
RESEARCH ARTICLE

Human electromagnetic and haemodynamic

networks systematically converge in unimodal

cortex and diverge in transmodal cortex

Golia ShafieiID, Sylvain Baillet, Bratislav MisicID*
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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Whole-brain neural communication is typically estimated from statistical associations

among electromagnetic or haemodynamic time-series. The relationship between functional

network architectures recovered from these 2 types of neural activity remains unknown.

Here, we map electromagnetic networks (measured using magnetoencephalography

(MEG)) to haemodynamic networks (measured using functional magnetic resonance imag-

ing (fMRI)). We find that the relationship between the 2 modalities is regionally heteroge-

neous and systematically follows the cortical hierarchy, with close correspondence in

unimodal cortex and poor correspondence in transmodal cortex. Comparison with the Big-

Brain histological atlas reveals that electromagnetic–haemodynamic coupling is driven by

laminar differentiation and neuron density, suggesting that the mapping between the 2

modalities can be explained by cytoarchitectural variation. Importantly, haemodynamic con-

nectivity cannot be explained by electromagnetic activity in a single frequency band, but

rather arises from the mixing of multiple neurophysiological rhythms. Correspondence

between the two is largely driven by MEG functional connectivity at the beta (15 to 29 Hz)

frequency band. Collectively, these findings demonstrate highly organized but only partly

overlapping patterns of connectivity in MEG and fMRI functional networks, opening funda-

mentally new avenues for studying the relationship between cortical microarchitecture and

multimodal connectivity patterns.

Introduction

The structural wiring of the brain imparts a distinct signature on neuronal coactivation pat-

terns. Interregional projections promote signaling and synchrony among distant neuronal

populations, giving rise to coherent neural dynamics, measured as regional time series of elec-

tromagnetic or haemodynamic neural activity [1]. Systematic coactivation among pairs of

regions can be used to map functional connectivityAU : PleasenotethatFChasbeenaddedatthefirstmentionof functionalconnectivityinthesentenceSystematiccoactivationamongpairsofregionscanbeusedto:::andallinstancesof functionalconnectivityhavebeenabbreviatedtoFCthroughoutthetexttoenforceconsistency:Pleaseconfirmthatthesechangesarevalid:(FC) networks. Over the past decade, these

dynamics are increasingly recorded without task instruction or stimulation; the resulting

“intrinsic” FC is thought to reflect spontaneous neural activity.
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The macroscale functional architecture of the brain is commonly inferred from electromag-

netic or haemodynamic activity. The former can be measured using electroencephalography

(EEG) or magnetoencephalography (MEG), while the latter is measured using functional mag-

netic resonance imaging (fMRI). Numerous studies—using both MEG and fMRI—have

reported evidence of intrinsic functional patterns that are highly organized [2–9], reproducible

[10–13], and comparable to task-driven coactivation patterns [12,14,15].

How do electromagnetic and haemodynamic networks relate to one another? Although

both modalities attempt to capture the same underlying biological process (neural activity),

they are sensitive to different physiological mechanisms and ultimately reflect neural activity

at fundamentally different timescales [16–20]. Emerging theories emphasize a hierarchy of

time scales of intrinsic fluctuations across the cortex [21–24], where unimodal cortex is more

sensitive to immediate changes in the sensory environment, while transmodal cortex is more

sensitive to prior context [25–30]. This raises the possibility that the alignment between the rel-

atively slower functional architecture captured by fMRI and faster functional architecture cap-

tured by MEG may systematically vary across the cortex.

Previous reports have found some, but not complete, global overlap between the 2 modali-

ties. Multiple MEG- and fMRI-independent components—representing spatiotemporal signa-

tures of resting-state intrinsic networks—show similar spatial topography, particularly the

visual, somatomotor, and default mode components [6–8,31]. The spatial overlap between

large-scale networks has also been reported in task-based studies and with networks recovered

from other modalities, such as EEG and intracranial EEG [32–36]. Moreover, fMRI and MEG/

EEG yield comparable fingerprinting accuracy, suggesting that they encode common informa-

tion [37–40]. Finally, global edge-wise comparisons between fMRI networks and electrocorti-

cography (ECoG) [41], EEG [42–44], and MEG [45–47] also yield moderate correlations.

Although global comparisons are more common when different modalities are studied,

regional and network-level relationships have also been explored using electrophysiological

and intracranial EGG recordings [36,48,49] as well as EEG and MEG recordings [45,50,51].

Regional comparisons of electrophysiological and fMRI recordings also suggest that the rela-

tionship between the two may be affected by distinct cytoarchitecture and laminar structure of

brain regions, particularly in visual and frontal cortex [52–59]. How the coupling between

fMRI and MEG connectivity profiles varies from region to region, and how this coupling

reflects cytoarchitecture, is still not fully understood. Furthermore, previous studies have

mostly assessed the association between haemodynamic and electromagnetic networks for sep-

arate frequency bands, investigating independent contributions of individual rhythms to hae-

modynamic connectivity. This effectively precludes the possibility that superposition and

mixing of elementary electromagnetic rhythms manifests as patterns of haemodynamic con-

nectivity [45,47,61].

How regional connectivity profiles of MEG and fMRI functional networks are associated

across the cortex, and how their correspondence relates to the underlying cytoarchitecture,

remains an exciting open question. Here, we use a linear multifactor model that allows to rep-

resent the haemodynamic FC profile of a given brain region as a linear combination of its elec-

tromagnetic FC in multiple frequency bands. We then explore how the 2 modalities align

across the neocortex and investigate the contribution of cytoarchitectonic variations to their

alignment.

Results

Data were derived using task-free MEG and fMRI recordings in the same unrelated partici-

pants from the Human Connectome Project (HCP; [62]; n = 33). We first develop a simple
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regression-based model to map regional MEG connectivity to regional fMRI connectivity

using group-average data. We then investigate how regionally heterogeneous the correspon-

dence between the two is, and how different rhythms contribute to this regional heterogeneity.

Finally, we conduct extensive sensitivity testing to demonstrate that the results are robust to

multiple methodological choices.

Relating haemodynamic and electromagnetic connectivity

To relate fMRI and MEG FC patterns, we apply a multilinear regression model [68] (Fig 1).

The model is specified for each brain region separately, attempting to predict a region’s hae-

modynamic connectivity profile from its electromagnetic connectivity profile. The dependent

variable is a row of the fMRI FC matrix and the independent variables are the corresponding

rows of MEG FC matrices for 6 canonical electrophysiological bands, estimated using ampli-

tude envelope correlation (AEC; [60]) with spatial leakage correction (see “Methods” for more

details). For a model fitted for a given node i, the observations in the model are the connec-

tions of node i to the other j6¼i regions (Fig 1A). The model predicts the fMRI FC profile of

node i (i.e., i-th row) from a linear combination of MEG FC profiles of node i in the 6 fre-

quency bands (i.e., i-th rows of MEG FC matrices). Collectively, the model embodies the idea

that multiple rhythms could be superimposed to give rise to regionally heterogeneous haemo-

dynamic connectivity.

Indeed, we find that the relationship between haemodynamic and electromagnetic connec-

tivity is highly heterogeneous. Band-limited MEG connectivity matrices are moderately corre-

lated with fMRI connectivity, ranging from r = −0.06 to r = 0.36 (Fig 1B; r denotes Pearson

correlation coefficient). The regional multilinear model fits range from adjusted-R2 = −0.002

to adjusted-R2 = 0.72 (R2 denotes coefficient of determination; hereafter we refer to adjusted-

R2 as R2), suggesting a close correspondence in some regions and poor correspondence in oth-

ers (Fig 1C and 1E). Band-specific regional model fits are depicted in S1 Fig, where each band-

specific MEG connectivity is separately used as a single predictor in the model. For compari-

son, a single global model is fitted to the data, predicting the entire upper triangle of the fMRI

FC matrix (i.e., all values above the diagonal) from a linear combination of the upper triangles

of 6 MEG FC matrices (i.e., all values above the diagonal) (see “Methods” for more detail). The

global model, which simultaneously relates whole-brain fMRI FC to the whole-brain MEG FC,

yields an R2 = 0.15 (Fig 1D and 1E). Importantly, the global model clearly obscures the wide

range of correspondences, which can be considerably greater or smaller for individual regions.

