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A B S T R A C T

Cell‐based in vitro models coupled with high‐throughput transcriptomics (HTTr) are increasingly utilized as
alternative methods to animal‐based toxicity testing. Here, using a panel of 14 chemicals with different risks
of human drug‐induced liver injury (DILI) and two dosing concentrations, we evaluated an HTTr platform com-
prised of collagen sandwich primary rat hepatocyte culture and the TempO‐Seq surrogate S1500+ (ST) assay.
First, the HTTr platform was found to exhibit high reproducibility between technical and biological replicates
(r greater than 0.85). Connectivity mapping analysis further demonstrated a high level of inter‐platform repro-
ducibility between TempO‐Seq data and Affymetrix GeneChip data from the Open TG‐GATES project. Second,
the TempO‐Seq ST assay was shown to be a robust surrogate to the whole transcriptome (WT) assay in captur-
ing chemical‐induced changes in gene expression, as evident from correlation analysis, PCA and unsupervised
hierarchical clustering. Gene set enrichment analysis (GSEA) using the Hallmark gene set collection also
demonstrated consistency in enrichment scores between ST and WT assays. Lastly, unsupervised hierarchical
clustering of hallmark enrichment scores broadly divided the samples into hepatotoxic, intermediate, and
non‐hepatotoxic groups. Xenobiotic metabolism, bile acid metabolism, apoptosis, p53 pathway, and coagula-
tion were found to be the key hallmarks driving the clustering. Taken together, our results established the
reproducibility and performance of collagen sandwich culture in combination with TempO‐Seq S1500+ assay,
and demonstrated the utility of GSEA using the hallmark gene set collection to identify potential hepatotoxi-
cants for further validation.
Introduction

Acute or chronic exposure to drugs and environmental chemicals
can result in hepatotoxicity, which is attributed in part to the liver gen-
erating reactive metabolites that interact with cellular macro-
molecules, disrupting their functions and leading to stress (Park
et al., 2004; Sturgill and Lambert, 1997). Stress accumulated beyond
the liver’s homeostatic capacity can cause necrosis, apoptosis, or
autophagy, eventually resulting in liver diseases or even failure
(Hinson et al., 2010; Iorga et al., 2017). Assessing the risks of chemical
exposure to human health, including the liver, has traditionally been
performed through characterizing their effects in animals, which is
both resource and time‐consuming. Animal‐based toxicity testing also
has ethical concerns due to the large number of animals required and
the distress caused. To address the limitations of animal‐based toxicity
testing, we recognized a combination of in vitro high‐throughput
assays and computational modeling approaches as the way forward
(Kavlock et al., 2018; Krewski et al., 2010).

Part of the vision of toxicity testing using in vitro assays is to iden-
tify perturbed molecular targets or biological pathways to associate
chemicals with adverse outcome pathways (AOPs) (Krewski et al.,
2010; Thomas et al., 2019). The U.S. EPA’s ToxCast program and the
ency.
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Tox21 consortium have utilized high‐throughput assays to measure
changes in biological pathways of relevance to toxicity. To date, the
assays implemented in Tox21 cover an estimated 63% of the 1658 dis-
tinct human biological pathways (Huang et al., 2019). To broaden the
coverage, high‐throughput transcriptomics (HTTr) was selected as one
of the first tier high‐throughput assays for capturing potential chemical
hazards in a tiered testing framework for chemical hazard characteri-
zation described by the U.S. EPA (Harrill et al., 2019; Russell S Thomas
et al., 2019). To increase the throughput and reduce the cost of HTTr
data acquisition, a set of approximately 2700 unique genes, called the
S1500+ gene set, has been developed as a surrogate to the whole tran-
scriptome (Mav et al., 2020; Mav et al., 2018). Combined with a tar-
geted sequencing platform known as TempO‐Seq® (Yeakley et al.,
2017), the surrogate S1500+ gene set (Yeakley et al., 2017) has
demonstrated comparable performance to established whole transcrip-
tome techniques such as microarray and RNA‐Seq in capturing
chemical‐induced gene expression changes in rat liver (Bushel et al.,
2018). TempO‐Seq data of differentiated HepaRG cultures has also
been shown to be capable of identifying liver injury compounds using
benchmark concentration modeling and relevant biological‐response
pathways using Ingenuity Pathway Analysis (Ramaiahgari et al.,
2019).

Gene set enrichment analysis (GSEA) is a powerful method for
interpreting genome‐wide expression profiles by grouping individual
genes into gene sets that represent a specific biological state or process
sharing the same chromosomal location or regulatory targets
(Subramanian et al., 2005). GSEA is frequently used together with
the Molecular Signature Database (MSigDB), which contains over
25,000 gene sets divided into 8 major collections. Notably, the hall-
mark collection – 50 gene sets that each represent a well‐defined bio-
logical state or process – offers a concise way of summarizing
chemical‐induced changes in gene expression (Liberzon et al., 2015).
Indeed, GSEA using the hallmark gene set collection has been shown
to be capable of detecting chemical‐ and dose‐specific, as well as tran-
sient and sustained patterns of transcriptional enrichment in microar-
ray data of rat liver (Dean et al., 2017). Analysis of microarray data
from the Open TG‐GATEs database by GSEA using gene sets derived
from the Reactome pathway database and biclustering has also
revealed conserved patterns of chemical‐induced transcriptional
responses in rat liver and rat and human hepatocytes (El‐Hachem
et al., 2016).

Although the S1500+ gene set and the hallmark gene set collection
were independently developed, both aim to reduce redundancy with-
out compromising on the coverage of biological space. The former
achieves this at the gene level and the latter at the gene set level.
We reasoned that GSEA of S1500+ genes using the hallmark gene
set collection would inform the effects of a chemical on the liver and
provide a common pattern of enrichment that represents hepatotoxic-
ity. However, GSEA was originally designed to run on the entire tran-
scriptome (Subramanian 2005), and studies comparing GSEA of the
whole transcriptome to that of a subset of genes representing the
whole transcriptome are limited. To examine if the S1500+ gene set
could produce comparable results as the whole transcriptome in GSEA,
we selected sandwich cultured rat hepatocytes as a resource‐sparing
and scalable model for hepatotoxicity screening, measured gene
expression using the TempO‐Seq ST HTTr assay, and performed GSEA
with the hallmark gene set collection. We chose the collagen sandwich
culture configuration amongst a plethora of 2D/3D cultures for bal-
anced operational simplicity/robustness and maintenance of hepato-
cyte functions for up to a week (De Bruyn et al., 2013; Dunn et al.,
1991), and limited chemical treatment to 24 h to achieve a rapid turn-
around time and sufficient perturbations in cultured hepatocytes to
induce chemical‐specific gene signatures (Igarashi et al., 2014).

Since establishing the performance of a high‐throughput platform
is essential before incorporating the data for chemical risk assessment,
the goals of this study were to (1) investigate the intra‐ and inter‐batch
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reproducibility of the HTTr platform, as well as concordance with
external data, (2), compare the TempO‐Seq surrogate S1500+ tran-
scriptome (ST) assay with the whole transcriptome (WT) assay in
detecting chemical‐induced changes at the gene and pathway levels,
and (3) identify a general pattern of hallmark gene set enrichment that
represents hepatotoxicity. Our results established the performance and
reproducibility of the HTTr platform and demonstrated the potential of
combining S1500+ high‐throughput transcriptomics with hallmark
gene set enrichment analysis for hepatotoxicity assessment.
Materials and methods

Chemical selection

Fourteen chemicals representing different drug classes were
selected from Open TG‐GATEs for HTTr by TempO‐Seq assays
(Table 1). Chemicals were tested at low, middle and high concentra-
tions in Open TG‐GATEs, and the ratio between the concentrations
was 1:5:25 (Igarashi et al., 2014). The low and high concentrations
were included in this study. All of the selected chemicals are pharma-
ceuticals except for WY14643, which is a peroxisome proliferator‐
activated receptors (PPARs) agonist that has not been approved for
clinical use (Pollinger and Merk, 2017). According to DILIrank, which
is a data set that ranks the risk of drugs for causing drug‐induced liver
injury (DILI) in humans, the selected chemicals include drugs which
are classified as most‐DILI‐concern (acetaminophen, diclofenac, indo-
methacin, isoniazid, ketoconazole, sulfasalazine and valproic acid),
less‐DILI‐concern (doxorubicin, naproxen, ranitidine and simvastatin),
and no‐DILI‐concern (caffeine and chloramphenicol) (Chen et al.,
2016). Importantly, several chemicals were reported in the literature
for causing stress or injury in rat liver or hepatocytes, indicating hep-
atotoxic effects in rodents as well (see references in Table 1). Thus, the
selected chemicals were expected to induce diverse transcriptomic
responses in primary rat hepatocytes. Indeed, analysis of the Open
TG‐GATES microarray data demonstrated that the chemicals and asso-
ciated concentrations differentially perturbed the transcriptome of cul-
tured rat hepatocytes, with the number of DEGs (adjusted p < 0.05)
ranging from zero (indomethacin and chloramphenicol at the respec-
tive low concentrations) to more than sixteen thousand (valproic acid
at high concentration) after 24 h of treatment.

