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Chemically modified graphene films with tunable
negative Poisson’s ratios
Yeye Wen 1,5, Enlai Gao 2,5, Zhenxing Hu3,5, Tingge Xu3, Hongbing Lu3, Zhiping Xu4 & Chun Li 1

Graphene-derived macroscopic assemblies feature hierarchical nano- and microstructures

that provide numerous routes for surface and interfacial functionalization achieving

unconventional material properties. We report that the microstructural hierarchy of pristine

chemically modified graphene films, featuring wrinkles, delamination of close-packed

laminates, their ordered and disordered stacks, renders remarkable negative Poisson’s

ratios ranging from −0.25 to −0.55. The mechanism proposed is validated by the experi-

mental characterization and theoretical analysis. Based on the understanding of micro-

structural origins, pre-strech is applied to endow chemically modified graphene films with

controlled negative Poisson’s ratios. Modulating the wavy textures of the inter-connected

network of close-packed laminates in the chemically modified graphene films also yields

finely-tuned negative Poisson’s ratios. These findings offer the key insights into rational

design of films constructed from two-dimensional materials with negative Poisson’s ratios

and mechanomutable performance.
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Macroscopic chemically modified graphene (CMG) films,
processed from graphene oxide (GO) or reduced GO
(rGO), feature inter-connected two-dimensional (2D)

network structures, lightweight, exceptional mechanical proper-
ties, as well as high electrical and thermal conductivities1–3. These
films have been demonstrated for applications ranging from
membrane separation4–8 to flexible energy storage devices9,10.
Superior mechanical performance of the CMG films is a pre-
requisite for these applications. Recent studies on the mechanical
properties of the CMG films are mainly focused on tensile
strength, stiffness, and toughness, but few are on the Poisson’s
ratio, which is an important material parameter directly related to
the modern functional materials11,12.

The Poisson’s ratio (ν) characterizes the transverse deforma-
tion induced by uniaxial strain. For an isotropic, linear elastic and
homogeneous material, thermodynamics requires ν to fall within
−1 < ν < 0.513, being from the most extendable to the most
incompressible, although the limitation can be broken for ani-
sotropic materials. Under uniaxial tension, most of the common
materials contract in lateral directions to compensate for stretch-
induced volume change, giving positive Poisson’s ratios. Recent
studies show that some natural and synthetic materials have a
wide range of negative Poisson’s ratios (NPRs) exhibiting auxetic
behavior11,12,14–17, which gives rise to such remarkable properties
as enhanced toughness, indentation resistance, and shear stiff-
ness. These enhanced mechanical properties allow the materials
with notable NPRs to hold great promises for applications in
aircraft, automotive, body-armor, and fiber composites with great
pull-out resistance11,12.

The Poisson’s ratio of graphene monolayer has been char-
acterized by molecular dynamics simulations18–22. Grima et al.
discovered that the conformation of graphene can be modified via
the introduction of defects (by removing atoms), and the crum-
pled conformation of graphene results in tunable NPRs, where a
“crumpled paper” model was proposed to explain the NPR
behavior of graphene18. It is also shown that the graphene
monolayer exhibits large NPRs in specific directions if defects are
introduced in a periodic arrangement, yielding a wavy form of
graphene22. More recently, Wan et al. reported that the Poisson’s
ratios of GO monolayer can be effectively tuned by increasing the
degree of oxidation in GO, reaching a value of −0.57 for fully
oxidized graphene20. The dependence of the Poisson’s ratio on
the level of oxidation is attributed to the tension-induced sup-
pression of ripples resulting from structural distortion, or in other
works, through the disorder-related auxetic egg-rack mechanism.
A considerable amount of effort has also been devoted to the
Poisson’s ratio in three-dimensional (3D), bulk graphene
assemblies23,24. The results indicated that the microstructures of
3D CMG materials play a key role in modulating the Poisson’s
ratio. However, compared to the graphene and GO monolayers or
their 3D bulk assemblies, little is known about the Poisson’s
effects in macroscopic CMG films.