Hierarchical organization of cross-modal correspondence

We next consider the spatial organization of fMRI-MEG correspondence. Fig 2A shows the

spatial distribution of regional R2 values, representing regions with low or high correspon-

dence. Regions with strong cross-modal correspondence include the visual, somatomotor, and

auditory cortex. Regions with low cross-modal correspondence include the posterior cingulate,

lateral temporal, and medial prefrontal cortex.

Collectively, the spatial layout of cross-modal correspondence bears a resemblance to the

unimodal–transmodal cortical hierarchy observed in large-scale functional and microstruc-

tural organization of the cerebral cortex [28]. To assess this hypothesis, we first compared the

cross-modal R2 map with the principal functional hierarchical organization of the cortex, esti-

mated using diffusion map embedding [63,71] (Fig 2B; see “Methods” for more details). The

two are significantly anticorrelated (Spearman rank correlation coefficient rs = −0.69, pspin =

0.0001), suggesting strong cross-modal correspondence in unimodal sensory cortex and poor

correspondence in transmodal cortex. We then stratify regions by their affiliation with
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macroscale intrinsic networks and computed the mean R2 in each network [2] (Fig 2C). Here,

we also observe a systematic gradient of cross-modal correspondence, with the strongest corre-

spondence in the visual network and poorest correspondence in the default mode network.

We relate the cross-modal R2 map to the cytoarchitectural variation of the cortex (Fig 2D).

We use the BigBrain histological atlas to estimate granular cell density at multiple cortical

depths [64,65]. Cell-staining intensity profiles were sampled across 50 equivolumetric surfaces

from the pial surface to the white matter surface to estimate laminar variation in neuronal den-

sity and soma size. Fig 2D shows the correlation between MEG-fMRI correspondence and cell

density (y axis) at different cortical depths (x axis). Interestingly, the model fit is associated

with cytoarchitectural variation of the cortex, with the peak association observed approxi-

mately at cortical layer IV that has high density of granular cells and separates supra- and

infragranular layers [72–74]. Layer IV predominately receives feedforward projections and has

high vascular density [75–77]. We further assess the relationship between MEG-fMRI cross-

Fig 1. Relating haemodynamic and electromagnetic connectivity. (a) A multilinear regression model was applied to predict resting state fMRI connectivity

patterns from band-limited MEG FC (AEC; [60]). The model is specified for each brain region separately, attempting to predict a region’s haemodynamic

connectivity profile from its electromagnetic connectivity profile. (b) The overall relationship between fMRI and MEG FC is estimated by correlating the upper

triangle of fMRI FC (i.e., above diagonal) with the upper triangles of band-limited MEG FC, suggesting moderate relationship between the two across

frequency bands. (c) Regional multilinear model shown in panel (a) is used to predict fMRI FC from band-limited MEG FC for each brain region (i.e., row)

separately. The empirical and predicted fMRI FC are depicted side by side for the regional model. The whole-brain edge-wise relationship between the

empirical and predicted values is shown in the scatter plot. Each gray dot represents an edge (pairwise functional connection) from the upper triangles of

empirical and predicted fMRI FC matrices. (d) A global multilinear model is used to predict the entire upper triangle of fMRI FC from the upper triangles of

the MEG FC matrices. The empirical and predicted fMRI FC are depicted side by side for the global model. The whole-brain edge-wise relationship between

the empirical and predicted values is shown in the scatter plot. Each gray dot represents en edge from the upper triangles of empirical and predicted fMRI FC

matrices. (e) The distribution of regional model fit quantified by R2 is shown for regional model (gray histogram plot). The global model fit is also depicted for

comparison (pink line). The data and code needed to generate this figure can be found in https://github.com/netneurolab/shafiei_megfmrimapping and

https://zenodo.org/record/6728338. AECAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1 � 4:Pleaseverifythatallentriesarecorrect:, amplitude envelope correlation; EEG, electroencephalography; FC, functional connectivity; fMRI, functional

magnetic resonance imaging; MEG, magnetoencephalography.

https://doi.org/10.1371/journal.pbio.3001735.g001
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modal correspondence and vascular attributes. We obtain the microarray gene expression of

the vasoconstrictive NPY1R (Neuropeptide Y Receptor Y1) from Allen Human Brain Atlas

(AHBA; [67]; see “Methods” for more details), given previous reports that the BOLD response

is associated with the vasoconstrictive mechanism of Neuropeptide Y (NPY) acting on Y1

receptors [78]. We then compare the cross-modal association map with the expression of

NPY1R and identify a significant association between the two (Fig 2E; rs = −0.60, pspin =

0.0023). This demonstrates that regions with low cross-modal correspondence are enriched

for NPY1R, whereas areas with high cross-modal associations have less NPY-dependent vaso-

constriction. Altogether, the results suggest that the greater coupling in unimodal cortex may

be driven by the underlying cytoarchitecture, reflecting higher density of granular cells and

distinct vascularization of cortical layer IV.

We also relate cross-modal R2 map to the variation of structure–function coupling across

the cortex, which has also been shown to follow the unimodal–transmodal hierarchy [68,79–

82]. We estimate structure–function coupling as the Spearman rank correlation between

regional structural and functional connectivity profiles [80] (S2 Fig; see “Methods” for more

Fig 2. Regional model fit. (a) Spatial organization of fMRI-MEG correspondence is depicted for the regional model fit (95% interval). The cross-modal

correspondence of connectivity profiles of brain regions is distributed heterogeneously across the cortex, representing regions with low or high

correspondence. Strong cross-modal correspondence is observed in sensory areas, whereas poor correspondence is observed for higher order regions. (b)

Spatial organization of the cross-modal correspondence is compared with the functional hierarchical organization of cerebral cortex [63]. The two are

significantly anticorrelated, confirming poor fMRI-MEG correspondence in connectivity profile of higher-order, transmodal areas compared to strong

correspondence for sensory, unimodal regions. (c) Regions are stratified by their affiliation with macroscale intrinsic networks [2]. The distribution of R2 is

depicted for each network, displaying a systematic gradient of cross-modal correspondence with the highest correspondence in the visual network and lowest

correspondence in the default mode network. (d) The model fit is related to the cytoarchitectural variation of the cortex, estimated from the cell staining

intensity profiles at various cortical depths obtained from the BigBrain histological atlas [64,65]. Bigger circles denote statistically significant associations after

correction for multiple comparisons by controlling the FDR at 5% alpha [66]. The peak association between cross-modal correspondence and cytoarchitecture

is observed approximately at cortical layer IV that has high density of granule cells. Staining intensity profiles are depicted across the cortex for the most pial,

the middle, and the white matter surfaces. (e) Microarray gene expression of vasoconstrictive NPY1R was estimated from the AHBA [67]. The MEG-fMRI

cross-modal correspondence R2 map (i.e., regional model fit) is compared with NPY1R gene expression. rs denotes Spearman rank correlation. Intrinsic

networks: vis = visual; sm = somatomotor; da = dorsal attention; va = ventral attention; lim = limbic; fp = frontoparietal; dmn = default mode. The data and

code needed to generate this figure can be found in https://github.com/netneurolab/shafiei_megfmrimapping and https://zenodo.org/record/6728338. AHBA,

Allen Human Brain Atlas; FDR, false discovery rate; fMRI, functional magnetic resonance imaging; MEG, magnetoencephalography; NPY1R, Neuropeptide Y

Receptor Y1.

https://doi.org/10.1371/journal.pbio.3001735.g002
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details). We then correlate the identified map with the regional model fit, identifying a signifi-

cant association between the two (S2 Fig; rs = 0.40, pspin = 0.0025). This is consistent with the

notion that both haemodynamic and electromagnetic neural activity are constrained by the

anatomical pathways and the underlying structural organization [83–85].