Hepatocytes isolation

Hepatocytes were harvested from male Wistar rats (250–300 g,
InVivos Pte Ltd, Singapore) based on a modified in situ collagenase per-
fusion method described previously (Seglen, 1976). Animals were han-
dled according to the IACUC protocols approved by the IACUC
committee of National University of Singapore. The yield of hepato-
cytes yields was more than 2 × 108 per rat with greater than 90% via-
bility as determined by trypan blue exclusion assay. Isolated
hepatocytes were maintained in William’s medium E supplemented
with 1 mg/mL BSA, 0.5 µg/mL insulin, 2 mM L‐glutamine, 100 nM
dexamethasone, 10 ng/mL EGF, 100 μg/mL streptomycin and 100
U/mL penicillin.

Hepatocyte culture and chemical treatments in collagen sandwich

To coat collagen on a 96‐well plate (Thermo Scientific™ Nunc™),
we diluted bovine type I collagen (PureCol®, 3 mg/mL, Advanced Bio-
Matrix) with equal volume of 0.01 M HCl and dispensed 80 µL of the
diluted collagen solution to each well. After 3 h of incubation at 37 °C,
the collagen solution was removed and the wells were washed with
100 µL of PBS twice. Collagen‐coated plates were either immediately
seeded with cells or stored at 4 °C in PBS for at most 3 days. On the
day of cell seeding, 50 µL of culture medium was added to the wells



Table 1
Chemicals and associated concentrations tested in this study. References to chemical-induced liver injury in rodents, and the number of differentially expressed genes
(adjusted p < 0.05) induced in primary rat hepatocytes after 24 h treatment (n = 3) were shown.

Chemical Drug Class DILI concern References (PMID) Conc. (μM) ST WT

Batch 1 Batch 2 Batch 1 Batch 2

Acetaminophen NSAIDs Most 22,980,195 400 16 189 103 250
10,000 1228 1360 6838 8002

Diclofenac NSAIDs Most 11,870,366 16 5 45 10 113
400 1031 1244 5163 6497

Indomethacin NSAIDs Most 30,252,991 12 4 68 17 218
300 447 710 966 3462

Isoniazid Anti-tuberculosis agents Most 9,029,273 400 11 59 13 108
10,000 1167 1354 5822 7272

Ketoconazole Anti-fungal agents Most – 0.6 1 355 0 1070
15 226 589 673 2166

Sulfasalazine Anti-infective agents Most 27,340,618 4 68 228 226 667
100 775 1002 4112 4972

Valproic acid Anti-convulsants Most 15,858,223 400 2 8 2 12
10,000 585 769 2087 3177

Doxorubicin Anti-neoplastic agents Less 23,612,702 0.08 16 100 72 424
2 706 1044 3307 4948

Naproxen NSAIDs Less 30,595,947 80 286 273 1028 950
2000 792 1043 3800 5115

Ranitidine Anti-ulcer agents Less – 160 12 17 15 20
4000 986 1217 5461 6218

Simvastatin Anti-lipemic agents Less 23,761,184 2.4 125 177 231 311
60 458 479 1493 1793

Caffeine CNS stimulants No – 400 49 240 299 1307
10,000 471 676 1945 4787

Chloramphenicol Anti-infective agents No – 18 433 740 1549 2668
450 929 1232 5045 6796

WY14643 PPARα agonists – – 8 732 981 3702 5661
200 777 941 3670 4664
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followed by 50 μL of hepatocyte suspension (5 × 105 cells/mL), the
latter was placed in a reagent reservoir and transferred using a
multi‐channel pipette fitted with wide‐bore tips. The reagent reservoir
was gently rocked between each withdrawal to prevent hepatocytes
from settling. After cell seeding, the plate was left undisturbed for
5 min before transferring to a cell culture incubator at 37 °C and 5%
CO2. The cells were allowed to attach to the collagen‐coated surface
for 3 h, then the medium was removed and the wells were washed
with PBS once to remove any unattached cells or cell debris. Next,
100 μL of collagen solution (0.1 mg/mL in culture medium) was added
for forming the top collagen layer. The collagen solution was prepared
by first neutralizing 280 µL of stock collagen (3 mg/mL) with 210 µL
1X PBS, 35 µL 10X PBS and 35 µL 0.1 M NaOH, then 0.5 mL of the neu-
tralized collagen was mixed with 7 mL of chilled culture medium.
After overnight incubation (16 h), a collagen overlay was formed
and the spent medium was replaced with 100 µL of fresh culture med-
ium. Cells were incubated for an additional day before chemical treat-
ment. Care was taken during the removal and addition of culture
medium to avoid disturbing the collagen overlay. On the day of treat-
ment, the spent medium was replaced with 100 µL of fresh medium
containing chemicals. All treatments were performed in culture med-
ium containing 0.5 % DMSO for 24 h. Each treatment condition was
tested in triplicates to examine technical reproducibility. To avoid
edge effects due to different rate of evaporation, only the inner 60
wells were used while the remaining 36 perimeter wells were filled
with 200 µL of RNAse‐free water. Two identical sets of chemically‐
treated hepatocytes were prepared, one for cell viability assay and
the other for TempO‐Seq assay. The entire experiment was performed
twice using hepatocytes isolated from different individuals in order to
examine reproducibility between biological replicates.

Cell viability assessment

Cell viability was determined using the CellTiter‐Glo® luminescent
assay, which quantifies the amount of ATP from metabolically active
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cells. After 24 h of chemical treatment, the spent medium was
removed and 200 µL of assay reagent containing equal volume of
CellTiter‐Glo reagent and cell culture medium was added to the wells.
After incubating the plate at r.t. for 10 min to stabilize the lumines-
cence signal, 180 µL of the assay reagent was transferred to a black
96‐well plate and luminescence was read using a Tecan M500 micro-
plate reader. Cell viability was expressed as percentage of lumines-
cence intensity of treatment group relative to vehicle control (0.5 %
DMSO).

TempO-Seq transcriptomics assay

To prepare samples for TempO‐Seq, we removed the spent medium
after 24 h of chemical treatment and washed the wells with 100 µL of
PBS twice. Then the cells were lysed by adding 20 µL of 1X TempO‐Seq
lysis buffer (BioSpyder) in PBS. The plates were incubated at r.t. for
10 min and sealed with Nunc™ Sealing Tapes prior to storage at
−80 °C until shipment. Samples were shipped frozen on dry ice to
BioSpyder Technologies, Inc. (Carlsbad, CA, USA), where libraries
and targeted sequencing of the S1500+ surrogate gene set (ST:
2654 probes; version 1.2) and the whole transcriptome (WT: 22,253
probes; version 1.0) were performed. Briefly, 2 μL of each sample
lysate was hybridized with detector oligos from the TempO‐Seq rat
ST or WT assay, with 1 h hybridization period for the ST assay and
overnight for the WT assay. After ligation and nuclease digestion,
the ligated products were added into an amplification mix with
sample‐specific PCR primer pairs, which include the standard Illumina
adaptor and a sample‐specific barcode sequence. Amplicons were
pooled and purified using a PCR clean‐up kit (Macherey‐Nagel, Moun-
tain View, CA, United States). Sequencing was performed on an Illu-
mina HiSeq 2500 system with both ST and WT libraries included in
the same sequencing run. Reads were de‐multiplexed using Illumina’s
bcl2fastq software version 2.20 into FASTQ files for each sample.
Reads were aligned to reference genome (rn6) using STAR aligner ver-
sion 2.5.3a allowing 2 mismatches. The Tempo‐SeqR package (BioSpy-
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der Technologies, Inc., version 1.0) was used to generate read counts
data. FASTQ files and read counts data have been deposited in the
National Center for Biotechnology Information Gene Expression Omni-
bus (GEO) (GSE152128).

