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Abstract

Imaging Mass Cytometry (IMC) combines laser ablation and mass spectrometry to quanti-

tate metal-conjugated primary antibodies incubated in intact tumor tissue slides. This strat-

egy allows spatially-resolved multiplexing of dozens of simultaneous protein targets with

1μm resolution. Each slide is a spatial assay consisting of high-dimensional multivariate

observations (m-dimensional feature space) collected at different spatial positions and

capturing data from a single biological sample or even representative spots from multiple

samples when using tissue microarrays. Often, each of these spatial assays could be char-

acterized by several regions of interest (ROIs). To extract meaningful information from the

multi-dimensional observations recorded at different ROIs across different assays, we pro-

pose to analyze such datasets using a two-step graph-based approach. We first construct

for each ROI a graph representing the interactions between the m covariates and compute

an m dimensional vector characterizing the steady state distribution among features. We

then use all these m-dimensional vectors to construct a graph between the ROIs from all

assays. This second graph is subjected to a nonlinear dimension reduction analysis, retriev-

ing the intrinsic geometric representation of the ROIs. Such a representation provides the

foundation for efficient and accurate organization of the different ROIs that correlates with

their phenotypes. Theoretically, we show that when the ROIs have a particular bi-modal dis-

tribution, the new representation gives rise to a better distinction between the two modalities

compared to the maximum a posteriori (MAP) estimator. We applied our method to predict

the sensitivity to PD-1 axis blockers treatment of lung cancer subjects based on IMC data,

achieving 97.3% average accuracy on two IMC datasets. This serves as empirical evidence

that the graph of graphs approach enables us to integrate multiple ROIs and the intra-rela-

tionships between the features at each ROI, giving rise to an informative representation that

is strongly associated with the phenotypic state of the entire image.
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Author summary

We propose a two-step graph-based analyses for high-dimensional multiplexed datasets

characterizing ROIs and their inter-relationships. The first step consists of extracting the

steady state distribution of the random walk on the graph, which captures the mutual rela-

tions between the covariates of each ROI. The second step employs a nonlinear

dimensionality reduction on the steady state distributions to construct a map that unrav-

els the intrinsic geometric structure of the ROIs. We theoretically show that when the

ROIs have a two-class structure, our method accentuates the distinction between the clas-

ses. Particularly, in a setting with Gaussian distribution it outperforms the MAP estimator,

implying that the mutual relations between the covariates within the ROIs and spatial

coordinates are well captured by the steady state distributions. We apply our method to

imaging mass cytometry (IMC). Our analysis provides a representation that facilitates pre-

diction of the sensitivity to PD-1 axis blockers treatment of lung cancer subjects. Particu-

larly, our approach achieves state of the art results with average accuracy of 97.3% on two

IMC datasets.

This is a PLOS Computational BiologyMethods paper.

Introduction

Consider multi-feature observations collected at different spatial positions. Data structure of

this type requires analysts to address two immediate natural questions. First is how to char-

acterize the associations between the different features in each position. Second is how to

organize the observations from different spatial positions into an informative

representation.

We approach these two questions from the standpoint of manifold learning, which is a class

of nonlinear dimensionality reduction techniques for high-dimensional data [1–4]. The com-

mon assumption in manifold learning is that the multi-feature observations lie on a hidden

lower-dimensional manifold. Such an assumption facilitates the incorporation of geometric

concepts such as metrics, geodesic distances, and embedding, into useful data analysis tech-

niques. In order to learn a (continuous) manifold from discrete data samples, commonly-used

manifold learning methods rely on the construction of a graph. Typically, the data samples

form the graph nodes and the edges of the graph are determined according to some similarity

notion that is usually application-specific.

In our work, we adhere to manifold learning techniques and propose a method consisting

of two-step graph analysis. At the first stage, we build a graph for each spatial position, where

the graph nodes are the multi-feature observations. The motivation to build such a graph

rather than using the observations directly stems from an assumption that the information

about the sample at each spatial position is better expressed by the mutual-relations between

the features. Then, we define a random walk on this graph and build a characteristic vector of

the respective spatial position by computing the steady state distribution (SSD) of the random

walk. For analysis purposes, we define a new notion of heterogeneity, representing a statistical

diversity of the multiple features, and show that the SSD characterizes each spatial position in
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terms of this heterogeneity. In addition, using this notion of heterogeneity, when the density

of the observations at the spatial positions is bi-modal, we show that these SSDs can lead to an

accurate identification of the two modes, outperforming the maximum a-posteriori (MAP)

estimator [5] in a statistical setting with Gaussian distributions.

At the second stage, we build a graph whose nodes are the new characteristic vectors (SSDs)

of all the spatial positions. We apply diffusion maps [4] to this second graph and obtain a low

dimensional representation of the spatial positions. The dimension of the computed represen-

tation is determined by a nonlinear variant of the Jackstraw algorithm [6].

Broadly, the proposed algorithm could be viewed as building a graph of graphs. From a

manifold learning standpoint, this two-step procedure could be viewed as inferring amanifold
of manifolds. Namely, at the first stage, we recover the local manifolds that underlie the multi-

ple features at each spatial location, and then, at the second stage, we recover the global mani-

fold between the spatial positions, formed by the collection of all local manifolds. This

standpoint is related to a large body of recent work involving the discovery and analysis of

multi-manifold structures, e.g., alternating diffusion [7–10], multi-view diffusion maps [11],

joint Laplacian diagonalization [12], to name just a few. Therefore, the proposed method can

be viewed as a follow up work along this line of research.

We apply our method to imaging mass cytometry (IMC) [13–15]. IMC is a new technique

for multiplexed simultaneous imaging of proteins and protein modifications at subcellular res-

olution, ideally suited to uncover molecular and structural alterations of diseased tissues such

as in cancer. IMC analysis can also be used to study the composition of non-diseases tissue

samples such as histology studies or molecular profiles. The acquired intensities of the protein

expression levels are viewed as markers, providing important biological information on the tis-

sues of interest. This acquisition procedure gives rise to multi-feature observations at different

spatial positions, where the multiple features are the markers and a selected subset of the spa-

tial positions are ROIs within pathology slides.

Our experimental study focuses on one of the important tasks of IMC data analysis: associ-

ating the response status of a patient to a therapeutic intervention with a high-dimensional

spatial IMC sample from the relevant patients’ tissues. Here, we propose to recast this problem

as a binary hypothesis testing problem. We assume that all the ROIs of each patient can be

labeled by the patient’s response or non-response status. The collection of all ROIs from the

patients’ cohort induces a bi-modal density of expression signatures. Then, given the protein

expression levels within the ROIs of a certain tissue type, we ask whether the subject was

responsive to treatment. We showcase the performance of the proposed method on two IMC

cohorts consisting of samples taken from lung cancer subjects. We achieve a average 97.3%

prediction accuracy of response to treatment (PD-1 axis blockers) in an unsupervised manner.

This result outperforms competing methods, specifically, the results obtained by (i) diffusion

maps (DM) [4] directly applied to the multi-feature observations, (ii) the heat kernel signature

(HKS) [16], and (iii) the wave kernel signature (WKS) [17].

Results

Ethics statement

The study was approved by the Yale University Human Investigation Committee protocols

#9505008219 and #1608018220; or local institutional protocols which approved the patient

consent forms or, in some cases waiver of consent when retrospectively collected archive tissue

was used in a de-identified manner.
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Overview

We start by presenting the problem setting. Consider n data points fxig
n
i¼1

from a hidden man-

ifold M embedded in a high-dimensional Euclidean space Rk. Assume we do not have direct

access to these data points; instead, these data points are measured throughm observation

functions fj : M! Rd, where j = 1, . . .,m is the index of the observation function. Given n
multi-feature observations fj(xi) of the data point xi for i = 1, . . ., n, each consisting ofm fea-

tures j = 1, . . .,m, our goal is to recover the data points xi on the hidden manifold M.