Heterogeneous contributions of multiple rhythms

How do different rhythms contribute to regional patterns of cross-modal correspondence? To

address this question and to assess the effects of cross-correlation between MEG connectivity

at different frequency bands (S5 Fig), we perform a dominance analysis for every regional mul-

tilinear model [69,70]. Specifically, dominance analysis is used to examine the separate effects

of each band-limited MEG FC, as well as the effects of all other possible combinations of band-

limited MEG FC, on the regional model fit. This technique estimates the relative importance

of predictors by constructing all possible combinations of predictors and refitting the multi-

linear model for each combination. The possible combinations of predictors include sets of

single predictors, all possible pairs of predictors, all possible combinations with 3 predictors,

and so on. To assess the influence of each band on the model fit, dominance analysis refits the

model for each combination and quantifies the relative contribution of each predictor as the

increase in variance explained after adding that predictor to the models (i.e., gain in adjusted-

R2). Fig 3A shows the global dominance of each frequency band, where dominance is quanti-

fied as “percent relative importance” or “contribution percentage” of each band. Overall, we

Fig 3. Dominance analysis. Dominance analysis is performed for each regional multilinear model to quantify how MEG connectivity at different rhythms

contribute to regional patterns of cross-modal correspondence [69,70]. (a) The overall contribution of each frequency band is depicted for the regional model

(box plots). Beta band connectivity, followed by theta and alpha bands, contribute the most to the model fit whereas low and high gamma bands contribute the

least. (b) The mean contribution of different rhythms is estimated for the intrinsic networks. Consistent with the overall contributions depicted in panel (a), the

greatest contribution is associated with beta band connectivity. (c) The most dominant predictor (frequency band) is depicted for each brain region,

confirming overall higher contributions from beta band across the cortex. (d) Frequency band contribution to the regional cross-modal correspondence is

shown separately for different rhythms across the cortex (95% intervals). The data and code needed to generate this figure can be found in https://github.com/

netneurolab/shafiei_megfmrimapping and https://zenodo.org/record/6728338. MEG, magnetoencephalography.

https://doi.org/10.1371/journal.pbio.3001735.g003
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observe the greatest contributions from MEG connectivity at beta band, followed by theta and

alpha bands, and smallest contributions from low and high gamma bands.

Zooming in on individual regions and intrinsic networks, we find that the dominance pat-

tern is also regionally heterogeneous. Namely, the make-up and contribution of specific MEG

frequencies to a region’s fMRI connectivity profile varies from region to region. Fig 3B shows

the dominance of specific rhythms in each intrinsic network. Fig 3C shows the most dominant

predictor for every brain region. We find that beta band contribution is highest in occipital

and lateral frontal cortices. Sensorimotor cortex has high contributions from combinations of

beta, alpha, and theta bands. Parietal and temporal areas are mostly dominated by delta and

theta bands as well as some contribution from alpha band. Medial frontal cortex shows contri-

butions from the alpha band, while low and high gamma bands contribute to posterior cingu-

late cortex and precuneus. Fig 3D shows the dominance of specific rhythms separately for each

region. Overall, we observe that beta connectivity has the highest contribution percentage

(95% confidence interval: [2% 66%]), largely contributing to model prediction across the cor-

tex. These findings are consistent with previous reports, demonstrating that haemodynamic

connectivity is related to the superposition of band-limited electromagnetic connectivity and

that band contributions vary across the cortex [45,47].

Finally, we used analysis of variance (ANOVA) to quantitatively assess the differences in

band-specific contributions to the cross-modal correspondence map (S1 Table). Specifically,

we assessed the significance and effect size of differences in band-specific contributions for all

possible pairs of frequency bands. We identify 2 main findings (for full results, see S1 Table):

(1) Overall, the variability of band-specific contributions is significantly larger between groups

(i.e., bands) compared to the variability within groups (F(5, 2394) = 117.31; p< 0.0001). (2)

Band-specific contributions are significantly different from each other and are ranked in the

same order as depicted in Fig 3A. Specifically, contribution of beta band is significantly larger

than contribution of alpha band (difference of the means = 8.65, t-value = 9.46, p-

value < 0.0001, Cohen’s d = 0.69) and theta band (difference of the means = 7.56, t-
value = 8.27, p-value< 0.0001, Cohen’s d = 0.58). Also, the contribution from the delta band is

significantly lower than beta (difference of the means = 12.37, t-value = 13.53, p-

value < 0.0001, Cohen’s d = 0.96), alpha (difference of the means = 3.72, t-value = 4.07, p-

value = 0.0007, Cohen’s d = 0.29), and theta (difference of the means = 4.81, t-value = 5.26, p-

value < 0.0001, Cohen’s d = 0.37). Note that although the difference between alpha and theta

band contributions is not significant, both their contributions are significantly lower than beta

band and larger than delta band. Moreover, delta band contribution is significantly larger than

contribution of lo-gamma (difference of the means = 3.78, t-value = 4.14, p-value = 0.0005,

Cohen’s d = 0.29) and lo-gamma contribution is significantly larger than hi-gamma (difference

of the means = 3.72, t-value = 4.07, p-value = 0.0007, Cohen’s d = 0.29). Note that the values

reported here are the absolute values for difference of the means, t-values, p-values and

Cohen’s d (effect size). All p-values are corrected for multiple comparisons using Bonferroni

correction.

Sensitivity analysis

Finally, we note that the present report goes through several decision points that have equally

justified alternatives. Here, we explore the other possible choices. First, rather than framing the

report from an explanatory perspective (focusing on model fit), we instead derive an equiva-

lent set of results using a predictive perspective (focusing on out-of-sample prediction). We

perform cross-validation at both the region and subject level (Fig 4A and 4B). For region-level

cross-validation, we pseudorandomly split the connectivity profile of a given region into train
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Fig 4. Sensitivity analysis. (a) A regional cross-validation was performed by pseudorandomly splitting the connectivity profile of a given region into train and

test sets based on spatial separation (see “Methods” for more details). The multilinear model is then fitted on the train set and is used to predict the connection

strength of the test set for each region and each split. The mean regional model performance across splits is depicted for train and test sets, displaying consistent

results between the two (scatter plot). The out-of-sample model performance is stronger in the sensory, unimodal areas compared to transmodal areas,

consistent with original findings (Fig 2). (b) A subject-level cross-validation was performed using a leave-one-out approach. The regional multilinear model is

trained using data from n−1 subjects and is tested on the held-out subject for each region separately. The mean regional model performance is shown for train

and test sets, displaying consistent results between the two (scatter plot). The out-of-sample model performance is stronger in the sensory, unimodal areas

compared to transmodal areas, consistent with original findings (Fig 2). The analysis is also repeated for various processing choices: (c) after regressing out

interregional Euclidean distance from connectivity matrices; (d) using MEG connectivity data without spatial leakage correction; (e) using another MEG

source reconstruction method (sLoreta; [86]); (f) using a phase-based MEG connectivity measure (PLV; [87,88]); and (g) at a low-resolution parcellation

(Schaefer-200 atlas; [89]). The results are consistent across all control analyses, identifying similar cross-modal correspondence maps as the original analysis