Analysis of read counts

All probes in the TempO‐Seq assays were included for calculating
the total number of read counts, the percentage of probes with zero
read count, and the correlation of read counts between technical or
biological replicates. Normalization and pre‐filtering were not per-
formed for these calculations and the raw read counts data were used.
For correlation of read counts, a Pearson correlation coefficient was
calculated for each replicate in comparison to the other two replicates
form the same batch of samples (between technical replicate 1 and 2, 1
and 3, and 2 and 3), resulting in three correlation coefficients for each
treatment. In addition, Pearson correlation coefficients were calcu-
lated between replicates from different batches of samples (between
replicate 1 of batch 1 and 2, replicate 2 of batch 1 and 2, and replicate
3 of batch 1 and 2) to give the correlation coefficients between biolog-
ical replicates. For visualization of batch effect by PCA plot, probes
with less than an average of ten counts across samples from both
batches were excluded from analysis and read counts were normalized
by DESeq and varianceStabilizingTransformation (vst) functions of the
DESeq2 package (Love et al., 2014).

Differential gene expression analysis

Probes with less than an average of ten counts across samples from
both batches were removed from the count matrix. The resulting count
matrix was used as input in the DESeq2 R package to identify differen-
tially expressed genes relative to vehicle control. Probes with adjusted
p value of<0.05 were considered as differentially expressed. For com-
parison of DEGs between biological replicates, differential gene
expression analysis was independently performed for each batch of
samples. For comparisons of DEGs between ST and WT assays and
gene set enrichment analysis (GSEA), read counts of gene isoforms
were combined by addition to produce one read count per gene, and
then differential gene expression analysis was performed with batch
correction.

Gene set enrichment analysis (GSEA)

GSEA was performed using the fgsea R package (Sergushichev,
2016) and the hallmark (h.all.v7.0.symbols.gmt) from MSigDB
(Subramanian et al., 2005). Gene symbols and corresponding statistics
from DESeq2 analysis were used as input for fgsea analysis with 1000
permutations.

Connectivity mapping

The inter‐platform reproducibility of the TempO‐Seq HTTr profiles
was evaluated by comparison with the Open TG‐GATEs database
(Igarashi et al., 2014). using connectivity mapping (Lamb, 2007;
Musa et al., 2017). The Open TG‐GATEs rat hepatocyte data set was
downloaded from ArrayExpress (Athar et al., 2019) under accession
number E‐MTAB‐797 (available from https://www.ebi.ac.uk/arrayex-
press/experiments/E-MTAB-797/). Raw CEL files for each treatment,
generated using the Affymetrix GeneChip Rat Genome 230 2.0, were
normalized using robust multiarray average (RMA) (Irizarry et al.,
2003). The difference between the log2 normalized intensity values
for 18,894 transcripts for each treatment were compared with
matched controls to calculate the average log2 fold‐change (L2FC) pro-
files across 12,962 genes. Probes in each L2FC profile were mapped to
genes using the Affymetrix Rat Genome 230 2.0 Array annotation
obtained from Ensembl Release 102 (Yates et al., 2020). This resulted
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in a reference transcriptomic database containing 1,177 profiles asso-
ciated with 131 chemical treatments at 3 concentrations and 3 time
points (2, 8 and 24 h). The L2FC profiles for the TempO‐Seq arrays
(ST and WT) were used to generate the gene set “signatures” of the
100 to 1000 most up‐ and down‐regulated genes (using a step size of
100). The signatures for each treatment were compared with profiles
in the reference database using five different connectivity scoring algo-
rithms including: gene set total enrichment score (gtes) (Iorio et al.,
2009; Mootha et al., 2003; Subramanian et al., 2005), extreme cosine
(xc) score (Cheng et al., 2014), Spearman correlation coefficient (xcs),
Pearson correlation coefficient (xcp) and signed Jaccard index (sji) (Z.
Wang et al., 2016). In addition, we also evaluated the impact of
restricting the reference profile length to the 1000 to 6000 (which is
close to the entire set of genes in the array) most up‐ and down‐
regulated genes using a step size of 1000. For each of the 14 chemicals,
the rank of the correct hit (based on chemical identity) was identified
by connectivity mapping between the signatures from the TempO‐Seq
data and profiles from the Open TG‐GATEs data. The ranks for all
chemicals were aggregated across ST and WT data, signature length,
profile length and connectivity scoring algorithms to calculate the frac-
tion of chemicals for which the correct hit was also the highest scoring
match (Fr1) and the fraction of chemicals for which the correct hit was
in the top 5 and 10 highest scoring matches (Fr5 and Fr10,
respectively).
Results

In this study, primary rat hepatocytes were maintained in collagen
sandwich in 96‐well plates and treated for 24 h with a panel of 14
chemicals at two different concentrations, totaling twenty‐eight treat-
ments (Table 1). The chemicals, associated concentrations and treat-
ment duration were selected from Open TG‐GATEs, in which the
highest concentration for soluble compounds was defined as the con-
centration yielding an 80–90% relative survival ratio through DNA
quantification, whereas for poorly soluble compounds the highest con-
centration was defined as the maximum solubility in vehicle (up to
0.5% DMSO) (Igarashi et al., 2014). Herein, the viability of rat hepa-
tocytes after 24 h of exposure to chemicals was measured by ATP
quantification, which is an indicator of metabolically active cells. Via-
bility was found to be greater than 80% for all treatments except indo-
methacin (78.1%) and valproic acid (74.3%) at the respective high
concentrations (Supplementary Table 1). Thus, the majority of treat-
ments were non‐toxic to primary rat hepatocytes and unspecific gene
signatures associated with cell death could be avoided.
Evaluating technical and biological reproducibility of the HTTr platform

Establishing the reproducibility of a high‐throughput platform is a
prerequisite in incorporating the acquired data for regulatory risk
assessment; hence the first objective of this study is to evaluate the
reproducibility of TempO‐Seq® data of primary rat hepatocytes in col-
lagen sandwich culture. To examine the reproducibility between tech-
nical replicates, each chemical treatment was performed in triplicate
in three adjacent wells on the same multi‐well plate. To examine bio-
logical, or batch‐to‐batch, reproducibility, the entire experiment was
repeated using rat hepatocytes isolated from another individual with
library construction and sequencing independently performed from
the first batch of samples.

We first analyzed the read count data to establish a general trend of
platform performance. The read depth (millions) of samples ran by ST
assay ranged from 0.6 to 2.0 (mean = 1.2 ± 0.3) and from 1.0 to 2.2
(mean = 1.6 ± 0.3) for batch 1 and 2, respectively (Fig. 1a). For sam-
ples ran by WT assay, the read depth ranged from 2.7 to 9.0 (mean =
6.2 ± 1.2) and from 4.4 to 9.0 (mean = 7.3 ± 0.9) for batch 1 and 2,
respectively (Fig. 1a). Compared with samples in batch 1, the overall
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Fig. 1. Summary of read count data. Each dot represents (a) the read count of
a sample in millions, (b) the percentage of probes with zero read count, and (c)
Pearson correlation coefficient of read counts between technical replicates
within the same experiment or between biological replicates from two
independent experiments. Lines indicate the mean values. (d) PCA plot of
variance stabilized counts of samples ran by ST assay; each dot represents one
sample. The high and low doses of each chemical are signified by H and L,
respectively.
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read depth was higher for samples in batch 2. Compared with WT
assay, the read depth is approximately 5X lower for ST assay as it tar-
gets a smaller number of genes. It was observed that a significant frac-
tion of probes has zero read count (Fig. 1b). In batch 1, the fraction of
probes with zero read count averaged 17.5 ± 1.8% per sample for ST
assay, while up to 38.1 ± 1.4% of probes has zero read count for WT
assay. A marginal decrease in the fraction of probes with zero read
count was observed for samples in batch 2 compared to batch 1, which
was attributed in part to the higher read depth that increased the sen-
sitivity of detecting lowly expressed genes. Further analysis showed
that the fractions of probes which consistently have zero read count
across all samples from both batches were 0.04 and 1.9% for ST and
WT assay, respectively.