In the context of IMC, the data points represent the treatment outcome based on n spatial

positions located at ROIs within pathology slides of tissues from several patients. At each spa-

tial position i = 1, . . ., n, the observations fj(xi) for j = 1, . . .,m are the expression levels ofm
markers. Each observation fjðxiÞ 2 R

d
is a patch of d pixels of the expression level image of

marker j at position i.
To simplify the presentation of our approach, we begin with an illustrative localization

problem, which is simpler than the IMC problem. Suppose we have a surface M and objects

located at xi on M. The locations xi are hidden, but measured throughm sensors, such that for

each location xi we havemmulti-feature observations ffjðxiÞg
m
j¼1

. That is fj(xi) is a d-dimen-

sional observation of sensor j when the object is at xi. The goal is to recover the locations xi on

the surface M given ffjðxiÞg
m
j¼1

.

Our approach consists of two stages. At the first stage, we construct a graph for each data

point xi in order to capture associations between itsmmulti-feature observations ffjðxiÞg
m
j¼1

.

Capturing such mutual-relationships is natural in the context of localization problems, e.g.,

the triangulation property [18] in which the relative locations of the sensors are exploited. In

addition, these mutual-relations are typically more robust to noise in comparison with the

nominal values of the multi-feature observations, fj(xi), themselves. Concretely, consider them
observations ffjðxiÞg

m
j¼1

associated with the data point xi. Each observation fj(xi) forms a single

node in the graph, hereby denoted as node j, giving rise to a graph with a total ofm nodes. The

graph we consider is the complete graph, where the weights of the edges are determined based

on the Euclidean distance between the corresponding observations: the weight of the edge con-

necting nodes j and k is proportional to exp{−kfj(xi) − fk(xi)k2}. Then, we compute the SSD of a

random walk defined on this graph at each location. SSD has a vector form that embodies the

multi-feature inter-relationships of the data point xi.
At the next step, we define a second graph based on the SSDs, characterizing the points

fxig
n
i¼1

. Concretely, each data point xi is represented by a node, and the pairwise distances

between the SSDs form the adjacency matrix of the graph. Then, we apply a particular mani-

fold learning technique, diffusion maps [4], to this graph. This application facilitates the recov-

ery of the hidden manifold M in the sense that an embedding of the points xi is learned, such

that the distances between the embedded points respect a notion of an intrinsic distance (the

diffusion distance [4]) on M. The application of diffusion maps to the second graph in the

context of the localization problem gives rise to an embedding that serves as an accurate repre-

sentation of the hidden locations of the data point. In Localization toy problem, we demon-

strate the proposed method on several simulations of localization toy problems.

We remark that the IMC problem and the localization problem share many aspects. For

example, in both problems, the multi-feature observations are noisy and the mutual-relation-

ship between them carry important information. Yet, there is a particular aspect that makes

the IMC problem more challenging; while the points on the hidden manifold in a localization

problem are homogeneous because they all represent location coordinates, the points in the
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IMC problem could be significantly different due to the large variability in the tissue structure.

Importantly, the proposed method accommodates the joint processing of such different points

through their representation by the SSD.

Proposed method

The first step of the proposed method is to construct an undirected weighted graph

Gi ¼ ðVi; E i;W iÞ for each data point xi 2M � Rk, where the vertex set is

Vi ¼ ff1ðxiÞ; f2ðxiÞ; :::; fmðxiÞg, the edge set is E i � V i � Vi, and the graph weights matrix

W i 2 R
m�m

is given by the Gaussian kernel

Wiðk; lÞ ¼ exp �
jjfkðxiÞ � flðxiÞjj

2

2

2�

� �

; ð1Þ

where k, l 2 {1, . . .,m} and � > 0 is a scale parameter. Note that since Wi is symmetric, Wi is

diagonalizable. That is, there is a set of real eigenvalues fljg
m
j¼1

with a corresponding orthonor-

mal basis of eigenvectors fvjg
m
j¼1

such that

Wiðk; lÞ ¼
Xm

j¼1

ljvjðkÞvjðlÞ: ð2Þ

Next, we define a random walk on the graph Gi. Let Pi 2 R
m�m

be a row stochastic matrix

given by

Pi ¼ D� 1

i W i; ð3Þ

where Di is a diagonal matrix whose diagonal elements are given by Diðk; kÞ ¼
Pm

l¼1
Wiðk; lÞ.

The value of Pi(k, l) can be interpreted as a transition probability from a vertex fk(xi) to a vertex

fl(xi) in one step of a random walk on the graph Gi.

The transition probability matrix Pi is self-adjoint and compact, and therefore, the spectral

decomposition of Pti for t> 0 is given by

Ptiðk; lÞ ¼
Xm

j¼1

l
t
jψ jðkÞϕjðlÞ; ð4Þ

where fψ j; ϕjg
m
j¼1

are the right- and left-eigenvectors with the corresponding eigenvalues

fljg
m
j¼1

. By the construction of Pi from Wi, the relations between their respective eigenvectors

are given by

ψ jðkÞ ¼
vjðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Diðk; kÞ

p ð5Þ

and

ϕjðkÞ ¼ vjðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Diðk; kÞ

p
: ð6Þ
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Interestingly, in the special case where t = 1, the probability of the node fk(xi) to stay in

place is given by

Piðk; kÞ ¼
Xm

j¼1

ljv
2

j ðkÞ ¼
1

Diðk; kÞ
: ð7Þ

Note that ϕ1 2 R
m

is the left eigenvector of Pi corresponding to λ1 = 1, satisfying:

P>i ϕ1 ¼ ϕ1; ð8Þ

where P>i is the transpose of the matrix Pi. Consider an arbitrary distribution vector π0 2 R
m

and observe the expansion:

π>
0
Pti ¼

Xm

j¼1

l
t
jhπ0;ψ jiϕ

>

j ; ð9Þ

where hπ0;ψ ji ¼ π>
0
ψ j is the standard Euclidean product. In the limit t!1, l

t
j ! 0 for j> 1

and therefore

π>
0
Pti � ! l

t
1
hπ0;ψ1iϕ

>
1
¼ ϕ>

1
≜π>i ; ð10Þ

where πi 2 R
m

since λ1 = 1, ψ1 = 1, and
Pm

j¼1
π0ðjÞ ¼ 1. Since the random walk defined by Pi

is irreducible, finite, and aperiodic [19], the stationary distribution πi is a unique stationary dis-

tribution. The convergence in Eq (10) and the uniqueness allow us to treat the stationary dis-

tribution in this case as the steady state distribution (SSD). Note that the SSD πi/ Di1, where

1 2 Rm is an all-ones vector. In other words, πi can be viewed as a normalized degrees vector

of the graph Gi.

We will use πi as a new characteristic vector, or a signature, of xi, and consequently, the

induced pairwise distances ||πi − πi0||, where i, i0 2 1, . . ., n, will be used as the desired distances

between the respective graphs Gi and Gi0 for recovering M. At first glance, using πi may seem

too simplistic. Instead, one could use the broad spectral information. Consequently, define the

Diffusion Kernel Signature (DKS) by

xi 7! ½DKStðf1ðxiÞÞ;DKStðf2ðxiÞÞ; . . . ;DKStðfmðxiÞÞ�; ð11Þ

where

DKStðfkðxiÞÞ ¼
Xm

j¼1

l
t
jψ

2

j ðkÞ: ð12Þ

Since λj is in descending order and in [0, 1], the weight they assign to the eigenvectors in

(12) becomes smaller as t increases. As a result, the DKS can be viewed as a low-pass filter,

which controls the spectral bandwidth. In addition, the DKS can be recast in terms of the diffu-

sion distance, a notion of distance induced by diffusion maps [4] that was shown useful in a

broad range of applications, e.g., [20–22]. For more details see Diffusion maps. Specifically,
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when t = 1, we can show that

DKSt¼1ðfkðxiÞÞ ¼
Xm

j¼1

ljψ
2

j ðkÞ

¼
Xm

j¼1

lj
vjðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Diðk; kÞ

p

 !2

¼
1

Diðk; kÞ

Xm

j¼1

ljv
2

j ðkÞ

¼
1

π2
i ðkÞ

;

ð13Þ

indicating that the SSD is a special case of DKS.

