strategy brings down hospitalizations

close to the pre-pandemic hospital capacity (horizontal black
line). An exception is Lombardia, where adopting an early TI
strategy led to ~10% reduction of the hospitalization peak, while
the late TI strategy did not decrease the peak size and led to a
situation similar to what happened in reality. Though the peak
size remained unchanged in Lombardia in the late TI scenario,
simulations showed a reduction in the number of deaths of ~17%

Fig. 5 Impact of testing and isolation on hospitalization and death. a, b Simulation results of the Testing Model in two scenarios: undetected cases are
decreased from �μ ¼ 90% to 60% starting one week before the lockdown (green) and one week post lockdown (blue). a Sum of hospitalized including ICU
patients. b Total deaths. The percentages provided in panels A and B quantify the reduction in peak with respect to the fitted Reference Model (red line).
Statistics were performed by fitting the data with 100 perturbed parameter sets (see Methods). Continuous line and shaded region represent the mean and
standard deviation, respectively. c Kendall and Distance correlations have been performed between the number of tests per infected and the median
hospital occupancy, defined as the median of daily hospitalized over the pre-pandemic hospital plus Intensive Care Units (ICU) beds. Light blue line: linear
regression fit over 20 regions; gray shaded area: standard error; red dots: northern regions; blue dots: southern regions; green dots: central regions. R:
correlation coefficient; p: significance.
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(Fig. 7a), reaching ~40% (Fig. 7b) when combined with an
increased hospital capacity. However, adopting an early TI
strategy is effective in reducing the death toll across all regions,
ranging from ~34% to ~52%.

Figure 7 B represents the importance of a TI strategy in the
settings of a functional healthcare system. Previously, we
estimated a 26% reduction in death numbers in Lombardia by
strengthening the hospital infrastructure (Fig. 6b). Improved
hospital capacity with early TI further reduced death numbers by
a substantial amount, which ranged from ~35% to 52% across
different regions, ~52% in Lombardia (Fig. 7b). Early TI with ~5-
fold more testing would have reduced the death toll up to ~33%

in Lombardia (Supplementary Fig. 12). In the late TI scenario, it
would have decreased ~40% in Lombardia (Fig. 7b), and
considering only ~5 times more testing it would have decreased
deaths by ~28% (Supplementary Fig. 12).

In summary, this in silico experiment emphasizes the
importance of an early TI strategy that could partially compensate
for limited healthcare facilities during the early period (March to
May 2020) of the pandemic. However, such an early TI strategy
would not be sufficient to contain the hospitalizations within the
pre-pandemic hospital limit (horizontal black line, Fig. 7).
Therefore extending the hospital infrastructure was mandatory
to prevent an overwhelmed healthcare system.

Fig. 6 Life costs of the limited healthcare system. a Sample Capacity Model fit of hospitalized (red), ICU (iris-blue) data for the most affected regions.
Parameters were fitted as in the Reference Model by considering the first 3 months (February 24th–May 22nd, 2020) data. Continuous lines: simulation
results; round dots: data; Baseline capacity and linear increase in hospital (red) and Intensive Care Units (ICU) (iris-blue) capacity (Table 3) are
represented as lines with the respective color. b Box plot of the difference in death numbers between the results of the Capacity and the MaxCap Model.
Statistics performed over 100 perturbed parameter sets (see Methods) and the box plot shows the median, 25- and 75-percentiles as well as the minimum
and the maximum values. We analysed the variation in the excess dead numbers depending on different values of α for the most affected region,
Lombardia (Supplementary Fig. 13).
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Discussion
Our retrospective study revealed many lessons that can be learned
from the COVID-19 situation in Italy. Though containment
measures are necessary to reduce the exponential growth of the
pandemic and flatten the infection curve as early as possible,
prolonged lockdown (mass quarantine) is not a sustainable
solution to the pandemic given its socio-economic burden53. The
power of lockdown lies in restricting the contacts and reducing
the spread mainly from the asymptomatic and pre-symptomatic
carriers. This particularly applies to COVID-19 because a sub-
stantial part of secondary infections occurs prior to disease
onset54. Several studies indicate that the silent transmission from
pre- and asymptomatic patients was responsible for the majority

of new infections40,55,56. Although a recent study has found that
there is a lower risk of transmission from asymptomatic
people57,58, asymptomatic cases still present a public-health risk,
as they are usually unaware of their infection and do not take any
increased self-isolation measures. In Fig. 3 we showed that testing
not only reduces the dark figure but also interrupts subsequent
transmission chains from undetected cases and thereby directly
influences the infection dynamics. This emphasizes the impor-
tance of a massive testing strategy to control the pandemic.