Pearson correlation of read counts was performed to assess repro-
ducibility between technical replicates within the same batch of sam-
ples and between biological replicates from different batches of
samples. Regardless of the batch or the type of assay, correlation coef-
ficients of read counts between technical replicates were above 0.90
for the various treatments (Fig. 1c). Correlation coefficients between
biological replicates were generally lower than between technical
replicates with values ranging from 0.85 to 0.99 for ST assay and
0.77 to 0.97 for WT assay (Fig. 1c). For correlation between read
counts of different chemicals, stronger correlations were typically
observed between low concentration samples than high concentration
samples, which presumably were due to low concentration treatments
inducing weak transcriptomic responses that resembled each other
(Supplementary Figs. 1 and 2). PCA plot of variance‐stabilized counts
illustrated batch‐to‐batch variations as evident by the separation of
biological replicates from the two batches of samples (Fig. 1d). Over-
all, the results indicated that the HTTr platform exhibited high repro-
ducibility between technical replicates and variability in cell source
and/or sequencing run contributed to the decreased reproducibility
between biological replicates.

Next, differential gene expression analysis was independently per-
formed for the two batches of samples. A number of observations were
made by comparing the number of DEGs between different assays,
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batches and treatments (Table 1). First, it was observed that the num-
ber of DEGs varied between treatments with 0.6 µM ketoconazole of
batch 1 inducing the least number of DEGs (1 and 0 for ST and WT
assay, respectively) and 10 mM acetaminophen of batch 2 inducing
the greatest number of DEGs (1360 and 8002 for ST and WT assay,
respectively). Second, the number of DEGs detected by ST assay was
lower than WT assay, which was expected as the ST assay targets a
smaller number of genes. Third, for the same chemical treatment,
batch 2 generally had more DEGs compared to batch 1. Lastly, high
drug concentrations typically resulted in more DEGs compared to
low drug concentrations, except for WY14643 that had a similar num-
ber of DEGs at both concentrations.

Reproducibility of differential gene expression was evaluated by
determining the fraction and correlation of DEGs that overlapped
between the two batches of samples (biological replicates). It was
found that treatment with high concentrations of drugs typically pro-
duced a more reproducible transcriptomic signature than treatment
with low concentration of drugs. For example, the fraction of overlap-
ping DEGs between the two batches of acetaminophen‐treated samples
ran by ST assay increased from 4% at 400 µM to 75% at 10 mM
(Fig. 2a). The fraction of overlapping DEGs with increasing treatment
concentration was also observed for samples ran by WT assay (Fig. 2b).
Pearson correlation coefficients of L2FC values of overlapping DEGs
were above 0.9 for high concentration treatments in both ST
(Fig. 2c) and WT assay (Fig. 2d). In contrast, some low concentration
treatments had no overlapping DEGs, others had a lower correlation
coefficient compared to the high concentration counterpart, and one
treatment had a negative correlation coefficient (18 µM chlorampheni-
col ran by ST assay) (Fig. 2c, d). It is worth mentioning that some
genes were differentially expressed in the opposite direction as treat-
ment concentration increased from low to high (Supplementary
Fig. 3), which underscores the importance of testing multiple concen-
trations in order to establish dose‐dependent transcriptomic signa-
tures. Besides concentration, reproducibility of differential gene
expression also depended on the potency of a drug in perturbing the
transcriptome of rat hepatocytes. For instance, at 400 µM, diclofenac
induced 5X more DEGs than caffeine as detected by ST assay (Table 1,
batch 2), and had 71% of overlapping DEGs between biological repli-
cates compared to 2% of caffeine (Fig. 2a, b).

Evaluating inter-platform reproducibility by connectivity mapping

The second objective of this work is to evaluate inter‐platform tran-
scriptomic reproducibility by comparing TempO‐Seq ST and WT data
generated in this study with Affymetrix rat GeneChip 230 2.0 data pro-
duced by the Open TG‐GATEs project (Igarashi et al., 2014). The gene
signatures for each of the chemical treatments from the ST and WT
profiles were searched against the 1177 Open TG‐GATES profiles using
five different connectivity‐scoring algorithms. As an illustrative exam-
ple, connectivity mapping results for the 200 most up‐ and 200 down‐
regulated (nq = 200) ST gene signature for the 400 µM valproic acid
treatment with the 1000 up‐ and down‐regulated genes (nr = 1000) in
the reference profiles are shown in Table 2. Using the sji algorithm for
connectivity‐scoring, the highest‐scoring match for 400 µM valproic
acid was the identical treatment of 400 µM valproic acid treatment
for 24 h (valproic‐acid‐400.00uM‐24 h‐rn‐hep‐e‐mtab‐797). The
second‐highest scoring match was also with valproic acid but for a
treatment concentration of 2000 µM for 24 h (valproic‐acid‐2000.00
uM‐24 h‐rn‐hep‐e‐mtab‐797). Using gtes for connectivity‐scoring also
produced the top two “hits” with valproic acid; however, the reference
profile for the 2000 µM 24 h valproic acid treatment produced a
greater score than the 400 µM 24 h valproic acid treatment. The best
hit using xc algorithm was for the 300 µM 24 h clofibrate treatment
(clofibrate‐300.00uM‐24 h‐rn‐hep‐e‐mtab‐797) and the 400 µM 24 h
valproic acid treatment was the second hit. The correct chemical
was identified as the hit for sji, gtes and xcp, and as top five hits for



Fig. 2. Reproducibility of differential gene expression between biological replicates. Fraction of DEGs (adjusted p < 0.05) identified in both batches (overlaps) or
exclusively in batch 1 or 2 for (a) ST and (b) WT. Pearson correlation coefficients of L2FC of overlapping DEGs between biological replicates for (c) ST and (d) WT.

Table 2
Connectivity between TempO-Seq ST gene signature (400 µM of valproic acid) and the TG-GATEs Affymetrix profiles. Connectivity analysis was performed by
querying the top 200 up- and down-regulated genes of the TempO-Seq signature against the top 1000 up- and down-regulated genes in the reference profile using five
different connectivity-mapping algorithms including: signed Jaccard index (sji), gene set total enrichment score (gtes), extreme cosine (xc) score, Pearson correlation
coefficient (xcp) and Spearman correlation coefficient (xcs). The top 10 hits are ranked by the sji score as shown below. The Open TG-GATES treatment identifiers
were formed by concatenating the chemical, treatment concentration (µM), treatment duration (24 h), species (rat), cell type (hepatocyte) and the Array Express
record identifier for the study (E-MTAB-797).

