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Abstract: The loss of muscle mass and strength with aging (i.e., sarcopenia) has a negative 

effect on functional independence and overall quality of life. One main contributing factor 

to sarcopenia is the reduced ability to increase skeletal muscle protein synthesis in response 

to habitual feeding, possibly due to a reduction in postprandial insulin release and an 

increase in insulin resistance. Branched-chain amino acids (BCAA), primarily leucine, 

increases the activation of pathways involved in muscle protein synthesis through  

insulin-dependent and independent mechanisms, which may help counteract the  

―anabolic resistance‖ to feeding in older adults. Leucine exhibits strong insulinotropic 

characteristics, which may increase amino acid availability for muscle protein synthesis, 

reduce muscle protein breakdown, and enhance glucose disposal to help maintain blood  

glucose homeostasis. 
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1. Introduction 

The progressive loss of muscle mass and strength with aging, often referred to as sarcopenia [1] not 

only decreases overall health, but also increases the dependency on others during activities of daily life 

and, as such, reduces overall quality of life. Sarcopenia is a multifactorial process characterized by 

changes in muscle fiber morphology, muscle contractile and protein kinetics, and insulin sensitivity 

(for reviews see [2–5]). One main contributing factor towards the age-related loss in muscle mass and 

strength is the reduced ability to increase skeletal muscle protein synthesis in response to feeding, 

referred to as ―anabolic resistance‖ (for reviews see [4,6]). Interestingly, ingestion of branched-chain 

amino acids (BCAA), primarily leucine, increases the activation of the mammalian target of rapamycin 

(mTOR) signaling pathways involved in muscle protein synthesis via insulin-dependent and 

independent pathways [7]. High doses of leucine may therefore help overcome ―anabolic resistance‖ to 

feeding and have a favorable effect on muscle protein synthesis and subsequent maintenance of muscle 

mass with aging. The rates of muscle protein synthesis are relatively maintained in aging adults [8–10]. 

Leucine exhibits strong insulinotropic characteristics [11,12], which can increase amino acid 

availability for muscle protein synthesis, inhibit muscle protein breakdown resulting in greater net 

muscle protein balance over time and also enhance glucose disposal to help maintain blood glucose 

homeostasis. The purpose of this review is to highlight the potential beneficial health effects of BCAA, 

primarily leucine, on aging muscle metabolism. We will particularly highlight the role of BCAA in 

insulin resistance and type 2 diabetes, conditions of which sarcopenia may be a major contributing  

risk factor.  

2. Branched Chain Amino Acids 

The branched chain amino acids (leucine, isoleucine, and valine) account for 14%–18% of the total 

amino acids in skeletal muscle protein [13,14]. It is well known that amino acids, including the BCAA, 

are required for maintenance of muscle health in older adults [15]. At rest, BCAA, and particularly 

leucine, have an anabolic effect through enhanced protein synthesis and/or a decreased rate of protein 

degradation [16–19], resulting in a positive net muscle protein balance. Infusion of BCAA in humans 

elevated the phosphorylation and activation of p70S6 kinase and 4E-BP1 in skeletal muscle [20,21]. 

Both p70S6 kinase and 4E-BP1 are downstream components of the mTOR signaling pathway, which 

controls RNA translation and protein synthesis, and is recognized as a central node in support of 

muscle hypertrophy [22–24]. Leucine ingestion is involved in the direct phosphorylation and 

activation of mTOR in skeletal muscle [25,26], further enhancing the protein synthetic response. 

However, changes in the rates of muscle protein synthesis are relatively transient unless sufficient 

amounts of essential amino acids are provided [27], either through normal dietary patterns or 

supplementation. When BCAA were consumed during and following an acute bout of knee extensor 

resistance exercise, Karlsson and colleagues [28] found an enhanced (3.5-fold) elevation in p70S6K 

phosphorylation during recovery in young healthy men compared to resistance exercise alone. The 

acute exercise-induced p70S6k activity has been shown to correlate with skeletal muscle hypertrophy 

following 6 weeks of resistance training [29]. In addition, it has been shown that BCAA can attenuate 

muscle wasting through interaction with the ubiquitin proteasome pathway [30]. This response may 
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partially involve the protein kinase Akt/PKB pathway, which is known to phosphorylate the 

transcription factor forkhead box class-O (FoxO), that signals downstream to two major ubiquitin 

ligases atrogin-1 and muscle RING-finger protein (MuRF-1) involved in muscle atrophy [31–33].  