We note that DKS has already appeared in previous work in the context of spectral dis-

tances in [23, 24], where it was shown that it describes the underlying geometry of M. We

show in the following that the seemingly simple SSD, despite the lack of broad spectral infor-

mation as in the DKS, still carries substantial information.

Note that � is a scale parameter of the Gaussian kernel, where it can be used to infer locality.

If � is set to a small value, then πi captures local properties. Conversely, if � is large, then πi rep-

resents the global structure. As a result, a multiscale signature can be formed, consisting of

multiple SSDs πi computed with different values of �.

The final stage of our method is building a low-dimensional representation of all the data

points fxig
n
i¼1

. To this end, we apply diffusion maps to the corresponding characteristic vectors

(signatures) fπig
n
i¼1

as follows. First, we build a global graph G(2) whose nodes are πi and edge

weights are determined by a Gaussian kernel based on the l1 distance between πi.
That is, the global graph weights matrix W(2) is defined by

Wð2Þðk; lÞ ¼ exp �
jjπk � πljj

2

1

2�0

� �

; ð14Þ

where k, l 2 [1, n], ||�||1 is the l1 distance and �0 > 0 is a scale parameter. We remark that com-

mon practice is to use the l2 distance in the Gaussian kernel. The reason we use the l1 distance

is described in Binary hypothesis testing, which indeed leads to better empirical performance

reported in Imaging mass cytometry (IMC).

Second, we construct a random walk, denoting its transition probability matrix by P(2).

Third, we apply the eigendecomposition to P(2). Fourth, we set the dimension of the new

representation according to the variant of the Jackstraw method [6], as shown in Determining

the dimension of data.

The entire method is summarized in Box 1 and a block diagram is illustrated in Fig 1.

Theoretical analysis

We propose a statistical model that allows for a tractable analysis, showing the advantages of

the SSD signature. Consider a data point xi 2M and denote the set of the observations by

S ¼ ffjðxiÞg
m
j¼1

. Assume the j-th observation fjðxiÞ 2 R
d is a realization of a d-dimensional ran-

dom vector Vi
j following a multivariate normal distribution given by

Vi
j � N ðmij1d; s

i
jIdÞ: ð15Þ
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By collecting them observations ffjðxiÞg
m
j¼1

and denoting the covariance matrix between the

k and l observation functions by Σik;l, we obtain anmd-dimensional vector that can be viewed

as a realization of the random vector Vi ¼ ðVi
1
; . . . ;Vi

mÞ with the corresponding multivariate

Gaussian distribution given by

N ðμi;ΣiÞ; ð16Þ

where

μi ¼

mi
1

..

.

mi
1

9
=

;
d elements

mi
2

..

.

mi
2

9
=

;
d elements

..

.

mim
..
.

mim

9
=

;
d elements

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

2 Rmd; ð17Þ

Box 1. A summary of the proposed method

Input: A set of multi-feature observations {fj(xi)} for i = 1, . . ., n and j = 1, . . .,m.

Output: l-dimensional representation ΨðxiÞ 2 R
l for i = 1, . . ., n.

1. For each xi:

a Construct a local graph Gi with vertex set

Vi ¼ ff1ðxiÞ; f2ðxiÞ; :::; fmðxiÞg;

edge set E i � Vi � Vi, and edge weights matrix W i 2 R
m�m

given in Eq (1).

b Build a random walk on the local graph Gi with transition probability matrix Pi
defined in (3).

c Compute the SSD πi 2 R
m

of Pi.

2. Construct a global graph G(2) with vertex set fπig
n
i¼1
2 Rm�n and the graph weights

matrix P(2) given in Eq (14).

3. Build a random walk on G(2) with transition probability matrix P(2).

4. Apply eigenvalue decomposition to P(2) and obtain the eigenvectors fφkg
n
k¼1

.

5. Determine the number of dimensions l as described in Determining the dimen-

sion of data.

6. Build the mapping: xi 7! ðφ1
ðxiÞ;φ2

ðxiÞ; . . . ;φlðxiÞÞ
>≜ΨðxiÞ for i = 1, . . ., n.
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and

§i =

2
666664

¾i1Id §i1;2 : ::

::
:

::
:

::
:

::
:

::
:

::
:

::
:

: :: : :: : :: §i1;m
§i2;1 ¾i2Id §i2;3 : :: : :: : :: §i2;m
§i3;1 §i3;2 ¾i3Id §i3;4 : :: : :: §i3;m

§im;1 : :: : :: : :: : :: §im;m¡1 ¾imId;

3
777775
2 Rmd£md ð18Þ

such that

Σi
k;l ¼ s

i
k;lId; ð19Þ

and sik;l is the covariance between the k-th and l-th random vectors. In words, μi in Eq (17) is a

vector ofmd elements, consisting of the concatenation ofm vectors. We index each of these

Fig 1. Illustrative diagram of the proposed method. (a) For each data point xi, we build a local graph Gi based on its multi-feature observations

ffjðxiÞg
m
j¼1

. (b) We construct a random walk with transition probabilities matrix Pi on Gi. (c) We extract the SSD signature πi from Pi. (e) We collect the

SSDs of fxig
n
i¼1

into an SSD representation matrix. (g) Subsequently, the matrix is subjected to a nonlinear dimensionality reduction using diffusion

maps by the construction of the global graph G(2) and the corresponding random walk with P(2). (f) Via eigenvalue decomposition, we obtain a low-

dimensional representation Ψ(xi) for i = 1, . . ., n, which is used in the subsequent tasks (g).

https://doi.org/10.1371/journal.pcbi.1008741.g001
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vector by j = 1, . . .,m. All the entries of the j-th vector are equal and are set to the mean obser-

vation of the j-th sensor (marker) at the i-th point (mij). In Eq (18), Σi is a matrix of size ofmd ×
md, which is the analogous concatenation of the covariance matrices of the observations. Spe-

cifically, the diagonal blocks are the diagonal matrices sijId, whose diagonal elements are the

variances of the j-th observation, and the off-diagonal blocks are the diagonal matrices sik;lId,
whose diagonal elements are the covariance between sensor (marker) k and sensor (marker) l.

Definition 1 (empirical mean) Given a set Γ and some real function on the set q 2 RjGj, and
a subset O� Γ, the empirical mean of q inO is defined by

hqi
O
¼

1

jOj

X

j2O

qðjÞ: ð20Þ

Definition 2 (heterogeneity) Define the heterogeneity of a data point xi by

hi ¼ M� 1

i ðΘ
i � hμiiS1Þ 2 R

m; ð21Þ

where hμiiS is given by Definition 1, Mi is an m ×m diagonal matrix, whose diagonal elements
are mij, and

Θi ¼

mi
1

mi
2

..

.

mim

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

2 Rm: ð22Þ

The heterogeneity hi 2 R
m

captures the mutual-relationships between the expected values

of the observations mij of a particular data point xi; if Θ(j)i significantly deviates from μi, then

hi(j) is large. Conversely, if Θi(j) is close to μi, then hi(j) is close to zero.

Definition 3 (weighted heterogeneity) Define gi as a weighted heterogeneity, whose jth ele-
ment is given by

g iðjÞ ¼ ΘiðjÞhiðjÞ: ð23Þ

Under the considered statistical model, with the above definitions, the SSD πi can be writ-

ten explicitly.

Proposition 1 The j-th element of πi can be approximated by

πiðjÞ ¼
1

2m
þ
� � ðg2

i ðjÞ þ s
i
jÞ � 2hΣij;�iS þ hΣ

iiS

2�m � 2mðhg2
i iS þ hΣ

iiSÞ
: ð24Þ

The derivation is based on the Taylor expansion of the Gaussian function in Eq (1), where �

is the scale of the function. The proof appears in S1 Appendix.

In order to give some intuition, we consider the following special cases, where the SSD

assumes a simpler form.

Special case 1. Suppose that the random vectors of the observation functions are indepen-

dent and identically distributed, i.e., Σik;l ¼ 0 8l 2 {1, . . .,m} and k 6¼ l. In this case, the k-th ele-

ment of πi is

πiðkÞ ¼
1

2m
þ

� � ðg2
i ðkÞ þ s

i
kÞ

2�m � 2mðhg2
i iS þ hs

iiSÞ
; ð25Þ
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where

σi ¼

si
1

si
2

..