Rank Open TG-GATES Treatment sji gtes xc xcp xcs

1 valproic-acid-400.00uM-24 h-rn-hep-e-mtab-797 0.413 3.435 0.857 0.817 0.772
2 clofibrate-300.00uM-24 h-rn-hep-e-mtab-797 0.352 3.371 0.86 0.805 0.791
3 wy-14643–8.00uM-24 h-rn-hep-e-mtab-797 0.317 3.274 0.842 0.795 0.779
4 wy-14643–40.00uM-24 h-rn-hep-e-mtab-797 0.296 3.269 0.836 0.788 0.76
5 valproic-acid-2000.00uM-24 h-rn-hep-e-mtab-797 0.398 3.638 0.813 0.786 0.723
6 simvastatin-60.00uM-24 h-rn-hep-e-mtab-797 0.349 1.99 0.805 0.768 0.708
7 clofibrate-60.00uM-24 h-rn-hep-e-mtab-797 0.268 2.046 0.824 0.752 0.785
8 fenofibrate-30.00uM-24 h-rn-hep-e-mtab-797 0.233 1.909 0.806 0.749 0.723
9 wy-14643–200.00uM-24 h-rn-hep-e-mtab-797 0.255 3.313 0.765 0.729 0.63
10 tolbutamide-2000.00uM-24 h-rn-hep-e-mtab-797 0.277 2.123 0.649 0.649 0.647
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xc and xcs. Based on our connectivity mapping analysis, the valproic
acid gene signature (nq = 100) was highly reproduced between the
TempO‐Seq ST and Open TG‐GATES platforms. We systematically ana-
lyzed the connections between the ST and WT profiles for all treat-
ments using different signature lengths, profile lengths, and
connectivity‐mapping algorithms, and our results are provided as sup-
plemental material (Supplementary Table 2).

The performance results for connectivity mapping using ST and WT
signatures of different lengths and different algorithms are shown in
Fig. 3a. Across all analysis choices, the mean Fr1 was 0.28
(SD = 0.17) for ST and 0.29 (SD = 0.12) for WT, the mean Fr5 was
0.58 (SD = 0.12) for ST and 0.58 (SD = 0.15) for WT, and mean
Fr10 was 0.68 (SD = 0.14) for ST and 0.68 (SD = 0.16) for WT.
The differences in performance between connectivity‐scoring
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algorithms for the Fr1, Fr5 and Fr10 metrics using ST and WT across
all signature and profile lengths are shown in Fig. 3b (and complete
results are provided as Supplementary Table 3). The highest Fr1 per-
formance for ST signatures was observed for xc (mean = 0.46 and
SD = 0.05) while sji and xcs were tied for the WT signatures
(mean = 0.40 and SD = 0.04, and mean = 0.40 and SD = 0.07,
respectively). The highest Fr5 performance for ST was observed for
xc and xcp (mean= 0.7 and SD= 0.02) while xc produced the highest
performing WT signatures (mean = 0.70 and SD = 0.03). Finally, the
highest Fr10 performance for ST and WT was produced by xc
(mean = 0.84 and SD = 0.03, and mean = 0.82 and SD = 0.03,
respectively). When compared by individual connectivity‐scoring algo-
rithms, we found the ST signatures were slightly (1.2‐fold) more accu-



Fig. 3. The performance of connectivity mapping using the surrogate transcriptome (ST) and the whole transcriptome (WT) signatures. Performance was
evaluated by the fraction of chemical treatments correctly identified as the best match (Fr1), in the top 5 matches (Fr5) or in the top 10 matches (Fr10).
Connectivity-scoring (CS) algorithms include: signed Jaccard index (sji), gene set total enrichment score (gtes), extreme cosine (xc) score, Pearson correlation
coefficient (xcp) and Spearman correlation coefficient (xcs). (a) Performance comparisons for different signature lengths (nq) across all reference profile lengths
(nr). (b) Performance distributions for different CS comparing ST and WT across all nq and nr.
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rate than WT signatures and xc generally performed better that other
algorithms.

There was a complex relationship between the length of signatures,
connectivity‐scoring algorithms and transcriptome assays (ST vs WT),
but we observed some interesting trends. Increasing the signature
length did not result in substantial improvement in performance for
any of connectivity‐score algorithms. The Fr1 performance of ST signa-
tures for xc increased up to nq ≤ 300 and then decreased whereas the
performance for sji decreased monotonically for nq > 100. On the
other hand, increasing the WT signature length produces modest
improvements in performance for sji (nq ≤ 200), xcs (nq ≤ 400) and
gtes (nq ≤ 400). The Fr5 performance of ST signatures varied less with
nq as it did for Fr1. For the WT signatures, Fr5 signatures showed con-
sistent performance for all algorithms except gtes. Finally, the Fr10
performance of ST signatures generally decreased for nq ≥ 200. On
the other hand, the Fr10 performance of WT signatures did not change
much for xc, xcp and xcs with nq, it decreased for sji and it increased
for gtes.

The best connectivity mapping approaches for the ST and WT sig-
natures were identified for the Fr1, Fr5 and Fr10 performance metrics.
The ST signatures produced the highest Fr1 performance of 0.5 using
xc (with shortest nq = 200 and shortest nr = 2000) and xcp (with
shortest nq = 200 and nr = 4000). The highest Fr1 performance of
0.46 for WT signatures was produced by xcs (with shortest
nq = 300 and shortest nr = 4000). The highest Fr5 performance value
for ST signatures of 0.75 was produced by xcp (nq = 200 and
nr = 5000) and for WT signatures as value of 0.75 was produced by
sji, xcs and xc (for different signature and profile lengths). Lastly,
the highest Fr10 performance value for ST signatures of 0.89 was pro-
duced by xcp and xc (nq = 100 and nr = 5000) and for WT signatures
as value of 0.86 was produced by xcs and xc (for nq = 400 and
nr = 5000).
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In Table 3, we selected the optimal values of nq and nr for each
connectivity‐scoring algorithm to report the best rank for the ST and
WT signatures. The median and average ranks across all methods were
1 and 5, respectively for the ST signatures, and 1 and 5.5 for the WT
signatures. We did not find any hits for the acetaminophen 400 µM,
doxorubicin 0.08 µM, ketoconazole 0.6 µM, diclofenac 16 µM and ran-
itidine 160 µM treatments in the Open TG‐GATES database using
either ST or WT signatures with any of the five connectivity‐scoring
algorithms. For the remaining treatments, the best hit was the same
chemical for 68% of the treatments, and within the top 10 hits for
95% of the treatments for both ST and WT signatures. The acetamino-
phen 10000 µM treatment produced the lowest ranking hits across all
treatments with minimum ranks of 48 (ST) and 48 (WT). This was fol-
lowed by the indomethacin 12 µM treatment with a minimum rank of
19 (ST) and 17 (WT), the naproxen 80 µM treatment with a minimum
rank of 10 (ST) and 4 (WT).

The similarity between TempO‐Seq ST and TG‐GATES transcrip-
tomics profiles was also driven by common mechanisms of action for
the chemicals (Iorio et al., 2013). To illustrate this issue, consider val-
proic acid, which is an anticonvulsant drug used for treating epilepsy
and bipolar disorder, however, it is also known to affect the peroxi-
some proliferator activated receptors (PPARs) in the liver (Szalowska
et al., 2014), causing changes in lipid metabolism and resulting in hep-
atic steatosis (Amacher and Chalasani, 2014). The high‐scoring
matches for the valproic acid 400 µM treatment (Table 2) in Open
TG‐GATES included valproic acid as well as simvastatin, clofibrate,
tolbutamide, WY‐14643, diclofenac and gemfibrozil, which alter lipid
metabolism through PPARs (Rakhshandehroo, Hooiveld, Müller, and
Kersten, 2009). This is an encouraging result as we are interested in
using the rat liver HTTr platform to screen potential hepatotoxicants.

Overall, the connectivity mapping analysis of these 14 chemicals
using TempO‐Seq ST and WT data and Affymetrix rat GeneChip data



Table 3
Connectivity mapping analysis of best hits. Best ranks for the TempO-Seq surrogate transcriptome (ST assay) and whole transcriptome (WT assay) gene signatures
(length nq), in the TG-GATES reference profiles (length nr) for each connectivity-scoring algorithm (CS). Connectivity-scoring (CS) algorithms include: signed Jaccard
index (sji), gene set total enrichment score (gtes), extreme cosine (xc) score, Pearson correlation coefficient (xcp) and Spearman correlation coefficient (xcs). The last
two rows show the median and mean ranks by each CS method and the last two columns show the best (minimum) rank identified for each treatment in each assay.