With the help of a mathematical analysis of the different
regions of Italy, we have provided evidence for a general relation
between intense testing and reduced burden on the healthcare
system. To interrupt virus transmission chains, the Veneto

Fig. 7 A strategy of early TI and extending hospital capacity combined. Simulation results of the TestCap Model. a Linear increase of hospital and ICU
capacities (scenarios 1 and 2) and b maximum capacities from the beginning (scenarios 3 and 4) with early (green) or late testing. Statistics were
performed by fitting the data with 100 perturbed parameter sets (see Methods). The line and the shaded region represent the mean and standard
deviation, respectively. The hospitalized population is the sum of hospital and ICU patients. The percentage indicates the mean reduction in hospitalized
peak and death number with respect to the mean of the Capacity Model. Black dots: data; black horizontal line: capacity (hospital + Intensive Care Unit)
before the pandemic.
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Region developed a comprehensive public health strategy focus-
ing on case finding, contact tracing and quarantining close and
occasional case contacts59. Moreover, testing was extended to
both symptomatic and non-symptomatic case contacts. Toscana
followed a similar strategy as Veneto, whereas Lombardia tested
only the symptomatic cases. Lombardia has twice the population
of Veneto (10M vs 5M). Tests performed per capita in Veneto
were almost twice as high as in Lombardia60. The epidemiological
outcomes of the testing strategy adopted by Veneto and Lom-
bardia were different in terms of incidence number, evolution of
the pandemic and bottleneck situation of the healthcare system.
Veneto and Toscana flattened the infection curve one month
earlier than Lombardia and Piemonte. In Fig. 3, Lombardia,
Emilia, and Piemonte are in the low test, high infection regime,
whereas Veneto is in the high test and low infection regime.
Therefore, the pandemic situation in different Italian regions
must be addressed in light of their testing strategy. Different
testing strategies and their implications for the reproduction
number have been studied55,61. Several other studies emphasize
the combination of contact tracing with testing and its implica-
tion on the incidence number50,62. Our results suggest that the
bottleneck in the healthcare system of northern Italian regions
was a consequence of their TTI strategy. In particular, testing of
symptomatic individuals alone appears inefficient.

In the middle of the crisis, many healthcare workers were
infected with COVID-19 while treating COVID-19 patients, and
the voluntary participation of interns and retired personnel was
required. Moreover, delays in the testing of healthcare personnel
led to the spread of infection through healthcare workers. The
shortage of healthcare workers together with limited hospital beds
led to a bottleneck situation in the healthcare system. A study
revealed that a weekly screening of the healthcare workers and
other high-risk groups irrespective of their symptoms would
reduce transmission by 23%61. We quantified the impact of the
overwhelmed healthcare system on the death toll and studied how
such a bottleneck situation could be avoided. We showed that a
substantial portion of the death toll, ~35% in Lombardia, could be
prevented by testing, and this could have mitigated the shortage
of healthcare facilities at the early stage of the pandemic, though it
would not have contained the hospitalization within its pre-
pandemic limit in all cases. Hence, given the capacities, the bot-
tleneck of healthcare facilities could not be completely avoided by
adopting massive testing alone.

A ~10-fold increased testing demands huge testing facilities
and is not an economic strategy. Moreover, successful detection
depends on the subjects getting tested and their previous travel
and contact history. Alternatively, tracking and targeted testing
with the home quarantine of possible cases substantially reduce
infection transmission and could be adopted instead of rapid
mass testing due to the higher chance of successful detection.
However, manual contact tracing is infeasible at higher inci-
dences, and contact tracing apps require ethical clearance in
accessing the location data, transparency and protection of per-
sonal data55. In this context, it has to be emphasized that, in the
framework of our mathematical model, the impact of tests on the
spreading of infections is based on the isolation of positively
tested individuals regardless of their symptoms, in line with
previous observations50,56. This implies that contact tracing and
quarantine without testing would have a similar effect and might
be an efficient strategy when sufficient test capacities are not
available. Thus, an effective contact tracing and quarantine
mechanism, monitored through modern technologies, together
with improved healthcare facilities could reduce mortality in the
possible future waves or other pandemics.

Our modelling study has several limitations. During the first
wave in Italy, there was a high degree of uncertainty regarding the

fraction of pre-symptomatic and asymptomatic cases and their
associated transmission. These fractions were also subject to the
regional testing strategy, and their dynamic nature is observed in
the weekly reports published by ISS. In our analysis, we set the
asymptomatic fraction, α, to the national average, 0.4. In our
simulation, we considered a fixed incubation period. We per-
formed a sensitivity analysis of R3 upon the Rt within the range
provided in Table 1, and we found that Rt is less sensitive
towards the variations of R3.