.

sim

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

: ð26Þ

Note that a small value is assigned to πi(k) if the weighted heterogeneity gi(k) is large. In

contrast, a large value is assigned to πi(k) if gi(k) is small. As a consequence, πi(k) carries the

heterogeneity information of the observations.

Special case 2. When the kernel scale �!1, the information about the heterogeneity of

each observation is lost, since the same weights are assigned to all the edges. As a consequence,

πi becomes just a constant vector, given by

πi � !�!1
1

m
1; ð27Þ

where 1 2 Rm is an all-ones vector.

Binary hypothesis testing

Suppose that fxig
n
i¼1
2M are realizations of a random variable X, which follows a bimodal

distribution stemming from two hypotheses: H1 and H2; H1 has probability α and H2 has

probability (1 − α), where 0< α< 1. Denote the set of data points from hypothesis H1 by O1

and the set of data points from hypothesis H2 byO2. Recall that for each data point xi, fj(xi) are

the realizations of the elements of the random vector Vi. Since Vi depends on the random vari-

able X, assume that Vi also follows a bimodal distribution, which is induced by the bimodal

distribution of X. Particularly, consider a Gaussian setting, where Vi is sampled from

N ðm1;Σ1Þ with probability α and from N ðm2;Σ2Þ with probability of (1 − α). Similarly,

assume that the random variable Vi
j follows a bimodal distribution: sampled from

N ðm1
j 1d; s

1
j IdÞ with probability α and from N ðm2

j 1d; s
2
j IdÞ with probability (1 − α), where the

respective probability density functions are f ðvjm1
j ; s

1
j Þ and f ðvjm2

j ; s
2
j Þ.

A naïve approach for binary hypothesis testing would be to directly compare the densities

of the two hypotheses for each observation separately. Particularly, based on the realizations

from only one observation function fj, the average probability of error attained in a Bayesian

setting with the MAP estimator [5] is given by

Pe;j ¼ að1 � TVðN ðm
1

j 1d; s
1

j IdÞ;N ðm
2

j 1d; s
2

j IdÞÞÞ; ð28Þ

where TVðN ðm1
j 1d; s

1
j IdÞ;N ðm

2
j 1d; s

2
j IdÞÞ denotes the total variation between the realizations

of Vi
j jxi 2 O1 and Vi

j jxi 2 O2, defined by

TVðN ðm1

j 1d; s
1

j IdÞ;N ðm
2

j 1d; s
2

j IdÞÞ ¼
1

2

Z

v
f ðvjm1

j ; s
1

j Þ � f ðvjm
2

j ; s
2

j Þ

�
�
�

�
�
�dv: ð29Þ
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According to [25], consider
js1
j � s

2
j j

sðjÞ �
2

3
, where sðjÞ ¼ maxfs1

j ; s
2
j g. The total variation above

between two Gaussian distributions is bounded by

TVðN ðm1
j 1d; s

1
j IdÞ;N ðm

2
j 1d; s

2
j IdÞÞ �

jm1
j � m

2
j j

2
ffiffiffiffiffiffiffiffi
sðjÞ

p þ
js1

j � s
2
j j

2sðjÞ
: ð30Þ

We seek another more discriminative approach for binary hypothesis testing. For this pur-

pose, we propose a method based on the SSDs. Since the obtained SSDs represent probability

distributions, the average probability of error is given by

P0e ¼ að1 � TVðhπiO1
; hπiO2

ÞÞ: ð31Þ

According to Proposition 1, the total variation between two SSDs associated with data

points from two hypotheses can be explicitly expressed as the l1 distance given by

TVðhπiO1
; hπiO2

Þ ¼
Xm

k¼1

jhπðkÞiO1
� hπðkÞiO2

j

¼
Xm

k¼1

� � g2
1
ðkÞ � s1

k � 2hΣk;�iO1
þ hΣiO1

2�m � 2mðhg2i
O1
þ hΣi

O1
Þ

�
� � g2

2
ðkÞ � s2

k � 2hΣk;�iO2
þ hΣiO2

2�m � 2mðhg2i
O2
þ hΣi

O2
Þ

�
�
�
�
�

�
�
�
�
�
;

ð32Þ

which consists of three main components: the variances s1
k and s2

k , the weighted heterogene-

ities g1 and g2, and the covariance Σ.

The total variation of the measurements in Eq (29) and the total variation between the SSDs

in Eq (32) can be used to distinguish between the two hypotheses. In the following, we specify

the conditions, under which the total variation based on the SSDs in Eq (31) is larger, and

hence, leading to smaller error compared to the standard MAP estimator using a single obser-

vation as specified in Eq (28).

Proposition 2 Suppose m1
j ¼ m

2
j and s

1
j ¼ s

2
j , which imply by definition (or by Eq (30)) that

the total variation between the distributions corresponding to the two hypotheses is zero, i.e.,

TVðN ðm1
j 1d; s

1
j IdÞ;N ðm

2
j 1d; s

2
j IdÞÞ ¼ 0: ð33Þ

This means that not only the standard MAP estimator but also any estimator based directly
on single channel observations cannot distinguish between the two hypotheses. Conversely, from
Eq (32), the SSDs may carry a distinction capability, that is,

TVðhπiO1
; hπiO2

Þ

¼
Xm

k¼1

� � g2
1
ðkÞ � s1

k � 2hΣk;�iO1
þ hΣiO1

2�m � 2mðhg2iO1
þ hΣiO1

Þ
�
� � g2

2
ðkÞ � s2

k � 2hΣk;�iO2
þ hΣiO2

2�m � 2mðhg2iO2
þ hΣiO2

Þ

�
�
�
�
�

�
�
�
�
�
� 0:

ð34Þ

Proposition 2 demonstrates that there are cases where a single observation cannot be used

for distinguishing between the two hypotheses. However, in such cases, the SSDs may enable

us to distinguish the hypotheses due to possible differences in either the heterogeneity or the

covariances. Proposition 2 is further demonstrated in the context of the localization toy prob-

lem in Simulation 2.

To further expand the analysis, we make the following assumptions.
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Assumption 1 The empirical mean of the weighted heterogeneity is approximately the same
under the two hypotheses:

hg2i
O1
� hg2i

O2
’ 0: ðA:1Þ

Assumption 2 The empirical mean of the covariance matrices is approximately the same
under the two hypotheses:

hΣiO1
� hΣiO2

’ 0: ðA:2Þ

Note that if Assumptions (A.1) and (A.2) hold, implying that

2�m � 2mðhg2iO1
þ hΣiO1

Þ ’ 2�m � 2mðhg2iO2
þ hΣiO2

Þ, then the l1 distance between the

SSDs in Eq (32) can be recast as

TVðhπiO1
; hπiO2

Þ ’
Xm

k¼1

g2
1
ðkÞ � g2

2
ðkÞ þ s1

k � s
2
k þ 2ðhΣk;�iO1

� hΣk;�iO2
Þ

2�m � 2mðhg2iO1
þ hΣiO1

Þ

�
�
�
�
�

�
�
�
�
�
: ð35Þ

Proposition 3 Suppose that Assumptions (A.1) and (A.2) hold. Suppose m1
j ¼ m

2
j , which

implies that the upper bound of the total variation at the j-th element in Eq (30) only depends on
the variance

TVðN ðm1
j 1d; s

1
j IdÞ;N ðm

2
j 1d; s

2
j IdÞÞ �

js1
j � s

2
j j

2sðjÞ
: ð36Þ

In addition, suppose that (i) the covariance between the jth observation and the other observa-
tions under the two hypotheses is approximately equal hΣk;�iO1

’ hΣk;�iO2
, (ii) the empirical mean

of the difference of variance and weighted heterogeneity of the two hypotheses is greater than the
difference of j-th variance, i.e., hðσ1 � σ2Þ

>
ðg2

1
� g2

2
Þi � js1

j � s
2
j j, and (iii) the weighted hetero-

geneity ofH1 is sufficiently large such that hg2i
O1
� � � hΣi

O1
� sðjÞ. Then, the l1 distance

between the SSDs can be recast and bounded from below by

TVðhπiO1
; hπiO2

Þ ’
Xm

k¼1

g2
1
ðkÞ � g2

2
ðkÞ þ s1

k � s
2
k

2�m � 2mðhg2iO1
þ hΣiO1

Þ

�
�
�
�
�

�
�
�
�
�

�
hðσ1 � σ2Þ

>
ðg2

1
� g2

2
Þi

2sðjÞ
�
js1

j � s
2
j j

2sðjÞ
:

ð37Þ

It follows that

TVðN ðm1
j 1d; s

1
j IdÞ;N ðm

2
j 1d; s

2
j IdÞÞ � TVðhπiO1

; hπiO2
Þ: ð38Þ

This proposition implies that when the assumptions hold, the probability of error based on

SSD, which indirectly takes into account the mutual-relations between all observations, facili-

tates a better distinction of the two hypotheses compared to the standard MAP estimator com-

puted from the best sensor. This property is further demonstrated in the localization toy

problem in Simulation 3.