(Fig 2A). All brain maps are shown at 95% intervals. rs denotes Spearman rank correlation. The data and code needed to generate this figure can be found in

https://github.com/netneurolab/shafiei_megfmrimapping and https://zenodo.org/record/6728338. MEG, magnetoencephalography; PLV, phase-locking value;

sLoreta, standardized low-resolution brain electromagnetic tomography.

https://doi.org/10.1371/journal.pbio.3001735.g004
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and test sets based on spatial separation (interregional Euclidean distance), such that 75% of

the closest regions to a random region are selected as the train set and the remaining 25% of

the regions are selected as test set (399 repetitions; see “Methods” for more details) [90]. We

then train the multilinear model using the train set and predict the connection strength of the

test set for each region and each split. The mean regional model performance across splits is

consistent for train and test sets (Fig 4A; r = 0.78, pspin = 0.0001). For subject-level cross-valida-

tion, we use leave-one-out-cross validation, wherein we train the regional multilinear models

using data from n−1 subjects and test each one on the held-out subject. The mean regional

model performance is consistent for train and test sets (Fig 4B; r = 0.90, pspin = 0.0001). Alto-

gether, both analyses give similar, highly concordant results with the simpler model fit-based

analysis, identifying strong cross-modal correspondence in unimodal sensory regions and

poor correspondence in transmodal areas.

To consider the effect of spatial proximity on the findings, we remove the exponential inter-

regional Euclidean distance trend from all connectivity matrices before fitting any model. The

results are consistent with and without distance correction (Fig 4C; correlation with functional

hierarchy: rs = −0.53, pspin = 0.0001; correlation with original R2: rs = 0.67, pspin = 0.0001). We

also obtain consistent findings when we repeat the analysis without accounting for spatial leak-

age effect in estimating MEG connectivity with AEC (Fig 4D; correlation with functional hier-

archy: rs = −0.60, pspin = 0.0001; correlation with original R2: rs = 0.84, pspin = 0.0001). Next, we

use another source reconstruction method (standardized low-resolution brain electromagnetic

tomography (sLoreta); [86]) instead of linearly constrained minimum variance (LCMV) beam-

formers, as previous reports suggest that sLoreta improves source localization accuracy

[91,92]. We then estimate MEG connectivity with AEC and repeat the multilinear model anal-

ysis, identifying similar results as before (Fig 4E; correlation with functional hierarchy: rs =

−0.80, pspin = 0.0001; correlation with original R2: rs = 0.85, pspin = 0.0002). Next, we compute

MEG connectivity using an alternative, phase-based connectivity measure (phase-locking

value (PLV); [87,88]), rather than the AEC. The 2 FC measures yield similar cross-modal cor-

respondence maps (Fig 4F; correlation with functional hierarchy: rs = −0.53, pspin = 0.0022;

correlation with original R2: rs = 0.66, pspin = 0.0001). We also repeat the analysis using a low-

resolution parcellation (Schaefer-200 atlas; [89]) to ensure that the findings are independent

from the choice of parcellation. As before, the results demonstrate similar cross-modal corre-

spondence map (Fig 4G; correlation with functional hierarchy: rs = −0.70, pspin = 0.0001). To

assess the extent to which the results are influenced by MEG source localization error, we com-

pare the cross-modal correspondence pattern to peak localization error estimated using cross-

talk function (CTF) [91–95]. No significant association is observed between R2 pattern and

CTF for LCMV (S3A Fig; rs = −0.14, pspin = 0.6) and sLoreta (S3B Fig; rs = −0.04, pspin = 0.9)

source reconstruction solutions. Finally, to confirm that the cross-modal correspondence pat-

tern is independent from signal-to-noise ratio (SNR), we compare the regional model fit with

the SNR map of the reconstructed sources, identifying no significant association between the

two (S4 Fig; rs = 0.32, pspin = 0.25) (see “Methods” for more details).

Discussion

In the present report, we map electromagnetic functional networks to haemodynamic func-

tional networks in the human brain. We find 2 principal results. First, the relationship between

the 2 modalities is regionally heterogeneous but systematic, reflecting the unimodal–transmo-

dal cortical hierarchy and cytoarchitectural variation. Second, haemodynamic connectivity

cannot be explained by electromagnetic connectivity in a single band, but rather reflects mix-

ing and superposition of multiple rhythms.
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The fact that the association between the 2 modalities follows a gradient from unimodal to

transmodal cortex resonates with emerging work on cortical hierarchies [28,63,96]. Indeed,

similar spatial variations are observed for multiple microarchitectural features, such as gene

expression [90,97,98], T1w/T2w ratio [99], laminar differentiation [74], and neurotransmitter

receptor profiles [100–102]. Collectively, these studies point to a natural axis of cortical organi-

zation that encompasses variations in both structure and function across micro-, meso-, and

macroscopic spatial scales.

Interestingly, we find the closest correspondence between fMRI and MEG FC in unimodal

cortex (including the visual and somatomotor networks) and the poorest correspondence in

transmodal cortex (default mode, limbic, frontoparietal, and ventral attention networks). In

other words, the functional architectures of the 2 modalities are consistent early in the cortical

hierarchy, presumably reflecting activity related to instantaneous changes in the external envi-

ronment. Conversely, as we move up the hierarchy, there is a gradual separation between the 2

architectures, suggesting that they are differently modulated by endogenous inputs and con-

textual information. How the 2 types of FC are related to ongoing task demand is an exciting

question for future research.

Why is there systematic divergence between the 2 modalities? Our findings suggest that

topographic variation in MEG-fMRI coupling is due to variation in cytoarchitecture and neu-

rovascular coupling. First, we observe greater MEG-fMRI coupling in regions with prominent

granular layer IV. This result may reflect variation of microvascular density at different cortical

layers [59,77,103]. Namely, cortical layer IV is the most vascularized, and this is particularly

prominent in primary sensory areas [77]. The BOLD response mainly reflects local field poten-

tials arising from synaptic currents of feedforward input signals to cortical layer IV [75,76]; as

a result, the BOLD response is more sensitive to cortical layer IV with high vascular density

[104]. Therefore, electromagnetic neuronal activity originating from layer IV should be

accompanied by a faster and more prominent BOLD response. This is consistent with our

finding that brain regions with more prominent granular layer IV (i.e., unimodal cortex) have

greater correspondence between electromagnetic and haemodynamic functional architectures.

In other words, heterogeneous cortical patterning of MEG-fMRI coupling may reflect hetero-

geneous patterning of underlying neurovascular coupling.

Second, we observe prominent anticorrelations between vasoconstrictive NPY1R-express-

ing neurons and MEG-fMRI coupling. Multiple studies of vasodilator and vasoconstrictor

mechanisms involved in neural signaling have demonstrated links between microvasculature

and the BOLD signal [78,103]. For example, an optogenetic and 2-photon mouse imaging

study found that task-related negative BOLD signal is mainly associated with vasoconstrictive

mechanism of NPY acting on Y1 receptors, suggesting that neurovascular coupling is cell spe-

cific [78]. Interestingly, by comparing the cortical expression of NPY1R in the human brain

with MEG-fMRI correspondence pattern identified here, we find that regions with low cross-

modal correspondence are enriched for NPY1R, whereas areas with high cross-modal associa-

tions have less NPY-dependent vasoconstriction. Collectively, these results suggest that MEG-

fMRI correspondence is at least partly due to regional variation in cytoarchitecture and neuro-

vascular coupling.

More generally, numerous studies have investigated the laminar origin of cortical rhythms.