In this work, we demonstrate that pristine GO and rGO films
prepared by vacuum-assisted filtration and evaporation-induced
self-assembly methods exhibit tunable NPRs in a wide range from
−0.25 to −0.55 by engineering their chemistry and micro-
structures. Hierarchical structures of CMG films assembled from
GO or rGO sheets are responsible for the NPR effect, as revealed
by X-ray diffraction (XRD) and polarized Raman analysis. The-
oretical model analysis clarifies that stretching induces suppres-
sion of the wrinkled close-packed laminates (CPLs), as well as
their disordered stacks and delamination, which explains the
tunability of NPR behavior in the CMG films. This well-
controlled in-plane auxetic behavior, coupled with their light-
weight and outstanding mechanical properties, makes CMG films
promising for applications in aerospace, automotive, and defense.

Results
Preparation of CMG films. GO sheets were synthesized by the
modified Hummers method at oxidation temperatures 0 and
35 °C (labelled as GO0 and GO35, respectively, Supplementary
Note 1)25,26. The structural characterization indicates a lower
degree of oxidation, a larger graphitic domain, and fewer defects in
GO0 sheets compared to the GO35 sheets (Supplementary Note 2
and Supplementary Fig. 1). Evaporation-induced assembly of
concentrated GO dispersions (5 mgmL−1) on a flat substrate or
vacuum-assisted filtration of dilute GO dispersions (1 mgmL−1)
yields robust and uniform GO films, which could be easily peeled
off from the substrate or membrane (Supplementary Fig. 2). All
rGO films were obtained by post-reduction of relevant GO films
with HI solution. For clarity, the abbreviation x-GOy is used to
indicate the specimens, where x represents the film-forming
methods used (e for evaporation and f for filtration) and y
represents the oxidation temperature (0 for 0 °C with optimized
intact structure25 and 35 for 35 °C by the conventional proce-
dure26). Specially, x-GO or GOy is used to represent GO samples
with one specific characteristic. Thermal gravimetric analysis
(TGA) shows that the solvent entrapped in the film does not
depend on the fabrication methods. All CMG films feature smooth
surfaces, laminated microstructures, and excellent mechanical
properties as reported previously (Supplementary Note 3 and
Supplementary Figs. 2 and 3)1,3.

Measurements of Poisson’s ratios. A Poisson’s ratio is defined as
the negative ratio of the transverse strain to the longitudinal
strain in the loading direction under uniaxial tension. Thus,
accurate determination of the local transverse strain within the
region of uniform deformation and avoiding gripping effect in
measuring longitudinal strain of a specimen proposed in our
previous work27 are prerequisites for evaluating the Poisson’s
ratio accurately, and the measurement of Poisson’s ratio on a film
specimen remains challenging. Herein, fluorescent digital image
correlation (FDIC) is used to measure the in-plane deformation
by tracking and matching a distinct speckle pattern in the
reference and the deformed images during the loading
process28,29. This approach allows measurement of the full-field
displacements with sub-pixel accuracy. Fluorescent particles are
used to form speckle patterns to keep track of movement of
material points in the film under deformation. This approach
eliminates the light specular reflection (Fig. 1a). Typical FDIC
speckle images of e-GO0 film are shown in Fig. 1b–e, where X and
Y are the transverse and loading directions, U and V are the
corresponding displacement fields along the X and Y directions,
respectively. The results show that the strains along the transverse
and loading directions (εxx and εyy) of the GO film are both
positive, and the average transverse strain increases with the
increase of average longitudinal strain, signaling a NPR behavior.
Based on the transverse strain εX and longitudinal strain εY
averaged from the strain fields εxx and εyy (Fig. 2a and Supple-
mentary Fig. 4), the instantaneous in-plane Poisson’s ratio is
calculated as:

νYX ¼ �dεX=dεY ð1Þ

As shown in Fig. 2a, upon uniaxial loading along the Y
direction for e-GO0 film, the εX increases linearly with εY, giving
an instantaneous Poisson’s ratio around a constant value of
−0.47, which is independent of the applied longitudinal strain
(Fig. 2b). Impressively, it is found that all the examined GO and
rGO films exhibit NPR behavior (Supplementary Fig. 4),
irrespective of the GO precursors used, film-forming methods,
and the chemical structure of CMG (GO or rGO) sheets. The
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average Poisson’s ratios for the films are determined as −0.26
(e-GO35), −0.25 (f-GO35), −0.44 (f-GO0), −0.48 (f-rGO0), −0.53
(e-GO0), and −0.55 (e-rGO0) (Fig. 2c), via Eq. (1) using the full
range of data (Supplementary Fig. 4). Moreover, cyclic loads with
a peak strain of 1.5% does not induce significant changes in the
Poisson’s ratio even after 15 cycles (Fig. 2d and Supplementary
Fig. 5), indicating that the NPR effect is inherent for the
CMG films.

Microstructural basis of the negative Poisson’s effects. The
chemical structures of GO building blocks modulate the micro-
structures and Poisson’s ratio of the GO films. As shown in
Fig. 3a, all XRD patterns of GO0 and GO35 films display sharp
diffraction peaks, suggesting the formation of CPLs, which is
evident from the scanning electron microscopy (SEM) images of
CMG films (Supplementary Fig. 2b)1. The interlayer spacings of
e-GO0 and f-GO0 films are calculated as 0.806 and 0.785 nm,
respectively, based on the diffraction peaks at 2θ= 10.95° and
11.25° with the full-width at half-maximum (FWHM) of 1.23°
and 1.05°. e-GO35 and f-GO35 films feature smaller interlayer
spacings of 0.772 and 0.750 nm, respectively, which are

determined from diffraction peaks at higher angles 2θ= 11.44°
and 11.77° with narrower FWHMs (0.56° and 0.47°). The XRD
data can be used to evaluate the degree of disorder of GO sheets
in the CMG films, where the finite FWHM indicates the sheet
mis-alignment30,31. It is distinct that the GO0 films with larger
FWHM have larger absolute values of NPRs (−0.53 (e-GO0)
and −0.44 (f-GO0)) than GO35 films (−0.26 (e-GO35) and −0.25
(f-GO35)). The increased amount of organosulfate (3.33 at%
sulfur) in GO0 films relative to that (0.77 at%) in GO35 films is
suggested to account for the larger d-spacing and less ordered
alignment of GO0 films26,32. The interlayer spacing between GO
sheets characterized by XRD measures the packing density in
CPLs, which is high enough to suppress the out-of-plane corru-
gation at the sheet level, which was proposed to be responsible for
the NPR effects of graphene and GO monolayers18–22.

The structural differences between the GO sheets prepared by
different synthetic protocols are further identified by UV–vis
absorption spectra. The main absorption peak of GO around
230 nm is associated with the sp2 domain in GO sheets. The
absorption peak of GO0 (236 nm) is red-shifted with respect to
that of GO35 (231 nm), demonstrating that GO0 sheets have a
larger graphitic domain than that in GO35, since the carbon atom
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Fig. 1 Tensile tests of chemically modified graphene films monitored by fluorescent digital image correlation. a Schematic diagram of the fluorescent digital
image correlation (FDIC) measurement, where camera and lens detect light emitted from red fluorescent particles deposited onto the e-GO0 films
(prepared by evaporation of GO solution synthesized at 0 °C). The emission filter allows only light from the excited fluorescent particles to pass.
b–e Optical images of e-GO0 films with fluorescent particles on its surface, and the displacement fields U (b) and V (c), and the strain fields measured in
the transverse (d) and longitudinal (e) directions from FDIC analysis. Source data are provided as a Source Data file
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rupture is prevented to some extent by a relatively lower
temperature of oxidization (Supplementary Fig. 6)33,34. The low
defect density and larger sp2 domains within GO0 basal planes
facilitate the van der Waals interactions between neighboring
GO0 sheets34,35. Consequently, in film-forming processes by
evaporation-induced assembly or vacuum-assisted filtration, the
mobility of GO0 sheets in the dispersions is limited, and it
becomes difficult to adjust the sheet conformation to adopt an
energetically-favorable, ordered alignment, resulting in the
formation of GO0 films, where the hierarchical structures of
GO sheet-containing CPLs is less ordered compared with
GO35 films.