Proposition 4 Suppose the conditions of Proposition 3 hold. In addition, suppose that
the random vectors of the observations are independent and identically distributed, i.e.,
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s1
k;j ¼ s

2
k;j ¼ 0 8k 6¼ l, then

TVðN ðm1;Σ1Þ;N ðm2;Σ2ÞÞ � TVðhπiO1
; hπi

O2
Þ: ð39Þ

This proposition shows that the SSDs enable us a better distinction between the two

hypotheses compared to the MAP estimator based on the distributions of the multi-feature

observations. In other words, the heterogeneity comprising the SSD has a significant contribu-

tion to the ability to recover the information about the latent data points fxig
n
i¼1

on the under-

lying manifold M, thereby leading to accurate binary hypothesis testing.

Imaging mass cytometry (IMC)

IMC is a relatively new imaging method, which enables to examine tumors and tissues at sub-

cellular resolutions, giving rise to images consisting of the intensities of multiple proteins [13–

15]. This acquisition platform, combined with computational methods, has recently been the

subject of many studies. Various image processing and analysis techniques for IMC datasets

can be found in [26], where it is shown that single-cell segmentation can be accomplished suc-

cessfully with supervised classifiers, leading to the characterization of cell co-occurrence and

cell composition of different types of tissues and samples. In [27], an IMC dataset with 37

markers is used for cell segmentation and cell clustering based on random 125 × 125μm2

patches collected from breast cancer patients. This dataset is jointly analyzed with multi-plat-

form genomics data, where it is shown that classifiers can be iteratively trained in a supervised

manner to learn from the IMC pixels the corresponding cell expression levels. In [14], span-

ning-tree progression analysis combined with samples’ type provided by pathologists is used

for cell population and cell transition identification. In contrast to these methods, our

approach focuses on extracting the mutual-relationships between markers at likely tumor cells

regions at large, circumventing cell segmentation.

In this work, our goal is to identify the sensitivity of lung cancer subjects to treatment with

PD-1 axis blockers, given their IMC multiplexed observations. More specifically, we aim at a

binary prediction task: identifying whether the subjects responded or did not respond to the

treatment. We analyze two IMC datasets consisting of baseline/treatment tumor samples from

non-small cell lung cancer subjects profiled with 29 markers, representing phenotype and

functional properties of both tumor and immune cells. The markers are denoted by LipoR,

VIM, T-BET, CD47, Cytokeratin, CD45RO, PD-L1, GAPDH, B7-H3, LAG-3, TIM-3, FOXP3,

CD4, B7-H4, CD68, PD1, CD20, CD8, CD25, VISTA, KI-67, B2M, CD3, IDO-1, PD-L2, GZB,

Histone 3, DNA1 and DNA2. The resolution of the IMC images is 1 μm2 per pixel. The first

dataset, denoted Dataset 1, consists of 55 subjects (samples), and the second dataset, denoted

Dataset 2, consists of 29 subjects (samples). These subjects received treatment with PD-1 axis

blockers. Based on the clinical sensitivity to the treatment, the subjects are categorized as:

durable clinical benefit (denoted with the label responders) and no durable benefit

(denoted with the label non-responders).

Prior to our analysis, a standard pre-processing using z-score normalization is applied to

each marker. We remark that the mean and the standard deviation are computed based only

on pixels in which the marker has non-zero values. In addition, we apply a 3 × 3 median filter

to every image in Dataset 2. We note that the median filter is not applied to Dataset 1, because

the typical expression levels in this dataset are sparse, and in this situation, application of a fil-

ter may destroy the signal. This is demonstrated in S1 Fig, where we apply the median filter to

the expression levels of few important markers and observe a degenerate result. The markers

exhibiting such sparse expression levels in Dataset 1 are VIM, T-BET, CD45RO, PD-L1,

GAPDH, B7-H3, LAG-3, FOXP3, B7-H4, PD1, CD20, CD8, CD25, VISTA, KI-67, CD3,
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PD-L2 and GZB. Conversely, in Dataset 2, the typical expression levels are dense, and as a

result, the median filter enhances the content of the images.

Our analysis does not consider the entire image, but rather focuses on ROIs located at the

highest Cytokeratin expression levels, as Cytokeratin is expressed only in the tumor cells. As

noted above, this circumvents cell segmentation that is typically required in other analyses

techniques. At each ROI, we consider a “stack” ofm image patches from all themmarkers,

where each patch consists of d = b × b pixels. We select N ROIs per sample by searching the

patches with the maximal mean value of Cytokeratin. This is implemented by a 2D convolu-

tion applied to the Cytokeratin image with a constant kernel of size b × b. We deliberately

avoid patch overlap by assigning zero values to the pixels of each ROI, once it is selected.

Using the present work notation, the intrinsic representation of the information embodied

at each ROI is denoted by xi, which is assumed to be a data point from some hidden manifold

M. Our working hypothesis is that the distribution of fxig
n
i¼1

on the hidden manifold M is

bimodal, which is induced by the sensitivity of the subjects to the treatment; data points xi at

ROIs within tissues of responders are located in one region of the manifold, and data

points xi at ROIs within tissues from non-responders are located in another region of the

manifold. Given a data point xi, our two hypotheses, Hr and Hn, are whether xi is a realization

from the distribution of responders or non-responders, respectively. Here, n = N × P
is the total number of ROIs across all the samples, where P is the number of samples and N is

the number of ROIs we consider in each sample. Next, recall that the intrinsic representation

xi is hidden. Instead, the accessible observations are the expression levels of the markers at the

ROIs, which are represented mathematically by the observation functions fjðxiÞ 2 R
d

for j = 1,

. . .,m, wherem = 29 is the number of markers. The domain of the observation functions is the

hidden intrinsic manifold M and the range is of dimension d = b × b, which is the size of a

patch of an image of one marker. Namely, the values assigned by fj(xi) to xi correspond to the

expression level of marker j at the ROI associated with xi. The set of patches of all the markers

at a specific ROI xi is a set of multi-feature observations ffjðxiÞg
29

j¼1
. In Fig 2, we illustrate the

IMC multiplexed observations from a single subject and the set up under consideration.

The identification of the subject’s response to treatment from the IMC data is based on the

application of the proposed method described in Box 1. This algorithm fits well the problem at

hand due to the following main reasons. First, directly comparing observations from the differ-

ent markers, fj(xi), is inapplicable since each ROI comprises different cells and different tissue

structures. Our method circumvents this problem by computing an intrinsic signature of the

observations. Second, due to the different dynamics of the nominal values of the observations

from the different markers, a naïve concatenation of the multi-feature observations is inade-

quate (in contrast to the localization example).

Before applying the proposed method, we test empirically that Assumptions (A.1) and

(A.2) hold. Note that for this test only, the true response status is used. To test Assumption

(A.1), we compute

jjhg2i
Or
� hg2i

On
jj

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjhg2i

Or
jj

2
� jjhg2i

On
jj

2

q

and to test Assumption (A.2) we compute

jjhΣiOr � hΣiOn jjFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjhΣiOr jjF � jjhΣiOn jjF

q ;
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where Or and On denote the sets of responders and non-responders, respectively. The

respective values we obtain for Dataset 1 are 0.12 and 0.08 and for Dataset 2 the values for

responders and non-responders are 0.03 and 0.04. This implies that the conditions in

the two assumptions are approximately satisfied.