For example, animal electrophysiological recordings demonstrated that visual and frontal cor-

tex gamma activity can be localized to superficial cortical layers (supragranular layers I to III

and granular layer IV), whereas alpha and beta activity are localized to deep infragranular lay-

ers (layers V to VI) [52–56,58]. Similar findings have been reported in humans using EEG and

laminar-resolved BOLD recordings, demonstrating that gamma and beta band EEG power are

associated with superficial and deep layer BOLD response, respectively, whereas alpha band
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EEG power is associated with BOLD response in both superficial and deep layers [57]. Laminar

specificity of cortical rhythms is increasingly emphasized in contemporary accounts of predic-

tive processing [105]. In the predictive coding framework, transmodal regions generate predic-

tive signals that modulate the activity of sensory unimodal regions depending on context

[106]. These top-down signals are relatively slow, as they evolve with the context of exogenous

(stimulation) inputs. The consequence on unimodal areas is a boost of their encoding gain,

reflected in stronger, faster activity that tracks incoming stimuli. They in turn generate error

signals that are slower and reflect the discrepancy between the predictions received and the

actual external input. These slower error signals are then registered by higher-order transmo-

dal regions. Specific cortical layers and rhythms contribute to this predictive coding [105]. For

example, an unfamiliar, unpredicted stimulus is associated with increased gamma power that

is fed forward up the cortical hierarchy (i.e., bottom-up from sensory to association cortices)

through the superficial layers to transfer the prediction errors. This in turn results in low top-

down, feedback predictions through deep cortical layers via alpha and beta rhythms. Con-

versely, predicted stimuli are associated with stronger feedback alpha and beta rhythms via

deep layers, inhibiting the gamma activity for expected exogenous inputs [105]. This hierarchi-

cal predictive processing framework is also thought to underlie conscious perception by top-

down transfer of perceptual predictions via alpha and beta rhythms through deep layers and

bottom-up transfer of prediction errors via gamma rhythm through superficial layers, mini-

mizing predictions errors [105,107,108]. Our results, linking cytoarchitecture with rhythm-

specific connectivity, may help to further refine and develop this emerging framework.

Altogether, our findings suggest that the systemic divergence between MEG and fMRI con-

nectivity patterns may reflect variations in cortical cytoarchitecture and vascular density of

cortical layers. However, note that due to the low spatial resolution of fMRI and MEG data,

haemodynamic and electromagnetic connectivity is not resolved at the level of cortical layers.

Rather, comparisons with cytoarchitecture are made via proxy datasets, such as the BigBrain

histological atlas [64] and the AHBA [67]. Future work is required to assess the laminar speci-

ficity of the cross-modal association in a more direct and comprehensive manner [109–112].

Throughout the present report, we find that fMRI networks are best explained as arising

from the superposition of multiple band-limited MEG networks. Although previous work has

focused on directly correlating fMRI with MEG/EEG networks in specific bands, we show that

synchronized oscillations in multiple bands could potentially combine to give rise to the well-

studied fMRI functional networks. Indeed, and as expected, the correlation between any indi-

vidual band-specific MEG network and fMRI is substantially smaller than the multilinear

model that takes into account all bands simultaneously. Previous work on cross-frequency

interactions [113] and on multilayer MEG network organization [114] has sought to character-

ize the participation of individual brain regions within and between multiple frequency net-

works. Our findings build on this literature, showing that the superimposed representation

may additionally help to unlock the link between MEG and fMRI networks.

It is noteworthy that the greatest contributions to the link between the 2 modalities came

from beta band connectivity. Multiple authors have reported that—since it captures slow hae-

modynamic coactivation—fMRI network connectivity would be mainly driven by slower

rhythms [6,20,35,42,61,113]. Our findings demonstrate that although all frequency bands con-

tribute to the emergence of fMRI networks, the greatest contributions come from beta band

connectivity, followed by theta and alpha connectivity.

The present results raise 2 important questions for future work. First, how does structural

connectivity shape fMRI and MEG functional networks [43,81,83]? We find that cross-modal

correspondence between MEG and fMRI functional networks is associated with structure–

function coupling measured from MRI functional and structural connectivity networks,
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suggesting that the cross-modal map may be constrained by structural connectivity. Previous

reports demonstrate that unimodal, sensory regions have lower neural flexibility compared to

transmodal, association areas and are more stable during development and evolution

[24,115,116]. This suggests that the underlying anatomical network constrains neural activity

and functional flexibility in a nonuniform manner across the cortex, resulting in higher

degrees of freedom in structure–function coupling in regions related to highly flexible cogni-

tive processes. However, given that MEG and fMRI capture distinct neurophysiological mech-

anisms, it is possible that haemodynamic and electromagnetic architectures have a different

relationship with structural connectivity, and this could potentially explain why they systemat-

ically diverge through the cortical hierarchy [68,79–82]. Second, the present results show how

the 2 modalities are related in a task-free resting state, but what is the relationship between

fMRI and MEG connectivity during cognitive tasks [117]? Given that the 2 modalities become

less correlated in transmodal cortex in the resting state, the relationship between them during

task may depend on demand and cognitive functions required to complete the task.

Finally, the present results should be interpreted in light of several methodological consid-

erations. First, although we conduct extensive sensitivity testing, including multiple ways of

defining FC, there exist many more ways in the literature to estimate both fMRI and MEG

connectivity [118,119]. Second, to ensure that the analyses were performed in the same partici-

pants using both resting state fMRI and MEG and that the participants have no familial rela-

tionships, we utilized a reduced version of the HCP sample. Third, in order to directly

compare the contributions of multiple frequency bands, all were entered into the same model.

As a result, however, the observations in the linear models (network edges) are not indepen-

dent, violating a basic assumption of these statistical models. For this reason, we only use

model fits and dominance values to compare the correspondence of fMRI and MEG across a

set of nodes, each of which is estimated under the same conditions. Finally, to ensure that the

findings are independent from sensitivity of MEG to neural activity from different regions, we

compared the cross-modal correspondence map with MEG SNR and source localization error,

where no significant associations were identified. However, MEG is still susceptible to such

artifacts given that regions with lower SNR (e.g., Sylvian fissure) are the ones where source

reconstruction solutions have higher source localization errors [120,121].

Despite complementary strengths to image spatiotemporal brain dynamics, the links

between MEG and fMRI are not fully understood and the 2 fields have diverged. The present

report bridges the 2 disciplines by comprehensively mapping haemodynamic and electromag-

netic network architectures. By considering the contributions of the canonical frequency

bands simultaneously, we show that the superposition and mixing of MEG neurophysiological

rhythms manifests as highly structured patterns of fMRI FC. Systematic convergence and

divergence among the 2 modalities in different brain regions opens fundamentally new ques-

tions about the relationship between cortical hierarchies and multimodal functional networks.

Methods

Dataset: Human Connectome Project (HCP)

Resting state MEG data of a set of healthy young adults (n = 33; age range 22 to 35 years) with

no familial relationships were obtained from HCP (S900 release; [62]). The data include rest-

ing state scans of about 6 minutes long (sampling rate = 2,034.5 Hz; anti-aliasing filter low-

pass filter at 400 Hz) and noise recordings for all participants. MEG anatomical data and 3T

structural magnetic resonance imaging (MRI) data of all participants were also obtained for

MEG preprocessing. Finally, we obtained functional MRI data of the same n = 33 individuals

from HCP dataset. All 4 resting state fMRI scans (2 scans with R/L and L/R phase encoding
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directions on day 1 and day 2, each about 15 minutes long; TR = 720 ms) were available for all

participants.