The Poisson’s ratio of the CMG films depends on the film
microstructures tailored by the film-forming methods. As seen in
Fig. 3a, with the same GO precursors, evaporation-induced
assembly of concentrated GO dispersion (5mgmL−1) produces
e-GO films with larger interlayer spacing and FWHM, together
with more significant NPR effects than the f-GO films fabricated by
vacuum-assisted filtration from dilute GO dispersions (1mgmL−1).
GO sheets intend to form a low-density dynamic network at a
relatively higher concentration (≥3mgmL−1) due to the presence
of strong physical cross-linking sites26,36, leading to the formation
of CMG films with more wrinkled textures of the CPLs.
Considering all of these factors, we conclude that the Poisson’s
ratio of CMG films is highly related to the topological structure of
CPLs, which can be modulated by the chemical structures of GO
building blocks and the film-forming methods. The wrinkled
textures of CPLs enhance the NPR effect of the CMG films. After

reduction with hydroiodic acid solution, the rGO films feature
similar hierarchical structures with wrinkled textures and the
associated auxetic behavior exhibited in the GO films (Fig. 2c and
Supplementary Fig. 2).

To gain further insights into the NPR behavior of GO films,
e-GO0 films with different orders of alignment of CPLs were
prepared by pre-stretching the wet GO films during the film-
forming process. It is found that upon increasing the load, the
resultant e-GO0 films exhibit smaller absolute values of NPRs and
narrower FWHMs, ranging from ν=−0.53 (FWHM= 1.23°,
without pre-stretch) to ν=−0.46 (FWHM= 1.13°, with 30 mN
pre-stretch), and ν=−0.31 (FWHM= 1.04°, with 60 mN pre-
stretch) (Fig. 3b and Supplementary Figs. 7 and 8). Consequently,
pre-stretch induces conformation changes of the CPLs in the
CMG films, which are gradually aligned to a more energetically-
favorable arrangement at the expense of forming wrinkled
textures. These results demonstrate that the NPR behavior of
the CMG films can be readily tuned by controlling the topological
structure of CPLs and their stacks in the films. This observation
has also been confirmed by polarized Raman spectral examina-
tions of CMG films prepared under different amplitudes of
pre-stretch.

Polarized Raman spectra were recorded by directing an
incident laser beam parallel to the base plane of e-GO0 films
with pre-stretch. As shown in Fig. 3c, α is the average angle of
alignment between the CPLs and the loading direction, and β is
the angle between the electric field vector of the incident laser and
the base plane of the e-GO0 film, which is tuned from 0° to 360°
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(Supplementary Fig. 9). The G band intensity in polarized Raman
spectra of the CMG films is plotted against the angles α and β in
Fig. 3d, which follow the equation:

IG ¼ c2

2
cos2αf2þ cos ½2ðα� βÞ� þ cos ½2ðαþ βÞ�g ð2Þ

For samples with the angle of alignment α, the value of IG(β)
characterized experimentally reaches a maximum at β= 0° and
180° (IG(//)), whereas IG(β) reaches a minimum at β= 90° and
270° (IG(⊥))37. The ratio IG(//)/IG(⊥) equals cot2α (Fig. 3c).
Fitting the data of normalized Raman G band intensity with the
value of β between 0° and 360° using Eq. (2), one obtains the
value of α decreasing from 37.56° to 35.84°, and 32.78° upon
enhancing pre-stretch (Fig. 3c, d). Based on these results, it
becomes clear that the NPR of CMG films can be tuned by
modifying their hierarchical microstructures, where the inter-
connected network of CPLs define the NPR behavior of
the CMG films.