We analyze the two datasets separately, since the datasets were collected around a year

apart, and internal acquisition system parameters were modified during that time. We apply

the proposed method presented in Box 1 to the observations, ffjðxiÞg
29

j¼1
for i = 1, . . ., n, result-

ing in a low-dimensional representation of the ROIs. Then, we apply to the low-dimensional

representation an RBF SVM classifier with a leave-one-subject-out (LOSO) cross-validation

[5] in order to predict the response to treatment. In order to assess the prediction performance

for each subject, we compute the average of the prediction results of all the ROIs of that subject.

We note that the prediction is based on features computed per patch (rather than per subject).

Therefore, in practice, the number of samples used for the cross-validation is 55 × N for Data-

set 1 and 29 × N for Dataset 2. Importantly, at each cross-validation iteration, all N patches of a

subject were removed from the training set, and were only used for testing the classifier.

We compare the SSD-based representation obtained by the propose method to other repre-

sentations obtained by three competing algorithms. The first is a direct application of diffusion

maps to the sets of multi-feature observations ffjðxiÞg
29

j¼1
for i = 1, . . ., n. The second and the

third are based on HKS [16] and WKS [17], respectively, replacing the SSD as the features of

each ROI at the first stage of the proposed method in Box 1. The dimensions of the representa-

tion obtained by the proposed method and by the three competing algorithms are determined

by a variant of the Jackstraw method, described in Determining the dimension of data.

Fig 3 presents the predictions of treatment response by the SSD, HKS, WKS based algo-

rithms as well as DM. We show the 3D t-SNE visualization [28] of the patch representation

obtained as an output of the different algorithms and the confusion matrix of the prediction

obtained by an RBF SVM classifier applied to the patch representation. To complement the

Fig 2. An illustration of the IMC multi-feature observations from a single subject. In the IMC data of a single subject, we focus first on the

Cytokeratin marker, which is used as an indicator of tumor cells. We selectN ROIs located at the highest Cytokeratin expression levels. These ROIs are

patches of size b × b μm2, where here b set to 35. We assume that these ROIs have intrinsic hidden states represented by xi. The expression of all 29

markers at these ROIs are viewed as the multi-feature observations ffjðxiÞg
29

j¼1
for i = 1, . . ., N.

https://doi.org/10.1371/journal.pcbi.1008741.g002

PLOS COMPUTATIONAL BIOLOGY Graph of graphs analysis for multiplexed data with application to IMC

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008741 March 29, 2021 16 / 30

https://doi.org/10.1371/journal.pcbi.1008741.g002
https://doi.org/10.1371/journal.pcbi.1008741


results, in Table 1, we present the area under the ROC curve (AUC) of the treatment response

predictions. We note that the AUC obtained for Dataset 2 without the median filter pre-pro-

cessing is 0.931. For each algorithm, the presented prediction results are based on the patch

size and number of patches configuration that yielded the best empirical performance using

Fig 3. Treatment response predictions. (A) Prediction for Dataset 1. (B) Prediction for Dataset 2. In each panel, at each row, we plot the best

algorithm configuration, the 3D t-SNE visualization of the patches representation colored by the response status, and the confusion matrix of the

response prediction obtained by a leave-one-subject-out cross-validation using an RBF SVM classifier. The rows present the results of the different

methods.

https://doi.org/10.1371/journal.pcbi.1008741.g003

Table 1. ROC AUC for predictions of treatment sensitivity.

Proposed Method DM HKS WKS

Dataset 1 0.9455 0.8364 0.7455 0.7818

Dataset 2 1 0.8276 0.9655 0.9310

https://doi.org/10.1371/journal.pcbi.1008741.t001
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cross-validation as described above. The best configuration (patch size b × b and number of

patches per subject N) of each algorithm is presented in Fig 3 on the left.

In the t-SNE plots, we observe that the unsupervised separation of the patches from

responders and non-responders is most pronounced in the low-dimensional repre-

sentation obtained by the proposed method. This distinct visual separation, which was

obtained by the proposed algorithm without access to any response outcome information. The

color in the figures indicates the response status. Note that the embedding is obtained by the

unsupervised algorithm and the color labels are overlaid to demonstrate the degree of separa-

bility between patches from responders and non-responders, which implies that this

patch representation is informative and useful for the subsequent response prediction. This

result, which is obtained in an unsupervised manner, distinguishes the current work from the

computational methods for IMC data described above that rely on supervised analysis. Indeed,

we observe that the prediction accuracy obtained based on the proposed method is superior

compared to the other three competing methods. We note that Dataset 1 consists of 26

responders and 29 non-responders, so that the chance level of accurate prediction of

a subject with durable clinical benefit is 47.27%, and Dataset 2 consists of 11 responders
and 18 non-responders, thus, the chance level of accurate prediction is 37.93%.

The derivations in Theoretical analysis imply that the capability to distinguish between the

two hypotheses (sensitivity or insensitivity to treatment) highly depends on the mutual rela-

tionships between the markers, which we explicitly define and term heterogeneity (Definition

2). Since our empirical study demonstrates that our approach facilitates a distinct separation

between ROIs of subjects according to their treatment response, by the theoretical analysis, we

conclude that the heterogeneity between the markers is where the information about the sensi-

tivity to treatment lies.

We examine the sensitivity of the tested algorithms to the choice of the hyperparameters:

the number of ROIs per subject N and the size of the patch b × b. In S2 Fig, we plot heatmaps

of the treatment prediction accuracy obtained based on different choices of hyperparameters.

We observe that within a relatively wide range of parameter values, the performance of the

proposed method in Box 1 is high and insensitive to the particular choice of parameters. In

addition, we note that the range of patch size where high performance is attained is centered at

size 45 × 45 μm2. As the size of tumor cells vary within a range of 10–30 μm2 (a mean of

20 μm2), and the size of a lymphocyte ranges from 8–12 μm2 (a mean of 10 μm2), it implies

that high performance is attained when patches are likely including more than one cell and cell

type. Conversely, we observe that the competing methods do not show the same degree of

robustness to the choice of hyperparameters, and good performance is attained only for very

particular (isolated) parameter values.

To further exploit the robustness of the proposed method, we implemented an ensemble of

the classifiers based on different values of hyperparameters. The implementation of the combi-

nation is based on [29]. The performance of the combined classifiers is presented in S3 Fig.

We observe that the prediction accuracy of this ensemble is comparable to the prediction accu-

racy obtained based on the classifier with the best parameter configuration, demonstrating

that the particular choice of hyperparameters can be circumvented.

Our premise is that the resulting high prediction accuracy is attributed mainly to the unsu-

pervised informative representation obtained by our approach, rather than the classifier type.

To support this claim, we repeat the analysis by replacing the RBF SVM classifier with Random

Forest [5]. The results are shown in S4 Fig and demonstrate comparable performance and sim-

ilar trends.

To show that Stage 2 of the proposed method in Box 1 is essential, we plot in S5 Fig heat-

maps of the multi-feature observations and the SSD features resulting from Stage 1 of the
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algorithm. The heatmaps of the multi-feature observations demonstrate that there is no obvi-

ous difference between responders and non-responders, implying that the response

status prediction is a non-trivial task. In addition, inspection of the heatmaps with the SSD fea-

tures does not reveal apparent distinction between responders and non-responders.

Recalling that after Stage 2, as presented in the t-SNE plots in Fig 3, this distinction becomes

evident, demonstrating the contribution of Stage 2.

Discussion

We presented a two-step graph analysis approach. The first step is applied to the multi-feature

observations of the data points, where their mutual-relationships are extracted. This step is

implemented by computing the SSD of a random walk defined on the graph whose nodes are

the observations. The resulting SSD can be viewed as a signature or a characteristic vector of

the data point and is analogous to traditional signatures from other domains, such as the heat

kernel signature (HKS) [16] or the wave kernel signature (WKS) [17] in the field of shape anal-

ysis, and PageRank [30] in web page ranking (see Related work). The second step is applied to

the signatures obtained at the first step, for the purpose of constructing an intrinsic low-

dimensional representation of all the data points.