Aging is known to suppress muscle protein synthesis, especially the synthetic response after 

feeding, which may alter net muscle protein balance leading to sarcopenia. Although sarcopenia is a 

multi-factorial affliction [3], amino acids and especially leucine, could play a major role in attenuating 

the age-related loss in muscle mass and strength. Splanchnic sequestration of leucine following feeding 

is 50% higher in older vs. younger adults and the rates of muscle protein synthesis are decreased with 

aging [34], termed ―anabolic resistance‖ [35,36]. Therefore, older adults may require additional dietary 

protein with greater leucine concentration to counteract muscle wasting over time. Supplemental 

leucine ingestion has been shown to overcome resistance to the anabolic effects of amino acid 

consumption [37], providing evidence that leucine supplementation may be beneficial for preserving 

muscle mass with aging [34,37,38]. For example, the combination of leucine (2.5 g) and casein protein 

(20 g) elevated the rates of muscle protein synthesis for up to 6 h in older men compared to casein 

protein ingestion alone [39]. The co-ingestion of leucine (10 g/L) and whey protein (60 g/L) following 

an acute bout of lower body resistance exercise (6 sets of 10 repetition for leg press and leg extension) 

in eight older men (75 ± 1 years) significantly increased the rates of muscle protein synthesis and 

whole-body protein balance [40]. Furthermore, Casperson et al. [41] showed that 2 weeks of leucine 

supplementation (12 g/day) elevated the muscle protein synthetic response (i.e., augmented 

mTOR/p70S6K signaling) compared to a standardized meal in older adults without having any effect 

on lean tissue accretion. It is important to note that acute studies examining phosphorylation or insulin 

availability after resistance exercise and/or amino acid ingestion are primarily used to predict  

longer-term training outcomes (i.e., skeletal muscle hypertrophy) and as such, there may be a 

disconnect between these anabolic signals and end-point measures of protein synthesis [42]. 

Nevertheless, insulinotropic effects of leucine and/or BCAA may help to improve net muscle protein 

balance by increasing muscle protein synthesis [31,39,40], decreasing muscle protein breakdown [42], 

or both. This may be particularly important in long-standing T2D patients where insulin levels are 

chronically low. Further work, particularly longer-term studies, are warranted to determine if BCAA or 

leucine have the potential to reverse or prevent sarcopenia, enhance muscle function, and raise the 

overall quality of life for aging adults. 

3. Insulinotropic Properties of Amino Acids 

Next to the anabolic properties of BCAA on muscle health, amino acids can also have profound 

effects on insulin production/secretion, which could further augment the anabolic response and also be 

used as a modulator of glucose homeostasis.  

The insulinotropic properties of amino acids or protein were reported for the first time in the  

1960s [43,44], and have since been confirmed in healthy subjects [45] and type 2 diabetes  

patients [46–48]. In a series of studies, Floyd and co-workers [49–53] reported strong insulinotropic 

responses following the intravenous administration of various free amino acids. A strong synergistic 

stimulating effect on insulin release was observed when leucine and arginine were infused in 

combination with glucose [11]. Furthermore, numerous in vitro studies using primary pancreatic islet 
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cells or β-cell lines have reported strong insulinotropic effects for (among others) leucine, isoleucine, 

arginine, alanine and phenylalanine [52,54–61]. The mechanisms by which these amino acids 

stimulate insulin secretion tend to be diverse and have not yet been fully elucidated [62]. Figure 1 

provides a simplified overview of amino acid induced insulin secretion. In the presence of glucose, 

amino acids such as arginine have been shown to stimulate insulin secretion by directly depolarizing 

the plasma membrane of the β-cell [54], which opens up voltage activated Ca
2+

 channels, leading to 

the influx of Ca
2+

 and subsequent insulin exocytosis [57,62]. Other amino acids may modulate their 

insulinotropic properties through activating Ca
2+

 channels by their co-transport with Na
+
 [57,63]. 