Theoretical analysis. To understand the microstructural evolu-
tion of CMG films under tensile loading and quantifying the NPR
behavior, we constructed a multiscale model for the CMG films
based on experimental evidence. Specifically, based on SEM and
optical images of the cross-section and surface topography of
the CMG films, respectively (Fig. 4a, b), we illustrated the
microstructures of monolithic CMG films in Fig. 4c, which include
inter-connected CPLs (or GO multilayers with typical thickness of

~10–40 nm). Their evolution under tensile loading involves
aligning of disordered stacks of CPLs, reduction in the out-of-
plane corrugation of wrinkled CPLs and their delamination. These
processes are activated along the tensile direction, but the mis-
alignment in other directions is also suppressed, as a consequence,
endowing the CMG films with NPRs (Fig. 4c). The evidence of
these processes can be found from the polarized Raman data.
Compared with the flattening process of a GO or graphene
monolayer20, the out-of-plane corrugation of the inter-connected
network of CPLs in the CMG film is stabilized by its micro-
structural hierarchy, and can have much higher amplitude, leading
to more prominent NPR effects as we identified experimentally.
With these arguments, we rationalize the mechanisms through a
representative volume element (RVE) featuring wavy textures of
CPLs (Fig. 4d), following the spirit of the model of foldable
structures proposed by Grima et al.38 and the cubic lattice model
coined by Baughman and co-workers39. In our model, the sticks
(solid and dash lines in Fig. 4d) represent the out-of-plane cor-
rugation of CPLs resulted from disordered stacks, wrinkles, or
delamination. The angle θ between the sticks and the basal plane
of a CMG film measures the out-of-plane corrugation of CPLs,
and is related to the alignment angle α measured in polarized
Raman experiments (see Supplementary Note 4 for details). The
ν–α relation predicted from our model aligns well with experi-
mental data (Fig. 4e), suggesting that the NPR effect of CMG films
does originate from the wavy texture of the inter-connected CPL
network and will be reduced if the alignment of CPLs improves.
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Discussion
We have demonstrated that the CMG films fabricated by
solution-processed approaches feature NPRs with the value of ν
ranging from −0.25 to −0.55. It should be noted that the in-plane
and out-of-plane microstructures of CMG films are strongly
anisotropic. The aligning process of CPLs only results in in-plane
NPR effects, while the Poisson’s ratio measured in the out-of-
plane direction is always positive, with a reduction in the thick-
ness of CMG films by ~20% at a tensile strain of 3.5% as reported
in our previous work27.

Our hypothesis on the microstructural evolution in CMG films
is limited by the resolution of structural characterization techni-
ques. Relative sliding between CPLs is not considered, which may
weaken the suppression of out-of-plane corrugations of CPLs
under tensile loading, and thus reduce the NPR effect. The
morphological changes of GO sheets in the CPLs are expected to
be strongly constrained by the layer-by-layer packing. The che-
mical structures of GO sheets are thus correlated to the NPR
behaviors through their modulation in the film-forming
processes.
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Future work on the characteristic microstructural features and
their statistics from experimental measurements is required to
extract the key parameters for constructing numerical models,
which can extend the current analysis by considering more rea-
listic models. Our RVE-based theory neglects the wide distribu-
tion of the microstructural features resulted from the coarse
control of film preparation processes, but captures the most
essential mechanism of the NPR effect by introducing the concept
of CPLs. Our experimental characterization and analysis indicate
that the wavy textures of close-packed GO laminates as the
building blocks are responsible for the observed auxetic behavior
in the macroscopic GO and rGO films. The argument is validated
by further engineering control of the NPR behaviors. The wrin-
kled texture of the inter-connected CPL network within the films
is readily tailored by the chemical structures of the GO precursors
and the film-forming methods, resulting in films with tunable
NPR values.

The microstructural hierarchy of CMG films featuring gra-
phene sheets as the building blocks, the CPLs and their inter-
connected networks is reminiscent of the three-level model of
carbon nanotube fibers (individual nanotubes as building blocks,
the close-packed bundles, and their inter-connected network)40.
These abstracted concepts help to improve understanding of the
multiscale nature of nanostructured assemblies, their evolution
under mechanical loading, and their impacts on the macroscopic
mechanical performance41. The current study thus furnishes
design guidelines for the construction of films with NPR beha-
viors from 2D building blocks for exhibiting auxetics.