HCP data processing

Resting state magnetoencephalography (MEG). Resting state MEG data were analyzed

using Brainstorm software, which is documented and freely available for download online

under the GNU general public license ([122]; http://neuroimage.usc.edu/brainstorm). The

MEG recordings were registered to the structural MRI scan of each individual using the ana-

tomical transformation matrix provided by HCP for coregistration, following the procedure

described in Brainstorm’s online tutorials for the HCP dataset (https://neuroimage.usc.edu/

brainstorm/Tutorials/HCP-MEG). The preprocessing was performed by applying notch filters

at 60, 120, 180, 240, and 300 Hz, and was followed by a high-pass filter at 0.3 Hz to remove

slow-wave and DC-offset artifacts. Bad channels were marked based on the information

obtained through the data management platform of HCP for MEG data (ConnectomeDB;

https://db.humanconnectome.org/). The artifacts (including heartbeats, eye blinks, saccades,

muscle movements, and noisy segments) were then removed from the recordings using auto-

matic procedures as proposed by Brainstorm. More specifically, electrocardiogram (ECG) and

electrooculogram (EOG) recordings were used to detect heartbeats and blinks, respectively.

We then used Signal–Space Projections (SSPs) to automatically remove the detected artifacts.

We also used SSP to remove saccades and muscle activity as low-frequency (1 to 7 Hz) and

high-frequency (40 to 240 Hz) components, respectively.

The preprocessed sensor-level data were then used to obtain a source estimation on HCP’s

fsLR4k cortex surface for each participant. Head models were computed using overlapping

spheres, and the data and noise covariance matrices were estimated from the resting state

MEG and noise recordings. LCMV beamformers method from Brainstorm was then used to

obtain the source activity for each participant. We performed data covariance regularization

and normalized the estimated source variance by the noise covariance matrix to reduce the

effect of variable source depth. The L2 matrix norm (i.e., regularization parameter) of data

covariance matrix is usually defined as the largest eigenvalue of its eigenspectrum. However,

the eigenspectrum of MEG data covariance can be ill-conditioned, such that the eigenvalues

may span many decades where larger eigenvalues are overestimated and smaller eigenvalues

are underestimated. In other words, the L2 norm of the data covariance matrix can be many

times larger than the majority of eigenvalues, making it difficult to select a conventional regu-

larization parameter. Following guidelines from Brainstorm [122], we used the “median eigen-

value” method to regularize the data covariance matrix, where the eigenvalues smaller than the

median eigenvalue are replaced with the median eigenvalue itself (i.e., flattening the tail of

eigenvalues spectrum to the median). The covariance matrix is then reconstructed using the

modified eigenspectrum. This helps to avoid the instability of data covariance inversion caused

by the smallest eigenvalues and regularizes the data covariance matrix. Source orientations

were constrained to be normal to the cortical surface at each of the 8,000 vertex locations on

the fsLR4k surface. Source-level time-series were then parcellated into 400 regions using the

Schaefer-400 atlas [89], such that a given parcel’s time series was estimated as the first principal

component of its constituting sources’ time series.

Parcellated time-series were then used to estimate FC with an amplitude-based connectivity

measure from Brainstorm (AEC; [60]). An orthogonalization process was applied to correct

for the spatial leakage effect by removing all shared zero-lag signals [123]. AEC FC were

derived for each participant at 6 canonical electrophysiological bands (i.e., delta (δ: 2 to 4 Hz),

theta (θ: 5 to 7 Hz), alpha (α: 8 to 12 Hz), beta (β: 15 to 29 Hz), low gamma (lo-γ: 30 to 59 Hz),
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and high gamma (hi-γ: 60 to 90Hz)). Group-average MEG FC matrices were constructed as

the mean FC across all individuals for each frequency band. For comparison, band-limited

group-average AEC matrices were also estimated without correcting for spatial leakage effect.

We also processed the MEG data using additional methodological choices. First, the LCMV

source reconstructed and parcellated time-series were used to estimate FC with an alternative,

phase-based connectivity measure (PLV; [87,88]) for each frequency band. Second, another

source reconstruction method (sLoreta; [86]) was used instead of LCMV beamformers to

obtain source-level time-series, given that previous reports suggest that sLoreta improves

source localization accuracy [91,92]. Source-level time-series, obtained by sLoreta, were then

parcellated into 400 regions and were used to estimate AEC matrices with spatial leakage cor-

rection for the 6 frequency bands. Third, to ensure that the findings are independent from

choice of parcellation, a low-resolution atlas (Schaefer-200; [89]) was used to parcellate the

original LCMV source-level time-series to 200 cortical regions and obtain spatial leakage cor-

rected AEC connectivity matrices. Finally, we estimated MEG source localization errors for

LCMV and sLoreta source reconstruction solutions using CTFs [91–95,121]. CTF of a given

source i is a measure of how activity from all other sources contributes to the activity estimated

for the i-th source. Following guidelines from Brainstorm [122] and MNE-Python software

packages [124], we used CTF to calculate peak localization error of a given source i as the

Euclidean distance between the peak location estimated for source i and the true source loca-

tion i on the surface model [92,95]. Source-level CTF was then parcellated using the Schaefer-

400 atlas. We also estimated source-level SNR for LCMV source reconstruction solution as fol-

lows [120,125]:

SNR ¼ 10log10
a2

N

Xk¼1

N

b2
k

s2k

 !

ð1Þ

where a is the source amplitude (i.e., typical strength of a dipole, which is 10 nAm; [126]), N is

the number of sensors, bk is the signal at sensor k estimated by the forward model for a source

with unit amplitude, and s2k is the noise variance at sensor k. SNR was first calculated at the

source level and was then parcellated using the Schaefer-400 atlas.

Resting state functional MRI. The functional MRI data were preprocessed using HCP

minimal preprocessing pipelines [62,127]. Detailed information regarding data acquisition

and preprocessing is available elsewhere [62,127]. Briefly, all 3T functional MRI time-series

(voxel resolution of 2 mm isotropic) were corrected for gradient nonlinearity, head motion

using a rigid body transformation, and geometric distortions using scan pairs with opposite

phase encoding directions (R/L, L/R) [128]. Further preprocessing steps include coregistration

of the corrected images to the T1w structural MR images, brain extraction, normalization of

whole brain intensity, high-pass filtering (>2,000s FWHM; to correct for scanner drifts), and

removing additional noise using the ICA-FIX process [128,129]. The preprocessed time-series

were then parcellated into 400 cortical areas using Schaefer-400 parcellation [89]. The parcel-

lated time-series were used to construct FC matrices as Pearson correlation coefficients

between pairs of regional time-series for each of the 4 scans and each participant. A group-

average FC matrix was constructed as the mean FC across all individuals and scans.

Diffusion weighted imaging (DWI). Diffusion weighted imaging (DWI) data were

obtained for the same individuals from the HCP dataset. MRtrix3 package [130] (https://www.

mrtrix.org/) was used to preprocess the DWI data as described elsewhere [24]. In brief, multi-

shell multitissue constrained spherical deconvolution algorithm from MRtrix was applied to

generate fiber orientation distributions [131,132]. Probabilistic streamline tractography based

on the generated fiber orientation distributions was used to reconstruct white matter edges
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[133]. The tract weights were optimized by estimating an appropriate cross-section multiplier

for each streamline following the procedure proposed by Smith and colleagues [134]. Structural

connectivity matrices were then reconstructed for each participant using the Schaefer-400 atlas

[89]. Finally, a binary group-level structural connectivity matrix was constructed using a con-

sensus approach that preserves the edge length distribution in individual participants [135,136].

The binary consensus structural connectivity matrix was weighted by the average structural

connectivity across individuals to obtain a weighted structural connectivity matrix.