Furthermore, intracellular catabolism of all metabolizable amino acids will increase the intracellular 

ATP/ADP ratio, thereby closing ATP-sensitive K
+
 channels, which can also lead to the depolarization 

of the plasma membrane [62,64,65]. Both in vivo and in vitro work has identified leucine as a 

particular interesting insulin secretagogue as it both induces and enhances pancreatic β-cell insulin 

secretion through its oxidative decarboxylation, as well as by its ability to allosterically activate 

glutamate dehydrogenase [60,62,66,67] which increases ATP/ADP ratios by increasing TCA-cycle 

fluxes resulting in depolarization of the plasma membrane through closure of ATP-sensitive K
+
 

channels. Furthermore, leucine can be transaminated to α-ketoisocaproate which in turn is converted 

into acetyl-CoA before entering the TCA-cycle [68]. These findings are in line with recent in vivo 

observations, showing co-ingestion of relatively small amounts of free leucine to further augment the 

insulin response following the combined ingestion of carbohydrate and protein in healthy men [69]. 

Xu et al. [60] reported that the same signals that stimulate insulin release are also likely to be 

responsible for the leucine-induced activation of the mammalian target of rapamycin (mTOR) 

signaling pathway in the pancreatic β-cell. The potency of leucine to activate protein synthesis by 

interacting with the mTOR signaling pathway has been proposed to enhance β-cell function through 

the maintenance of β-cell mass. As such, the insulinotropic properties of amino acids (and leucine in 

particular) can therefore be of great clinical relevance in the treatment of type 2 diabetes or any state 

where there is a certain level of insulin resistance (e.g., aging) or hyperglycemia. Increasing 

endogenous insulin secretion with amino acids could therefore accelerate blood glucose disposal 

resulting in a better glycemic control. In longstanding type 2 diabetes patients, hyperglycemia is no 

longer accompanied by a compensatory hyperinsulinemia and as such, it is generally assumed that the 

capacity of the β-cell to secrete insulin is severely impaired due to several defects [70]. These defects 

include a reduced early insulin secretory response to oral glucose, a reduced ability of the β-cell to 

compensate for the degree of insulin resistance, a decline in the glucose-sensing ability of the β-cell, 

and a shift to the right in the dose-response curve relating glucose and insulin secretion, which are all 

indicative of a progressive insensitivity of the β-cell to glucose [71]. All these defects involve  

glucose-sensing and -signaling pathways in the β-cell. Although insulin secretion in response to 

carbohydrate intake is impaired in type 2 diabetes patients, it has been shown that the combined 

ingestion of a protein/amino acid mixture with carbohydrates can increase the plasma insulin response 

up to 4-fold [72,73]. This indicates that although the sensitivity of the pancreas to carbohydrate intake 

is significantly reduced in type 2 diabetes patients, the capacity to secrete insulin in response to stimuli 

like amino acids is still intact. Therefore, it can be concluded that the defects in the insulin response 

after a meal or glucose load in these patients can mainly be attributed to the reduced sensitivity of the 

β-cell to glucose, and not an overall defect in the capacity to produce and/or secrete insulin. For this 
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reason it can also be assumed that the potential of amino acids is the greatest in longstanding type 2 

diabetes patients as they are no longer in a state of hyperinsulinemia, in contrast to recently diagnosed 

patients where hyperglycemia is accompanied with hyperinsulinemia. Before amino acid 

supplementation or modulation can be considered an effective nutritional intervention in the treatment 

of type 2 diabetes, the mere increase in endogenous insulin production alone is not sufficient. In order 

to improve glycemic control (i.e., lower blood glucose concentrations), the increased endogenous 

insulin secretory response should be able to overcome the level of insulin resistance and effectively 

lower plasma glucose concentrations by increasing the glucose disposal rate from the circulation. 

Using stable isotope glucose tracers, it has been shown that even though plasma glucose disposal was 

severely impaired in the type 2 diabetes patients, the addition of an amino acid/protein mixture 

increased plasma glucose disposal significantly and results in a lower glycemic responses [73].  