Assay ST WT

CS gtes sji xc xcp xcs gtes sji xc xcp xcs Min. Rank
nq 400 100 200 200 300 200 200 200 200 300
nr 3000 2000 3000 2000 4000 2000 2000 4000 4000 4000 ST WT

Chemical Conc (µM)
Acetaminophen 1000 119 48 55 56 53 65 61 58 60 62 48 58
Caffeine 400 4 1 2 1 1 1 1 2 1 1 1 1

10,000 1 1 1 1 1 1 1 1 1 1 1 1
Chloramphenicol 18 15 22 4 9 10 120 7 6 18 19 4 6

450 1 1 1 1 1 18 1 1 1 1 1 1
Diclofenac 400 5 1 1 1 1 8 1 1 1 1 1 1
Doxorubicin 2 10 1 1 1 1 3 1 3 3 1 1 1
Indomethacin 12 19 20 26 19 28 17 30 18 19 29 19 17

300 22 1 1 2 1 23 1 1 1 1 1 1
Isoniazid 400 50 6 1 1 7 1 14 6 7 10 1 1

10,000 35 2 9 10 18 37 1 1 1 1 2 1
Ketoconazole 15 1 2 1 1 1 1 1 1 1 1 1 1
Naproxen 80 24 10 13 10 16 12 6 5 4 4 10 4

2000 20 1 1 1 1 1 1 1 1 1 1 1
Ranitidine 4000 26 9 1 1 7 10 10 7 9 9 1 7
Simvastatin 2 3 22 6 5 17 1 16 2 2 10 3 1

60 1 1 1 1 1 1 1 1 1 1 1 1
Sulfasalazine 4 15 27 7 7 17 10 10 11 10 12 7 10

100 24 12 10 8 10 26 8 8 8 8 8 8
Valproic 400 4 1 1 1 1 14 1 1 1 1 1 1

10,000 4 1 1 1 1 5 1 1 1 1 1 1
WY14643 8 3 1 1 1 1 6 1 1 1 1 1 1

200 3 1 1 1 1 4 2 2 2 1 1 1
Median 10 1 1 1 1 8 1 2 1 1 1 1
Mean 17.8 8.3 6.3 6.1 8.5 16.7 7.7 6 6.7 7.7 5 5.5
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from Open TG‐GATES on rat primary hepatocytes show a high‐level of
inter‐platform reproducibility.

Comparison between gene signatures of TempO-Seq ST and WT assays by
DEGs

The third objective of this study is to evaluate the robustness of
S1500+ gene set as a surrogate for the whole transcriptome. A posi-
tive correlation of L2FC values was observed between genes common
to both assays, with correlation coefficients being above 0.95 for all
treatments (Supplementary Fig. 4). By generating a union of DEGs
across all treatments for each assay, 1593 DEGs were found to overlap
between the two assays (Fig. 4a), with additional 166 and 8547 DEGs
identified by the ST and WT assay, respectively. Among the 166 DEGs
identified by ST assay alone, half were detected using probe sequences
that were also found in the WT assay but annotated with different gene
symbols; hence they were not identified as overlapping DEGs between
the two assays through the matching of gene symbols. Another 25%
were genes that were annotated with the same gene symbols as in
the WT assay but detected using different probe sequences. The
remaining were genes that were found only in the ST assay.

PCA plots were generated using the L2FC values of the union of
DEGs to visualize and compare the gene expressions between the
two assays (Fig. 4b–e). Remarkable similarities were observed
between PCA plots of ST and WT for low concentration treatments.
The majority of treatments were situated on the left of the plots except
for 400 µM valproic acid and 8 µMWY14643 which were located away
from the main group (Fig. 4b and c). High concentration treatments
were farther apart from each other on the PCA plots for both ST and
WT, suggesting that the chemical‐induced transcriptomic responses
were more distinct than those at low concentrations (Fig. 4d and e).
Unsupervised hierarchical clustering of samples ran by ST assay
resulted in three main clusters (Fig. 4f). The left cluster included treat-
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ments with acetaminophen, valproic acid, diclofenac, ranitidine, isoni-
azid, and ketoconazole at their respective high concentrations. It is
worth mentioning that the drugs in this cluster belonged to the
most‐DILI‐concern classification. The right cluster included treatments
with high concentrations of caffeine, indomethacin, naproxen, and sul-
fasalazine; low concentration of valproic acid; and low and high con-
centrations of WY14643. Finally, the middle (intermediate) cluster
was characterized by treatments with low concentration of drugs,
except chloramphenicol and simvastatin at both low and high concen-
trations. Unsupervised clustering of samples ran by WT assay also pro-
duced three main clusters with the drugs in each cluster being
identical to ST assay except for 10 mM caffeine, which was included
in the right cluster for ST assay but was found in the left cluster for
WT assay (Fig. 4g). The resemblance in PCA plots and hierarchical
clustering between ST and WT visually demonstrated that the
S1500+ and WT genes capture similar overall transcriptomic effects
for these chemical treatments in rat hepatocytes. The observation is
consistent with the selection criteria of the S1500+ gene set, which
includes maximal capturing of biological diversity in gene expression
datasets.

Comparison between gene signatures of TempO-Seq ST and WT assays by
GSEA

Next, gene signatures captured by the ST and WT assays were com-
pared using GSEA with the hallmark gene set collection. The number
of genes within each hallmark gene set after restricting the genes pre-
sent in the ST and WT assay are shown in Supplementary Table 4. By
comparing normalized enrichment score (NES) between ST and WT
assay, a majority of treatments (26 out of 28) had at least one overlap-
ping hallmark among the top five ranked by descending order of NES
between the two assays, with most treatments having three or more
(Supplementary Fig. 5a). Moreover, a positive correlation of NES



Fig. 4. Comparison of gene signatures generated by ST and WT assay. (a) Venn diagram depicting the overlap of the union of DEGs between ST and WT assays.
PCA plot using the L2FC values of the union of DEGs for (b and c) low and (d and e) high treatment concentrations. Unsupervised hierarchical clustering
(Euclidean distance and ward.D2 algorithm) of samples using L2FC values of DEGs for (f) ST and (g) WT assay.
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between ST and WT assays was observed with correlation coefficients
ranging from 0.5 to 0.9 at low concentration and from 0.7 to 0.9 at
high concentration (Supplementary Fig. 5b).

It was also observed that ST assay generally resulted in a lower
number of significantly enriched hallmark gene sets (FDR < 0.05)
compared to WT assay (Fig. 5). Nonetheless, most gene sets signifi-
cantly enriched in ST assay were also significantly enriched in the
WT assay. Notably, the significantly enriched gene sets were consistent
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with the known activity of the chemicals. As shown in Figs. 5, 6 hall-
mark gene sets of the immune category were downregulated by indo-
methacin in both ST and WT assays, reflecting the anti‐inflammatory
activity of the NSAID. Sulfasalazine, an anti‐infective agent, downreg-
ulated both interferon‐alpha and gamma response and TNF‐alpha sig-
naling via NFκB in both ST and WY assays, which is consistent with its
mechanism of action (Chan et al., 2008). WY14643 significantly
upregulated peroxisome at both concentrations in both assays,



Fig. 5. Significantly enriched hallmark gene set (FDR < 0.05) by treatment. Positively and negatively enriched gene sets are indicated by red and blue,
respectively. White indicates no statistical significance in the enrichment. The total number of significantly enriched gene sets is listed on the right of the figure.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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consistent with its mechanism of action as a peroxisome proliferator‐
activated receptor alpha (PPARα) agonist. In addition, WY14643
downregulated several immune‐related hallmarks at high concentra-
tion, indicating potential anti‐inflammatory activity as reported previ-
ously (Briguglio et al., 2010). Moreover, bile acid metabolism, fatty
acid metabolism, oxidative phosphorylation and xenobiotic metabo-
lism of the metabolic category were significantly enriched by
WY14643, supporting the notion of PPARα as a regulator of hepatic
lipid metabolism (Rakhshandehroo et al., 2009). Significant as well
as consistent enrichment between ST and WT assays of peroxisome
and hallmarks of the metabolic category was observed for valproic
acid at low concentration; simvastatin at high concentration; and sul-
fasalazine, indomethacin, naproxen and simvastatin at both low and
high concentrations and, suggesting common transcriptional effects
on cultured rat hepatocytes between these drugs and WY14643.