Methods
Preparation of the GO and rGO films. Evaporation-induced assembly of GO0 or
GO35 dispersions on a polystyrene Petri dish under ambient condition yield e-GO
films, which can be easily peeled off from the substrate for further characterization.
The evaporation process typically takes 3 days at 25 °C. f-GO films were fabricated
by vacuum-assisted filtration of dilute GO dispersion (1 mgmL−1) through a poly-
(tetrafluoride ethylene) (PTFE) membrane (47 mm in diameter, 0.22 μm pore size).
All rGO films were prepared by chemical reduction of the relevant GO films with a
mixed ethanol/aqueous 57% HI solution (3/1 by volume) at room temperature for
12 h. The resulting rGO films were repeatedly washed by ample ethanol and dried
at room temperature for 24 h before characterizations. Pre-stretched GO films were
prepared by sandwiching GO rectangular strips (3 mm × 30mm) in a home-made
apparatus with a given loading under 100% relative humidity (RH) for 1 week,
followed by air-drying the resultant GO films under 50% RH for 1 day. The GO
strips were fabricated by razor blade cutting wet GO films, which were fabricated
by cast-drying GO dispersions (5 mgmL−1) on PTFE Petri dish under 50% RH for
2 days.

Microscopic observations. SEM images were recorded using a Sirion 200 field
emission SEM. The samples used for size distribution statistics by SEM were
fabricated by deposition of diluted GO solution (5–10 μg mL−1) on a 300-nm-
thick-SiO2/Si wafer followed by drying in a clean bench without sputter-coating
any conductive layers. Surface morphology of e-GO0 films was recorded and
reconstructed using a 3D optical microscope (KH-8700 HIROX, 2500X).

Structure characterizations. X-ray photoelectron spectroscopy (XPS) data was
recorded on an ESCALAB 250 photoelectron spectrometer (ThermoFisher Scien-
tific) with Al Kα (1486.6 eV) radiation. XRD patterns of the films were collected on
D8 Advanced X-ray diffractometer with Cu Kα radiation (λ= 0.15418 nm, Bruker,
Germany) with scanning speed of 5° per minute at room temperature. Raman
spectra were collected on LabRAMHR instrument (Horiba Jobin Yvon) with a 532-
nm wavelength laser. During the polarized Raman characterization of CMG films,
the polarization state of laser was tuned by the half-wave plate positioned in the
beam path, and a man-made stage was used to vary the angle of film according to
the original direction of linearly polarized excitation.

Mechanical characterizations. All samples for tensile testing were cut into rec-
tangular strips with width of 3 mm and length of 30 mm by a single-edge razor
blade and attached to a frame of card paper by epoxy glue. Uniaxial tension of the
GO and rGO films was carried out using an Instron 3342 universal testing machine
(Instron, USA). The transverse strain was determined using an optical microscope
to record the videos of the fluorescent particle movement on the film surface at a
strain rate of 5 × 10−4 s−1 until the film broke. FDIC was used to track and match

the fluorescent patterns in the reference and deformed states. Red fluorescent
particles (580/605, Life Technology Corp., #F13083) were used in the fluorescent
microscope, with excitation and emission/barrier filters for fluorescent imaging.
The primary function of the emission/barrier filter in the fluorescent microscope is
to block the excitation wavelengths used and allow only the excited light from the
fluorescent particles to pass. Matching filters were thus used for fluorescent ima-
ging (ET560/40x and ET615/40m, Chroma Technology Corp.). The samples were
randomly sprayed with fluorescent particles using an airbrush. It should be noted
that the displacement measurement in FDIC is sensitive to the sample alignment,
and errors may arise from sample gripping. However, for our FDIC data, the angle
of misalignment is ~5°, corresponding to an error in the strain of ~0.001. The
FDIC-calculated strain is an order of magnitude higher than this level of error, and
thus the strain measurement is reliable.

Data availability
The data sets within the article and Supplementary Information of the current study are
available from the authors upon request. The source data underlying Figs. 2, 3, and 4e
and Supplementary Figs. 1b, c, e, f, 3–9 are provided as a Source Data file.
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