Previous attempts to analyze such mulitplexed datasets involve various approaches, includ-

ing direct comparisons of the marker expressions, the cell morphology, and interactions in cell

neighborhoods, to name but a few [26]. Our method introduces a new approach, building a

new representation of the multiplexed data in two steps. Since each of the steps involves a con-

struction of a graph, the entire procedure can be viewed as building a graph of graphs.

While the algorithm is described in a general setting of multiplexed data fusion, our theo-

retical analysis is focused on binary hypothesis testing. In comparison with a traditional statis-

tical estimation approach, we show that our method exhibits advantages, implying that the

mutual-relationships between the multi-feature observations are well captured. In the context

of IMC, this could minimize the effect of deviation in individual marker scores and cell/tissue

heterogenenity.

We apply the proposed method to two IMC datasets and show that solely from the imaging

data, we can distinguish between two different sensitivity levels to treatment. Since our

approach does not rely on rigid prior knowledge or access to labels, it has the potential of iden-

tifying biological relevance of novel parameters or marker patterns in treatment responses by

analyzing dominant factors contributing more to the model stratification. Importantly, we

remark that in contrast to common practice, the proposed approach does not require cell-seg-

mentation as a precursor.

In addition to the demonstrated advantage of the proposed method over the competing

methods in terms of superior prediction accuracy of treatment response, the proposed method

is also more computationally efficient. In S6 Fig, we present the run time of the two stages of

the proposed method in Box 1 and compare them to the run time of the three competing

methods. We note that the HKS and WKS replace the proposed SSD in Stage 1, but, their

respective Stage 2 are similar. In Stage 1, we observe that the proposed method in Box 1 is

faster than the competing methods. The main difference between the algorithms in Stage 1 is

due to the fact that the SSD is proportional to the degree of the local graph, and as a result, it

can be computed efficiently from the degree vector. Conversely, both HKS and WKS require

eigenvalue decomposition, which is computationally more demanding. In addition, the direct

application of DM just involves Stage 2 of the proposed algorithm. Seemingly, the run time of

the algorithms in Stage 2 should have been the same, yet, we observe that DM is slower. This

difference is attributed to the significantly different size of the feature space. In DM, the multi-
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feature observations are simply concatenated, giving rise to feature space (input of Stage 2) of

size (b × b ×m) × (P × N), where b × b is the size of patch,m is the number of biomarkers, and

P is the number of subjects. Conversely, in Stage 2 of Algorithm 1, HKS, and WKS, the feature

space (input of Stage 2) is only of sizem × (P × N).

It is conceivable that the most important hyperparameter of our method is the scale param-

eter. In S7 Fig, we present a toy example demonstrating that different values of the scale

parameter � lead to multiscale signatures capturing local and global features. We demonstrate

that different scales facilitate the extraction of different features of the data. In future work, we

plan to further explore the role of the scale and to devise multiscale signatures. Another possi-

ble direction for future research relies on the fact that our method is general and can be

extended to other multiplexed datasets. For example, hyper spectral imaging, sensor networks,

spatial multiplexed proteomics, and spatial transcriptomics assays is a representative subset of

distinct technologies from diverse domains of science and engineering that share common

data structures. The data in all these modalities consist of high-dimensional multivariate obser-

vations (m-dimensional feature space) collected at different spatial positions, and therefore,

can be analyzed using similar computational methodologies. Furthermore, in many studies

practitioners collect datasets consisting of multiple spatial assays of this type, each capturing

such data from a single biological sample, patient, or hyper spectral image, etc. Each of these

spatial assays could be characterized by several regions of interest (ROIs), giving rise to a set-

ting similar to the IMC problem considered here. Specifically, we plan to examine applications

of the proposed graph of graphs analysis to spatial transcriptomics such as Slide-seq [31],

High-Density Spatial Transcriptomics [32, 33], MIBI-TOF [34], and DBiT-seq [35].

Materials and methods

Diffusion maps

Manifold learning is a class of nonlinear techniques that embeds high dimensional data points

into a low dimensional space, relying on the assumption that the high-dimensional data lie on

a low dimensional manifold M [2–4]. In order to “learn” the manifold from a discrete set of

data points, a graph is typically defined, where the graph nodes are the data points and the

edges are determined according to some similarity notion. Since the manifold information is

entirely captured by its Laplacian, the discrete counterpart, the graph Laplacian is used to

build a low-dimensional embedding that respects the manifold in some sense [36]. To this

end, common practice is to compute and exploit the spectral decomposition of the graph

Laplacian. Diffusion maps is one of these methods, which constructs a random walk on the

graph and represents the data points in a low-dimensional space preserving the neighborhood

information [4].

Consider a set of data points fyig
b
i¼1

, where yi 2 R
d for i = 1, . . ., b. An undirected

weighted graph G ¼ ðV; E;WÞ is constructed from the data points, where the vertex set is

V ¼ ðy1; y2; :::; ybÞ and the weights of the edges connecting two vertices are determined by a

measure of similarity between any two data points, e.g., by

Wði; jÞ ¼ exp �
jjyi � yjjj

2

2

2�

 !

; ð40Þ

where i, j 2 {1, . . ., b} and � > 0 is a scale parameter. Common practice is to set � as the median

of the distances between the graph nodes. Note that � implicitly induces a notion of locality: it

can be viewed as the (squared) radius of the neighborhood around each node, so that only

nodes within this radius are considered as neighbors in the graph.
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Next, a random walk P on the data points is constructed by normalizing the weight matrix

W

Pði; jÞ ¼
Wði; jÞ
dðiÞ

; ð41Þ

where dðiÞ ¼
Pn

j¼1
Wði; jÞ. P is the transition matrix of a Markov chain defined on the data

points fyig
b
i¼1

(graph vertexes), where the entry p(i, j) describes the probability of a random

walk transitioning from the node yi to the node yj in a single step. Raising the transition matrix

P to a power t can be viewed as applying the Markov chain to the data points t times.

Since P is similar to a symmetric and positive-define matrix, P has a biorthogonal right-

and left-eigenvectors fφi;υig
b
i¼1

with the eigenvalues 1 = λ1� λ2� . . .� λb� 0. Consequently,

the spectral decomposition of Pt is given by

Ptði; jÞ ¼
Xb

k¼1

l
t
kφkðiÞυkðjÞ: ð42Þ

The diffusion distance D2
t ði; jÞ between two data points yi and yj in the data set is defined by

D2
t ði; jÞ ¼

Xb

k¼1

ðPtði; kÞ � Ptðj; kÞÞ
2

υ1ðkÞ
; ð43Þ

which measures the similarity of two points based on the evolution of their probability distri-

butions, and depends on all possible paths of length t in the graph between any two points.

Namely, if two points are connected by a large number of paths, then the diffusion distance

between them will be small. Conversely, if there are only few paths connecting two points,

then the diffusion distance between them will be large.

The diffusion maps is defined by [4]

Ft : yi 7! ðl
t
2
φ

2
ðyiÞ; l

t
3
φ

3
ðyiÞ; :::; l

t
lφlðyiÞÞ

>
: ð44Þ

We remark that in many cases, due to the typical fast decay of the eigenvalues of Pt, l can be

set to be smaller than d, thereby achieving dimension reduction. In addition, φ1 is a constant

vector and therefore is not used in the mapping.

It can be shown that the diffusion distance can be approximated by the eigenvalues and

eigenvectors by [4]

D2
t ði; jÞ ¼

Xb

k¼1

l
2t
k ðφkðiÞ � φkðjÞÞ

2
� jjFtðiÞ � FtðjÞjj

2
; ð45Þ

where equality is reached for l = b. Namely, the diffusion distance can be approximated by the

Euclidean distance between the diffusion maps of the data points.

Determining the dimension of data

A common problem in diffusion maps setting is how to choose the dimension l. The authors

in [6] proposed Jackstraw to identify the number of principal components (PCs) in the context

of principal component analysis (PCA) [37]. We present here a variant of Jackstraw, adapting

it to diffusion maps.