Differentiation between hepatotoxic and non-hepatotoxic treatments by
clustering using NES of hallmark gene set

Hierarchical clustering divided treatments according to similarities
in the enrichment of hallmark gene sets. NES of samples calculated by
both ST and WT assays were combined into a single matrix for the
analysis. The clustering correctly paired samples by chemical treat-
ment, that is, the nearest neighbor to a treatment ran by ST is the same
treatment ran by WT (Fig. 6), was observed for all samples except
naproxen, indomethacin, ketoconazole and WY14643 at the respective
low concentrations, and sulfasalazine at high concentration. This
observation further confirmed the above observation that NES scores
were highly consistent between ST and WT assays.

Besides producing treatment‐specific pairs, hierarchical clustering
using NES of hallmark gene set divided the treatments into three major
clusters (labeled A‐C in Fig. 6). Strongly positive NES characterized
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cluster A for most hallmarks of the metabolic category, whereas NES
for hallmarks of the proliferation category ranged from strongly nega-
tive to weakly positive. NES for apoptosis, TNFα via NFκB, inflamma-
tory response, and interferon‐alpha response were strongly negative in
Cluster A, suggesting that the chemicals and associated concentrations
did not induce significant stress on hepatocytes. Cluster B exhibited a
contrasting biological state compared to Cluster A with strongly nega-
tive to weakly positive NES for hallmarks of the metabolic category
and weakly negative to strongly positive NES for hallmarks of the pro-
liferation category. Some treatments in Cluster B showed strongly pos-
itive NES for apoptosis, TGFβ signaling, TNFα signaling via NFκB,
epithelial mesenchymal transition and inflammatory response, all of
which were signaling pathways characteristic of liver injury. Thus,
the drugs and associated concentrations in Cluster B caused impair-
ment of metabolic functions and activation of several signaling path-
ways in response to the stressful chemical treatments. Lastly, Cluster
C showed an intermediate biological state between Cluster A and B.
For example, NES for hallmarks of metabolic category were predomi-
nantly positive as in Cluster A except for cholesterol homeostasis and
glycolysis. NES for hallmarks of proliferation category ranged from
weakly negative to strongly positive, which more closely resembled
Cluster B. Some treatments in Cluster C showed positive NES for apop-
tosis, TGFβ signaling, TNFα signaling via NFκB, epithelial‐
mesenchymal transition, and inflammatory response.

Hierarchical clustering of NES of ST samples alone also resulted in
three main clusters (Supplementary Fig. 6). The treatments within
each cluster were the same as those obtained by clustering NES of both
ST and WT samples except for 18 uM chloramphenicol, 16 uM diclofe-
nac and 160 uM ranitidine (compare Fig. 6 to Supplementary Fig. 6).
Statistical analysis was performed on NES between Cluster A and Clus-
ter B in Supplementary Fig. 6, which contained the putative non‐
hepatotoxic and hepatotoxic treatments. Twenty‐eight out of the 50



Fig. 6. Unsupervised hierarchal clustering using NES of all samples from both batches of experiments using NES (Euclidean distance and ward.D2 algorithm).
Column labels of samples ran by ST and WT were in black and purple, respectively. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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hallmarks showed statistically significant differences (FDR < 0.05) in
NES between the two clusters (Supplementary Table 5). The top 5 sta-
tistically significant gene sets were xenobiotic metabolism, bile acid
metabolism, apoptosis, p53 pathway and coagulation. These five gene
sets had an absolute difference in the mean NES between the two clus-
ters of greater than 2.5 and an FDR of less than 5 × 10‐4.

Hierarchical clustering using NES of the top 5 hallmarks also
divided the treatments into three clusters (Supplementary Fig. 7).
Twenty‐two out of 28 treatments were found in the same clusters as
those derived from the entire set of 50 hallmarks (compare Supple-
mentary Fig. 6 to Supplementary Fig. 7). Cluster A (non‐hepatotoxic)
was characterized by positive enrichment in xenobiotic metabolism,
bile acid metabolism, coagulation, and negative enrichment in the
p53 pathway and apoptosis, and included only low concentration
treatments except for 100 uM sulfasalazine. Cluster B (hepatotoxic)
was characterized by impaired coagulation and metabolic functions
and apoptosis and p53 pathway activation. The treatments in Cluster
B included 5 most‐DILI‐concern drugs and 3 less‐DILI‐concern drugs,
and all were high concentration treatments except for 2.4 uM simvas-
tatin. Cluster C is an intermediate cluster that exhibited partially
impaired hepatic functions (mostly positive enrichment in hepatic
metabolism and negative enrichment in coagulation) and a mixed
enrichment in p53 and apoptosis. Taken together, the results
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demonstrated that hepatotoxic treatments could be identified by unsu-
pervised hierarchical clustering using NES of a subset of the hallmark
gene set.
Discussion

There is an urgent need for new high‐throughput approaches for
testing chemical safety that reduce dependence on whole‐animal api-
cal outcomes. In vitro tissue/organ models coupled with HTTr are
expected to be one of the main approaches in chemical hazard charac-
terization. Various approaches have been developed to analyze and
incorporate transcriptomic data for chemical risk assessment. For
instance, benchmark dose (BMD) modeling of transcriptomic data
has been developed to estimate apical BMD or point‐of‐departure
(POD) values (Gwinn et al., 2020; Johnson et al., 2020; Thomas
et al., 2007; Thomas et al., 2013). Transcriptomic signature of a test
chemical could also be queried against signatures of reference chemi-
cals through pattern‐matching approaches such as connectivity map-
ping (De Abrew et al., 2016; Lamb et al., 2006) in order to uncover
potential modes of action (MOAs) or biological targets of the test
chemical for further validation via pathway or target‐specific assays.
Transcriptomic data has also been recently used to derive predictive
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gene signatures for early detection of drug‐induced liver injury (DILI)
(Kang et al., 2020; Monroe et al., 2020; Podtelezhnikov et al., 2020).

In this study, we described an HTTr platform comprised of a colla-
gen sandwich cell culture model and the TempO‐Seq transcriptomic
assay. Using a comprehensive study design involving fourteen chemi-
cals with different DILI classifications and two treatment concentra-
tions, we systematically evaluated technical (well‐to‐well), biological
(batch‐to‐batch), and cross‐platform (TempO‐Seq‐to‐Affymetrix)
reproducibility of this HTTr platform. Our results show that, while
the read depth and fraction of probes with zero read count varied
between samples (Fig. 1a, b), a strong correlation (mean correlation
coefficient greater than 0.99) between read counts of technical repli-
cates was observed (Fig. 1c). The finding is consistent with a previous
study examining the reproducibility of TempO‐Seq (Yeakley et al.,
2017). Of note, technical replicates in our study design were three
independent samples of RNAs extracted from primary rat hepatocytes;
therefore, a strong correlation between technical replicates would
indicate that the experimental steps, starting from cell seeding to
library preparation, are highly reproducible. A strong correlation
was also observed between read counts of biological replicates, albeit
the mean correlation coefficient was lower than that of technical repli-
cates, which was attributed to the additional source of variations aris-
ing from different cell source and separate sequencing runs (Fig. 1).

It is noteworthy that a strong correlation between replicates does
not necessarily reflect agreement, as the large number of targeted
genes, particularly in the WT assay, makes it difficult for linear rela-
tionships to be skewed by strong disagreement between a small num-
ber of genes (McIntyre et al., 2011). Nonetheless, based on the results
and taking the cost of sequencing a large number of replicates into
consideration, we believe that technical replicates are non‐essential
for the present HTTr platform but biological replicates are highly
recommended.