BigBrain histological data

To characterize the cytoarchitectural variation across the cortex, cell-staining intensity profile

data were obtained from the BigBrain atlas [64,65]. The BigBrain is a high-resolution (20 μm)

histological atlas of a postmortem human brain and includes cell-staining intensities that are

sampled at each vertex across 50 equivolumetric surfaces from the pial to the white matter sur-

face using the Merker staining technique [64,137]. The staining intensity profile data represent

neuronal density and soma size at varying cortical depths, capturing the regional differentia-

tion of cytoarchitecture [64,65,72,74,138]. Intensity profiles at various cortical depths can be

used to approximately identify boundaries of cortical layers that separate supragranular (corti-

cal layers I to III), granular (cortical layer IV), and infragranular (cortical layers V to VI) layers

[65,74,138]. The data were obtained on fsaverage surface (164k vertices) from the BigBrain-

Warp toolbox [65] and were parcellated into 400 cortical regions using the Schaefer-400 atlas

[89].

The cross-modal correspondence map, estimated as adjusted-R2 (see “Multilinear model”

for more details), was then compared with the parcellated cell-staining intensity data. Specifi-

cally, the regional model fit was correlated with cell-staining profiles at each cortical depth

using Spearman rank correlation (rs). 10,000 spatial-autocorrelation preserving nulls were

used to construct a null distribution of correlation at each cortical depth (see “Null model” for

more details on spatial-autocorrelation preserving nulls). Significance of the associations were

estimated by comparing the empirical Spearman rank correlation with the distribution of null

correlations at each cortical depth, identifying the number of null correlations that were equal

to or greater than the empirical correlation (two-tailed test). Finally, Benjamini–Hochberg

procedure [66] was used to correct for multiple comparisons by controlling the false discovery

rate (FDR) at 5% across all 50 comparisons.

Allen Human Brain Atlas (AHBA)

Regional microarray expression data were obtained from 6 postmortem brains (1 female, ages

24.0 to 57.0, 42.50 ± 13.38) provided by the AHBA (https://human.brain-map.org; [67]). Data

were processed with the abagen toolbox (version 0.1.3-doc; https://github.com/rmarkello/

abagen; [139]) using the Schaefer-400 volumetric atlas in MNI space [89].

First, microarray probes were reannotated using data provided by [140]; probes not matched

to a valid Entrez ID were discarded. Next, probes were filtered based on their expression inten-

sity relative to background noise [141], such that probes with intensity less than the background

in�50.00% of samples across donors were discarded. When multiple probes indexed the

expression of the same gene, we selected and used the probe with the most consistent pattern of

regional variation across donors (i.e., differential stability; [142]), calculated with

DS pð Þ ¼
1

N

2

 !
XN� 1

i¼1

XN

j¼iþ1

r Bi pð Þ;Bj pð Þ
h i
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where ρ is Spearman’s rank correlation of the expression of a single probe, p, across regions in 2

donors Bi and Bj, and N is the total number of donors. Here, regions correspond to the struc-

tural designations provided in the ontology from the AHBA.

The MNI coordinates of tissue samples were updated to those generated via nonlinear reg-

istration using the Advanced Normalization Tools (ANTs; https://github.com/chrisfilo/

alleninf). To increase spatial coverage, tissue samples were mirrored bilaterally across the left

and right hemispheres [143]. Samples were assigned to brain regions in the provided atlas if

their MNI coordinates were within 2 mm of a given parcel. If a brain region was not assigned a

tissue sample based on the above procedure, every voxel in the region was mapped to the near-

est tissue sample from the donor in order to generate a dense, interpolated expression map.

The average of these expression values was taken across all voxels in the region, weighted by

the distance between each voxel and the sample mapped to it, in order to obtain an estimate of

the parcellated expression values for the missing region. All tissue samples not assigned to a

brain region in the provided atlas were discarded.

Intersubject variation was addressed by normalizing tissue sample expression values across

genes using a robust sigmoid function [144]:

xnorm ¼
1

1þ expð� ðx� hxiÞIQRx
Þ

where hxi is the median and IQRx is the normalized interquartile range of the expression of a

single tissue sample across genes. Normalized expression values were then rescaled to the unit

interval:

xscaled ¼
xnorm � minðxnormÞ

maxðxnormÞ � minðxnormÞ

Gene expression values were then normalized across tissue samples using an identical pro-

cedure. Samples assigned to the same brain region were averaged separately for each donor

and then across donors, yielding a regional expression matrix of 15,633 genes. Expression of

NPY1R was extracted from the regional expression matrix and was related to the cross-modal

correspondence map, estimated as adjusted-R2 (see “Multilinear model” for more details),

using 10,000 spatial-autocorrelation preserving nulls (see “Null models” for more details).

Multilinear model

Regional model. A multiple linear regression model was used to assess regional associa-

tions between haemodynamic (fMRI) and electromagnetic (MEG) FC (Fig 1; [68]). A separate

multilinear model is applied for each brain region from the parcellated data, predicting the

region’s fMRI FC profile from its band-limited MEG FC. The dependent variable is a row of

the fMRI connectivity matrix and the independent variables (predictors) are the correspond-

ing rows of MEG connectivity for the 6 canonical electrophysiological bands. The linear

regression model for each brain region i is constructed as follows:

FCi ¼ b1 � FCðdÞi þ b2 � FCðyÞiþ

b3 � FCðaÞi þ b4 � FCðbÞiþ

b5 � FCðlo; gÞi þ b6 � FCðhi; gÞi þ b0

ð2Þ

where the dependant variable FCi is the set of fMRI connections of node i to the other j6¼i
regions and the predictors are sets of MEG connections of node i to the other j6¼i regions for

the 6 frequency bands (FCðdÞi; FCðyÞi; FCðaÞi; FCðbÞi; FCðlo; gÞi, and FC(hi, γ)i). The
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regression coefficients b1,. . .,b6 and the intercept b0 are then optimized to yield maximum cor-

relation between empirical and predicted fMRI connectivity for each brain region. Goodness

of fit for each regional model is quantified using adjusted-R2 (coefficient of determination).

Global model. For comparison with the regional model, a single global model was fitted

to the data, predicting the whole-brain fMRI FC from the whole-brain band-limited MEG FC

(Fig 1D). Specifically, rather than applying a multilinear model for each region (i.e., each row)

separately, we fit a single multilinear model using the upper triangle of band-limited MEG

connectivity (i.e., all values above the diagonal of MEG connectivity matrices) as predictors

and predict the upper triangle of fMRI connectivity. The equation below describes the multi-

linear global model:

FCUT ¼ b1 � FCðdÞUT þ b2 � FCðyÞUTþ

b3 � FCðaÞUT þ b4 � FCðbÞUTþ

b5 � FCðlo; gÞUT þ b6 � FCðhi; gÞUT þ b0

ð3Þ

where the dependent variable FCUT is the vectorized upper triangle of fMRI FC (i.e., above

diagonal values) and the predictors are the vectorized upper triangles of MEG FC for the 6 fre-

quency bands. The regression coefficients b1,. . .,b6 and the intercept b0 are then optimized to

yield maximum correlation between empirical and predicted fMRI connectivity. Similar to the

regional model, the goodness of fit for the global model is quantified using adjusted-R2 (coeffi-

cient of determination).

Region-level cross-validation. Region-level cross-validation was performed to assess out-

of-sample model performance. Given the spatial autocorrelation inherent to the data, random

splits of brain regions into train and test sets may result in out-of-sample correlations that are

inflated due to spatial proximity [145]. To take this into account, we used a distance-depen-

dent cross-validation approach where we pseudorandomly split the connectivity profile of a

given region (e.g., node i) into train and test sets based on spatial separation [90]. We used

interregional Euclidean distance to select 75% of the closest regions to a randomly selected

source region as the train set and the remaining 25% of the regions as test set. The random

source region can be any of the 399 regions connected to node i; hence, the connectivity profile

of node i is split into 399 unique train and test sets. We then train the multilinear model using

the train set and predict FC of the test set for each region and each split. Finally, the model per-

formance is quantified using Pearson correlation coefficient between empirical and predicted

values. The cross-validated regional model performance is then estimated as the mean correla-

tion coefficient between empirical and predicted values across splits for each brain region.