As mentioned previously, leucine has been identified as a particular interesting insulin  

secretagogue [60,62,66,67] and in an effort to determine the specific role of leucine supplementation 

an insulinotropic protein mixture was tested together with a single, meal-like, bolus of carbohydrate in 

longstanding type 2 diabetes patients. Addition of free leucine to the mixture significantly increased 

circulating insulin concentrations but failed to result in a further improvement in glycemic  

control [12]. In a series of real life studies, these results have also been confirmed. In these studies the 

effects of protein modulation (protein only, and protein combined with free leucine) were determined 

on the prevalence of hyperglycemia in well-controlled type 2 diabetes patients as measured with 

continuous glucose monitoring. Whereas a protein/leucine mixture was able to lower the prevalence of 

hyperglycemia by 26% [74], the same absolute amount of protein (without free leucine) did not  

results in a further improvement of glycemic control [75]. These results extend on previous  

findings [46,76,77], and imply that nutritional interventions with protein, and leucine in particular can 

represent an effective strategy to reduce postprandial blood glucose excursions. 

However, no long-term studies have focused on the question of whether the insulinotropic potential 

of amino acids remains after being on a high protein diet or amino acids supplementation. It therefore 

remains to be seen whether such a nutritional intervention represents a feasible long-term strategy to 

improve glycemic control. Next to the insulinotropic properties of amino acids and dietary protein 

there are several other beneficial effects that could result in a better health status for both diabetics, 

elderly or obese subjects. 

In long-term dietary interventions, protein and leucine supplementation would eventually lead to 

changes in the macronutrient composition of an ad libitum diet, while keeping the person in energy 

balance. The greater protein intake would be accompanied by a reduction in total dietary fat and 

carbohydrate consumption. This kind of dietary modulation should result in an even further 

improvement in glycemic control as total carbohydrate intake is lower. In accordance, increasing the 

protein content of the diet, at the expense of carbohydrate and fat, drastically lowered blood glucose 

concentrations in a group type 2 diabetes patients over a 5 week intervention period [78–80]. 

Furthermore, it should be noted that diets high in protein have been reported to be more effective when 

trying to maintain body weight after a period of weight loss when compared to high carbohydrate 

diets. This benefit has been attributed to the thermogenic and satiating properties of dietary  

protein [81–85], which in the long run can further optimize glycemic control. 
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Figure 1. Simplified overview of amino acid induced insulin secretion in the β-cell. 

Glucose is metabolized in the cell via glycolysis into pyruvate, which is subsequently 

metabolized further by the tricaboxylic acid cycle (TCA cycle) to form ATP. Increased 

ratios of ATP/ADP result in depolarization of the plasma membrane through closure of 

ATP-sensitive K
+
 channels. This depolarization opens voltage activated Ca

2+
 channels, 

leading to increased concentrations of intracellular Ca
2+

 ([Ca
2+

]i) and subsequent insulin 

exocytosis. Intracellular catabolism of all metabolizable amino acids will increase the 

intracellular ATP/ADP ratio, thereby closing ATP-sensitive K
+
 channels, leading to the 

depolarization of the plasma membrane. Leucine both induces and enhances pancreatic  

β-cell insulin secretion through oxidative decarboxylation and allosteric activation of 

glutamate dehydrogenase (GDH) increasing ATP/ADP. Leucine can also be transaminated 

to α-ketoisocaproate (KIC) that is converted into acetyl-CoA before entering the  

TCA-cycle. Amino acids such as arginine can directly depolarize the plasma membrane of 

the β-cell, opening up voltage activated Ca
2+

 channels leading to insulin secretion. Adapted 

from Newsholme et al. [86]. 

 

Though there are ample suggestions that amino acid or protein supplementation could represent an 

effective dietary strategy to improve blood glucose homeostasis in type 2 diabetes, future research 

should determine if these insulinotropic properties are retained after prolonged increase of dietary 

protein or BCAA supplementation.  
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4. BCAA and Muscle Metabolic Health 

In addition to the potential for BCAA (and leucine in particular) to benefit metabolic health through 

hypertrophic or insulinotropic pathways (as described in previous sections), there is emerging evidence 

that BCAA may also influence skeletal muscle metabolism. Because skeletal muscle is responsible for 