Our results also showed that the reproducibility of DEGs between
biological replicates positively correlates with the magnitude of tran-
scriptional effect induced by the treatment, which depends on the
potency of the chemical and the concentration (Fig. 2). A more repro-
ducible gene signature is observed between biological replicates of
hepatocytes treated with a chemical that induces several thousand
DEGs than with one that induces only a few DEGs, or between high
and low concentrations for the same chemical. Similar observations
were reported in studies comparing the reproducibility of DEGs
between samples from different sources. For instance, a study examin-
ing the concordance of drug‐induced transcriptional response between
rodent livers exposed to the same chemical but from different expres-
sion datasets showed that concordance in gene expression was highest
for treatments causing the largest transcriptional effects (Sutherland
et al., 2016). Also, a comparison between Affymetrix gene chips and
RNA‐Seq demonstrated that the cross‐platform concordance in DEGs
positively correlated with the degree of perturbation elicited by the
treatment (C. Wang et al., 2014). Based on these findings, testing
the highest non‐cytotoxic chemical concentration would ensure the
most reproducible gene signatures between replicates.

On the other hand, testing concentrations above the highest non‐
cytotoxic concentration should be avoided as it may not yield informa-
tion relevant to the mode of action of a chemical (Waldmann et al.,
2014). Accordingly, identifying the highest non‐cytotoxic dose via cell
viability screening is a necessary first step in designing an HTTr study.
Moreover, since a gene can be differentially expressed in the opposite
direction at different concentrations of the same chemical (Supple-
mentary Fig. 3), measuring a range of concentrations below the high-
est non‐cytotoxic concentration would yield useful information on
dose‐dependent transcriptomic responses.

Cross‐platform reproducibility was evaluated by comparing
TempO‐Seq data with the Open TG‐GATES data set using connectivity
mapping (Lamb, 2007). We used the in vitro rat primary hepatocyte
subset of the Open TG‐GATES data, which was most closely aligned
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with our study design, including 131 chemicals a set of 1177 transcrip-
tomic profiles. Using five different connectivity‐scoring algorithms to
quantify similarities between all TempO‐Seq and Affymetrix transcrip-
tomic data, we found 68% of the chemicals were perfectly matched
between the two platforms and 100% of the chemicals were in the
top 10 hits. Connectivity mapping from TempO‐Seq ST and WT and
the TG‐GATES data showed a high level of concordance (Fig. 3b). Fur-
thermore, our preliminary results suggest that similarity between
TempO‐Seq and TG‐GATES transcriptomic profiles can be indicative
of common mechanisms of action for chemicals. The high level of
cross‐platform reproducibility reinforces our findings on the quality
of the TempO‐Seq ST assay for characterizing the effects of chemicals
on hepatocytes and its suitability for large‐scale screening of environ-
mental chemicals.

This study was also designed to evaluate the robustness of the
S1500+ gene set as a surrogate to the whole transcriptome in repre-
senting transcriptional diversity and pathway coverage. While the
comparison could be done by simply extracting the S1500+ genes
and associated read counts from the WT assay, such an approach does
not take into account the differences in read depth between the two
assays (Fig. 1a). The two assays also differ in that there are 336 probes
targeting the same genes but with different detector oligo sequences,
which was a result of the continuous improvement in the probe design
process. These inherent differences between the two assays could
introduce variations in the differential gene expression. Thus, to per-
form an accurate comparison, two sequencing libraries were prepared
for each sample, one for the S1500+ gene set (ST assay) and the other
for the whole transcriptome (WT assay). Notwithstanding the differ-
ences between the two assays, an overall positive correlation in the
L2FC values was observed (Supplementary Fig. 4). Notably, despite
targeting a smaller number of genes, DEGs derived from ST assay were
able to cluster treatments into groups similar to that of WT assay
(Fig. 3). Our finding is in agreement with a previous report showing
that the TempO‐Seq ST assay is comparable to other whole transcrip-
tome sequencing approaches (microarray and RNA‐Seq) in driving the
clustering of samples from liver of rats exposed to chemicals based on
the mechanism of action of the chemicals (Bushel et al., 2018).

GSEA was performed to evaluate the ST assay in detecting
chemical‐induced changes in biological processes in comparison to
the WT assay. Our results showed that the transcriptomic signatures
acquired by ST assay could yield enriched gene sets relevant to the
MOA of the drugs and consistent with WT assay. Nonetheless, the
number of enriched gene sets was lower than WT assay when the gene
sets were filtered by statistical significance (Fig. 5). When comparison
was performed based on enrichment scores (NES), which reflects the
degree to which the genes in a gene set are uniformly up‐ or down‐
regulated (Subramanian et al., 2005), a strong correlation between
the two assays was observed (Supplementary Fig. 5). Clustering sam-
ples using NES calculated by ST and WT assays correctly paired most
of the treatments, further demonstrating the consistency in gene set
enrichment between the two assays (Fig. 6). These results indicated
that the ST assay is capable of detecting chemical‐induced perturba-
tions in biological processes similar to that of WT assay.

GSEA was originally designed to run on the whole transcriptome,
therefore running GSEA on ST datasets raises the concern of whether
the size of a gene set after restricting to the S1500+ genes would be
too small (or too large) for accurate results. According to the GSEA
User Guide version 3.0, the recommended minimum number of genes
in a gene set is 15. Seven hallmark gene sets had<15 genes in the
S1500+ panel, namely, Notch signaling, Hedgehog signaling, pan-
creas beta cells, apical surface, WNT beta‐catenin signaling, KRAS sig-
naling DN, and angiogenesis (Supplementary Table 4). Also, the
recommended maximum gene set size is 500 for datasets with
10,000 to 20,000 features, or between 2.5 and 5% of the expressed
genes. mTORC1 signaling with 92 genes, or approximately 5.2% of
the S1500+ genes after taking into account of gene isoforms, was
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found to exceed this range. Therefore, one should be mindful of these
8 hallmark gene sets when interpreting the enrichment scores of ST
datasets.

A consistent pattern of gene set enrichment among chemicals asso-
ciated with human DILI was identified—positive enrichment of apop-
tosis, cell proliferation, and inflammatory signaling pathways coupled
with negative enrichment of metabolic and biosynthetic processes
(Fig. 6). Several treatments were found to match this pattern of gene
sets enrichment, but not all were identified as cytotoxic using CellTiter
Glo assay, which corroborates previous findings that changes in gene
expression occur prior to changes in cytotoxicity (Limonciel et al.,
2018; Waldmann et al., 2014). The top 5 hallmark gene sets driving
the clustering of treatments were known to be closely associated with
hepatotoxicity (Supplementary Table 5). Apoptosis is a tightly regu-
lated process that can be triggered by either the extrinsic pathway
(binding of death receptors) or the intrinsic pathway (or mitochondrial
pathway). One of the ways in which drugs and their reactive metabo-
lites trigger apoptosis is by producing reactive oxygen species, causing
mitochondrial damage that leads to the release of apoptogenic factors
such as cytochrome c (Wang, 2014). Reactive metabolites could also
cause DNA damage and activate the p53 pathway; for this reason,
p53 is one of the key gene signatures investigated for routine monitor-
ing of drug safety (Podtelezhnikov et al., 2020). Both apoptosis and the
p53 pathway were positively enriched in hepatotoxic treatments (Sup-
plementary Fig. 7). The liver synthesizes most of the coagulation fac-
tors, and coagulation impairment is associated with liver damage
(Kopec and Luyendyk, 2014). The liver also plays a central role in
xenobiotic and bile acid metabolisms, and disorders in hepatic meta-
bolism are associated with liver diseases (Chiang, 2013). Hallmark
gene sets for coagulation, bile acid metabolism and xenobiotic metabo-
lism were negatively enriched in hepatotoxic treatments (Supplemen-
tary Fig. 7).

In this work, we combined a collagen sandwich model, S1500+
high‐throughput transcriptomics and hallmark gene set enrichment
as a resource‐sparing and precise way of acquiring and analyzing tran-
scriptomic data for in vitro assessment of hepatotoxicity. Moreover,
clustering of NES of hallmark gene set provides a way of differentiat-
ing between hepatotoxic and non‐hepatotoxic chemicals. This HTTr
platform is amenable to scale up as both the collagen sandwich model
and the TempO‐Seq assay can be implemented in 384‐well format with
robotic automation; thus it also has the potential of screening thou-
sands of chemicals at different dosing concentrations in one
experiment.
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