Subject-level cross-validation. Leave-one-out cross-validation was performed to assess

model performance on held-out subjects. Briefly, the regional multilinear model is trained

using the group-average data from n−1 subjects. The trained model is then used to predict

fMRI connectivity profile of each region on the held-out subject (test set). The model perfor-

mance is quantified as the Pearson correlation coefficient between empirical and predicted

connectivity of each region. The analysis is repeated for all subjects, and the regional model

performance is averaged across individuals.

Diffusion map embedding

Diffusion map embedding was used to identify the principal axis of variation in functional

organization of the cortex (diffusion map embedding and alignment package; https://github.

com/satra/mapalign) [63,71]. Diffusion map embedding is a nonlinear dimensionality reduc-

tion technique that generates a low-dimensional representation of high-dimensional data by

projecting it into an embedding space, such that the areas with similar connectivity profiles
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will be closer in distance in the new common space compared to the areas with dissimilar con-

nectivity profiles [63,71,146]. In brief, following the procedure described by Margulies and col-

leagues [63], each row of the group-average fMRI FC was thresholded at 90%, such that only

the top 10% of functional connections was retained in the matrix. Next, a cosine-similarity

matrix was estimated based on the remaining functional connections, where the resulting pair-

wise cosine distances represent the similarity between the connectivity profiles of cortical

regions according to their strongest connections. Finally, the diffusion map embedding was

applied to the resulting positive affinity matrix. This identifies the principal axis of variation in

FC, along which cortical regions are ordered based on the similarity of their connectivity pro-

files. The identified functional gradient or hierarchy spans the unimodal–transmodal axis, sep-

arating primary sensory-motor cortices from association cortex. The functional gradient map

is also available as part of the neuromaps toolbox [147]. The functional gradient was used as a

metric of hierarchical organization of the cortex and was compared with the regional model fit

(Fig 2).

Structure–function coupling

Structure–function coupling was estimated following the procedure described by Baum and

colleagues [80]. Structural and functional connectivity profiles of each brain region (i.e., each

row of the connectivity matrices) were extracted from the weighted group-level structural and

functional connectivity matrices. Structure–function coupling of a given region was then esti-

mated as the Spearman rank correlation between nonzero values of that region’s structural

and functional connectivity profiles. Finally, the resulting whole-brain structure–function cou-

pling map was compared with the cross-modal correspondence map (i.e., R2 map from the

regional model). Significance of the association between the 2 maps was assessed using 10,000

spatial-autocorrelation preserving nulls (see “Null model” for more details).

Dominance analysis

Dominance analysis was used to quantify the distinct contributions of resting state MEG con-

nectivity at different frequency bands to the prediction of resting state fMRI connectivity in

the multilinear model [69,70] (https://github.com/dominance-analysis/dominance-analysis).

Dominance analysis estimates the relative importance of predictors by constructing all possible

combinations of predictors and refitting the multilinear model for each combination (a model

with p predictors will have 2p−1 models for all possible combinations of predictors). The rela-

tive contribution of each predictor is then quantified as increase in variance explained by add-

ing that predictor to the models (i.e., gain in adjusted-R2). Here, we first constructed a

multiple linear regression model for each region with MEG connectivity profile of that region

at 6 frequency bands as independent variables (predictors) and fMRI connectivity of the region

as the dependent variable to quantify the distinct contribution of each factor using dominance

analysis. The relative importance of each factor is estimated as “percent relative importance,”

which is a summary measure that quantifies the percent value of the additional contribution of

that predictor to all subset models.

Null model

To make inferences about the topographic correlations between any 2 brain maps, we imple-

ment a null model that systematically disrupts the relationship between 2 topographic maps

but preserves their spatial autocorrelation [145,148]. We used the Schaefer-400 atlas in the

HCP’s fsLR32k grayordinate space [62,89]. The spherical projection of the fsLR32k surface

was used to define spatial coordinates for each parcel by selecting the vertex closest to the
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center-of-mass of each parcel [68,149,150]. The resulting spatial coordinates were used to gen-

erate null models by applying randomly sampled rotations and reassigning node values based

on the closest resulting parcel (10,000 repetitions). The rotation was applied to one hemisphere

and then mirrored to the other hemisphere.

Supporting information

S1 Table. Analysis of variance (ANOVA) for dominance analysis. To quantitatively assess

the differences in band-specific contributions to the cross-modal correspondence map, contri-

butions estimated from dominance analysis were compared for all possible pairs of frequency

bands using analysis of variance (ANOVA). All reported p-values are from two-tailed tests and

are corrected for multiple comparisons using Bonferroni correction. Cohen’s d denotes effect

size.

(DOCX)

S1 Fig. Band-specific regional model fit. Separate regional regression models were applied to

map MEG FC (AEC) to fMRI FC at each frequency band. Distributions of adjusted-R2 are

depicted for band-specific regional model fits and for the multiband model fit obtained by the

original analysis. The multilinear regional model that combines MEG connectivity at multiple

rhythms to predict regional fMRI connectivity profiles performs better than the band-specific

models. The data and code needed to generate this figure can be found in https://github.com/

netneurolab/shafiei_megfmrimapping and https://zenodo.org/record/6728338. AECAU : AbbreviationlistshavebeencompiledforthoseusedinS1andS3 � S5Figs:Pleaseverifythatallentriesarecorrect:, ampli-

tude envelope correlation; FC, functional connectivity; fMRI, functional magnetic resonance

imaging; MEG, magnetoencephalography.

(TIFF)

S2 Fig. Structure–function coupling. Structure–function coupling was estimated as the

Spearman rank correlation (rs) between regional structural and functional connectivity profiles

[80]. The cross-modal R2 map (i.e., regional model fit) is then compared with the structure–

function coupling across the cortex. The data and code needed to generate this figure can be

found in https://github.com/netneurolab/shafiei_megfmrimapping and https://zenodo.org/

record/6728338.

(TIFF)

S3 Fig. Source localization error. MEG source localization error is estimated for (a) LCMV

and (b) sLoreta source reconstruction solutions using CTFs [91–95]. CTF is used to calculate

peak localization error of a given source i as the Euclidean distance between the peak location

estimated for source i and the true source location i on the surface model [92,95]. No signifi-

cant association is observed between the cross-modal correspondence R2 map and peak locali-

zation error for LCMV and sLoreta. The data and code needed to generate this figure can be

found in https://github.com/netneurolab/shafiei_megfmrimapping and https://zenodo.org/

record/6728338. CTF, cross-talk function; LCMV, linearly constrained minimum variance;

MEG, magnetoencephalography; sLoreta, standardized low-resolution brain electromagnetic

tomography.

(TIFF)

S4 Fig. Signal-to-noise ratio. MEG SNR was estimated at the source level. Parcellated, group-

average SNR map is depicted across the cortex. The cross-modal correspondence R2 map (i.e.,

regional model fit) is then compared with the SNR map. The data and code needed to generate

this figure can be found in https://github.com/netneurolab/shafiei_megfmrimapping and

https://zenodo.org/record/6728338. MEG, magnetoencephalography; SNR, signal-to-noise
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ratio.

(TIFF)

S5 Fig. Pairwise similarity of band-limited MEG FC. Pearson correlation coefficient is calcu-

lated between upper triangles (i.e., values above diagonal) of band-limited MEG AEC FC to

assess the pairwise similarity between MEG connectivity maps. The data and code needed to

generate this figure can be found in https://github.com/netneurolab/shafiei_megfmrimapping

and https://zenodo.org/record/6728338. AEC, amplitude envelope correlation; FC, functional

connectivity; MEG, magnetoencephalography.

(TIFF)
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