~75%–80% of glucose disposal in response to carbohydrate ingestion [87] and is a main contributor to 

metabolic rate, alterations in skeletal muscle metabolism have profound effects on whole body 

metabolic health. A loss of skeletal muscle mass, for example, reduces overall glucose disposal 

capacity, which can result in elevated circulating glucose concentrations, unrelated to the level of 

insulin sensitivity. Mitochondria are organelles responsible for generating cellular energy through 

oxidation of substrates and are therefore critical to metabolic regulation. Accordingly, reduced quantity 

and/or quality of skeletal muscle mitochondria is hypothesized to contribute to insulin resistance in 

older adults [88] and aging-related diseases, such as type 2 diabetes [89,90]. Mitochondria also play 

important roles in oxidative stress and apoptosis, which are clearly implicated in the aging process. As 

such, strategies that can increase, or preserve, muscle mitochondrial function may have therapeutic 

benefit in aging. 

Recently, D’Antona and colleagues [91] fed mice a diet enriched in BCAA and demonstrated that 

average lifespan was increased. These authors linked the anti-aging effects of BCAA supplementation 

to increased mitochondrial biogenesis in skeletal muscle and heart, and demonstrated that markers of 

oxidative stress were reduced. Earlier findings had indicated that dietary leucine supplementation 

could improve glucose regulation in mice with diet-induced obesity [92]. These beneficial metabolic 

effects of BCAA supplementation in rodents are supported by some human data, where 60 weeks of 

AA supplementation (containing relatively high proportion of BCAA) was shown to improve insulin 

sensitivity and glucose control in a small trial involving elderly patients with type 2 diabetes [93]. 

Thus, it is possible that BCAA supplementation could have benefits to metabolic health through 

mechanisms that improve skeletal muscle mitochondria mass and function [94].  

These potential positive effects of BCAA supplementation for metabolic health and aging must be 

balanced against any negative outcomes. In this regard, recent human studies have found potential 

links between elevated plasma BCAA and obesity/type 2 diabetes. Using metabolomics profiling, 

Newgard and colleagues [95] demonstrated that BCAA were elevated in obese humans, and suggested 

that BCAA overload may contribute to insulin resistance. In a separate study, circulating BCAA (along 

with phenylalanine and tyrosine) demonstrated high associations with the development of type 2 

diabetes in a group of 2422 individuals who had blood samples taken at baseline and were followed for 

12 years [96]. It has been proposed that elevated BCAA concentrations result in an overactivation of 

mTOR/p70S6 kinase which, in turn, results in an increased IRS-1 phosphorylation on serine residues 

thereby inhibiting PI3 kinase [94]. This inhibition of PI3K in turn leads to impaired insulin signaling 

and contributes to insulin resistance [97–99]. Future studies are needed to decipher whether these 

findings are (i) indicative of BCAA contributing to impaired metabolic health, (ii) the result of 

impaired BCAA catabolism in obesity/diabetes, or (iii) are a possible compensatory mechanism in 

response to obesity. 
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5. Conclusions 

With increasing prevalence of both sarcopenia and type 2 diabetes, there is a great need for novel 

interventions that effectively combat the loss of skeletal muscle mass and increased insulin resistance 

that play a pivotal role in both afflictions. Amino acids in general, and the branched-chain amino acids 

in particular, are likely to represent a nutritional approach that is able to reduce or revert the  

age-related loss of muscle mass and function, overcome anabolic resistance and improve glycemic 

control. Leucine consumption increases the activation of the mTOR signaling pathways involved in 

muscle protein synthesis through insulin-dependent and independent pathways and may therefore 

overcome the anabolic resistance to nutrition and help to maintain muscle mass in an aging population. 

Apart from their anabolic properties, amino acids also exhibit strong insulinotropic effects as they can 

either directly induce insulin secretion or function as a substrate to increase ATP/ADP ratio’s that 

stimulate insulin exocytosis. The insulinotropic effects of BCAA may exert further influence on 

positive muscle protein balance by reducing muscle protein breakdown. Furthermore, the same 

signaling pathways that lead to skeletal muscle protein synthesis also play a role in enhancing β-cell 

mass and function. BCAA can also influence skeletal muscle metabolism by improving the quantity 

and quality skeletal muscle mitochondria, and as such, increase, or preserve, muscle mitochondrial 

function that may have therapeutic benefits in aging. However, more long-term studies are warranted 

to fully elucidate the true potential of the anabolic and insulinotropic potential of amino acids. 
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