As mentioned in the Parameterization section, we determined
the range of parameter values that constrained the fit of the
physiological parameters by the information available in the lit-
erature on the virus characteristics. Some of the physiological
parameters in the model may be internally linked. For example,
hospitalization and ICU cases increase with infection cases. Here,
we assumed that the nature of the virus did not change con-
siderably during the investigation period, and, therefore, we kept
the physiological parameters, and hence the internal relations,
constant throughout the investigation period. The behavioral
adjustments (through NPIs and awareness) caused the break-
down of such relationships and shaped the pandemic. As the
behavioral parameters reflect the public behavior which evolved
with time, they depend upon several factors and are region-
specific. Therefore, it is difficult to infer a proper distribution of
such parameters. Nevertheless, as a more precise parameter dis-
tribution would become available, sampling from a different
distribution might improve the quality of the model.

For the present analysis, we did not use an age-stratified ver-
sion of the Reference Model due to the lack of knowledge of age-
stratified model parameters and incomplete age-stratified data
during the first wave. However, the age-dependence is phenom-
enologically included in the model by using a time-dependent
hospitalization rate, which reflects the demography of the infected
people and other contingent factors that might alter the outcome
of the pandemic. We also did not include co-morbidities or pre-
existing medical conditions of a sub-population and did not
explicitly consider the potential changes in viral transmissibility
due to environmental factors, such as temperature and humidity.
Further, cross-regional movements and the potential for impor-
ted or exported infections, which might hamper the testing
strategy based on contact tracing, were not considered. Lastly, a
delay in testing results might hamper outcomes in a contact
tracing-based testing strategy63. In our simulation, we did not
explicitly consider delays in isolation and their impact on the
daily cases. Instead of addressing the above limitations explicitly,
we perturbed our behavioral parameter sets up to 10% of its base
value to ensure the robustness of our results in a plausible range
of parameter values.

During the first wave of COVID-19, hospital and ICU beds got
overwhelmed in Italy. There are potentially many factors, such as
infections from undetected index cases, early vs late testing
strategies, limited healthcare facilities, etc., that might have
aggravated the COVID-19 situation in Italy. In this paper, we
developed a COVID-19 specific infection epidemic model to
address the bottleneck situation of the healthcare system that
most of the northern regions of Italy, particularly Lombardia have
faced during the first wave of the pandemic. As the testing was
minimal at the beginning of the pandemic, a large portion of
cases remained undetected, which was a major driver of new
infections. We first estimated the dark figure for different regions
of Italy through a Bayesian Markov Chain Monte Carlo (MCMC)
framework. With an adaptive methodology, we estimated the
model parameters by fitting the active cases, hospitalized, ICU,
and death data published by the Civil Protection Department,
Italy. We showed that testing directly influences the infection
dynamics by interrupting transmission from undetected cases.
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We showed that intense testing is associated with a reduced
burden on the healthcare facility and, in reality, regional hospitals
were less overwhelmed with more testing. By considering regional
pre- and post-pandemic hospital and ICU beds we quantify the
impact of the overwhelmed healthcare system on the death
amount. This impact was highest in Lombardia, which affected
~4000 people. Implementing an early TTI strategy in Lombardia
would have decreased overall hospital occupancy, which would
have reduced the death toll by ~45%. However, such a strategy
would not have kept the hospitalization amount within the pre-
pandemic hospital limit. In this context, it is important to keep in
mind that the effectiveness of such a strategy lies in the isolation
of positively tested individuals regardless of their symptoms.
Therefore contact tracing and quarantine without testing would
have a similar effect and might be an efficient strategy when
sufficient test capacities are not available.

Data availability
The dataset analysed during the current study are available in the github repository29

(https://github.com/pcm-dpc/COVID-19). We considered data till June 23rd, 2020. All
data used in this study are included in the GitHub repository, https://github.com/
arnabbandyopadhyay/COVID-19-in-Italy inside Data folder, and have been archived on
Zenodo46. Source data for generating the figures are available inside the ’PARALLEL/
Reference_Asymptomatic’ and ’PARALLEL/Capacity’ folders. Additional instructions to
generate figures are given in the readme file in those folders.

Code availability
The code used for the analysis is available in the GitHub repository: https://github.com/
arnabbandyopadhyay/COVID-19-in-Italy, and has been archived on Zenodo46.
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