Given a random walk P constructed from a set of b data points, the associated eigenvalues

are 1 = λ1� λ2� . . .� λb with corresponding right-eigenvectors fφig
b
i¼1

. Collect the
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eigenvalues into a vector, denoted by λ, where λ = (λ1, λ2, . . ., λb)
>. Let P�k consist of the ran-

dom permutation of P. Apply eigenvalue decomposition to P�k and obtain the corresponding

eigenvalues vector λ�k . Repeat this shuffling procedure s times and obtain a set of vectors

fλ�kg
s
k¼1

. The dimension of the representations is determined by

l ¼ arg min
x¼f1;:::;bg

ðλðxÞ � maxfjλ�kðxÞjgÞ; 8k ¼ f1; :::; sg: ð46Þ

Note that the absolute values of the eigenvalues of P�k are considered because P�k is not nec-

essarily symmetric and therefore its eigenvalues λ�k are not guaranteed to be real.

Related work

Heat kernel signature. There are several shape analysis signatures obtained by spectral

methods with different geometric properties such as isometry and deformation invariance [16,

17, 38, 39], related to the proposed method. One of the notable shape signatures is based on

the heat diffusion on a shape, called Heat Kernel Signature (HKS) [16]. Broadly, the HKS is

obtained by the eigenvalue decomposition of the heat kernel defined on the shape. In the con-

text of our problem, since the heat kernel and the Laplace-Beltrami operator Δi share the same

eigenbasis, and since the discrete graph Laplacian converges (point-wise) to the Laplace-Bel-

trami [40]

1

�
Li ¼

I � Pi
�
� �!
N!1

�!0
Di; ð47Þ

then, a discrete counterpart of HKS is given by

xi 7! ½HKStðf1ðxiÞÞ;HKStðf2ðxiÞÞ; . . . ;HKStðfmðxiÞÞ�; ð48Þ

where

HKStðfjðxiÞÞ ¼
Xm

k¼1

exp ð� ð1 � lkÞtÞψ
2

kðjÞ; ð49Þ

λk and ψk are the k-th eigenvalue and k-th eigenvector of the random walk, respectively, and t
is the number of random walk steps on the graph. For more details on HKS, we refer the read-

ers to [16].

Similarly to the DKS in Eq (12), the HKS can also be viewed as a low-pass filter. Observe

that, for small t, the HKS approximates the DKS by Taylor expansion; for other t values, the

weights assigned by the HKS decay faster than the weights of DKS, and therefore, the DKS

gives more attention to finer structures.

Wave kernel signature. Another related shape signature is built by the wave function to

the Schrödinger equation describing the quantum mechanical particles, called Wave Kernel

Signature (WKS) [17]. Similarly to the HKS, the WKS is given by

xi 7! ½WKStðf1ðxiÞÞ;WKStðf2ðxiÞÞ; . . . ;WKStðfmðxiÞÞ�; ð50Þ

where

WKStðfjðxiÞÞ ¼
Xm

k¼1

Ct exp �
ð log t � log ð1 � lkÞÞ

2

2s2

� �

ψ2

kðjÞ; ð51Þ
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with

Ct ¼
Xm

k¼1

exp �
ð log t � log ð1 � lkÞÞ

2

2s2

� � !� 1

; ð52Þ

λk and ψk are the k-th eigenvalue and k-th eigenvector of the random walk, and t is number of

random walk steps on the graph. While the DKS and HKS are viewed as lowpass filters, we

note that the WKS can be viewed as a band-pass filter. For more details, we refer the readers to

[17].

Nodes ranking. In the context of web page ranking, there are several traditional algo-

rithms based on the spectral analysis of directed graphs. Among them, the celebrated PageR-

ank score is based on the stationary distribution of a random walk representing the popularity

of linked web pages [30]. Hyper induced topic search (HITS) is another related algorithm,

identifying the influential nodes using a random walk on a graph. There, the graph nodes are

the web pages, which are divided into two groups: authorities and hubs [41]. Both algorithms

address the problem of web page ranking, where PageRank depends on the incoming links

whereas HITS focuses on the outgoing links.

Localization toy problem

To illustrate the challenge in the problem setting and the generality of the proposed solution,

we present three simulations of different localization problems. The Matlab code is available in

S1 Matlab Code.

Simulation 1. Consider 800 objects on a 2-sphere in R3
that can be located at four differ-

ent regions. Each region consists of 200 objects. The positions of the objects are measured by 5

sensors, giving rise to the following set of observations ffjðxiÞg
5

j¼1
2 R100

, where j is the index

of the sensor and i is the index of the object (position). Each sensor measures the position in

d = 100 coordinates in the following way

R100 ∋ fjðxiÞ � N ð0; s2
i I100Þ; ð53Þ

where the standard deviation of the measurement depends on the distance between the posi-

tion of the sensor and the position of the object si ¼ 20 exp ð� k xi � sj k2
2
Þ, I100 is the identity

matrix of size 100 × 100, k � k2 denotes the Euclidean norm and sj denotes the 3D position of

sensor j 2 {1, . . ., 5}. In other words, each object position is captured by d = 100 realizations of

a Gaussian random variable with variance that is proportional to the distance between the sen-

sor position and the object position. Note that the positions are captured by the sensor through

the variance, therefore, they are difficult to infer directly by the multi-feature observations.

In Fig 4A, we present our setting consisting of objects and sensors located on and near a

sphere, respectively. The objects positions are marked by dots, the different regions are marked

by different colors (red, black, blue and yellow), and the sensors positions are marked by green

stars. At the bottom, we present the (high-dimensional) sensor observations. Each block con-

sists of 100 × 200 scalar observations corresponding to the observations of a single sensor from

each region, where d = 100 is the dimension of each observation and 200 is the number of the

positions per region. Visually, it is evident that distinguishing between the different regions

merely based on these observations is non trivial.

For illustration purposes, we view the problem as a classification problem, where given the

high-dimensional multi-feature observations, the task is to identify in which region the object

at xi resides.
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Fig 4. Illustration of localization toy problems. (A) The sensors and objects locations on a sphere are marked by green stars and dots, respectively.

The multi-sensor observations correspond to Simulation 1 (left), Simulation 2 (middle), and Simulation 3 (right). (B) Results of the application of our

approach to Simulation 1: the SSDs obtained by the proposed method (left), the diffusion maps embedding (middle), and the localization confusion

matrix obtained by a 10-fold cross-validation with an RBF SVM classifier (right). (C) A comparison between the localization accuracy obtained by the

proposed method based on SSDs and the localization accuracy obtained based on the output of each sensor as well as the concatenation of the output

from all the sensors. The localization accuracy is the number of correctly identified positions divided by the true number of total positions in each

region.

https://doi.org/10.1371/journal.pcbi.1008741.g004
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The observations from each sensor consisting of 800 object positions from four regions

were processed in two stages: first, a 3D embedding is constructed by applying diffusion maps

to the high-dimensional observations, and second, an RBF SVM is applied to the obtained

embedding in order to classify the region. To evaluate the classifiers, we perform a 10-fold

cross-validation. A similar two-step procedure is applied to the concatenation of the observa-

tions from all the sensors.

Table 2 presents the resulting classification accuracy, i.e., the number of correctly classified

positions divided by the total number of positions in each region. The presented results are

obtained using a 10-fold cross-validation. We observe that none of the sensors enables an accu-

rate classification. Moreover, we show in Table 2 that a naïve concatenation of the observations

from all the sensors do not yield a good classification either.

Seemingly, in order to mitigate the problem, we could simply represent the objects posi-

tions by a vector of the variance of the observations. However, it would require prior knowl-

edge about the sensing model, whereas our approach is model-free.

In Fig 4B, we present the classification results obtained by the proposed method. In the dif-

fusion maps embedding constructed from the SSDs, we observe a clear separation between the

four regions. Finally, in the confusion matrix of the classification, we observe that the proposed

method leads to significantly better classification results compared to the results in Table 2.

This demonstrates the importance of taking into account the mutual-relationships between

the sensor observations, rather than processing the nominal values of the observations directly,

which in this case, give rise to correct identification of the four regions.

Simulation 2. The main purpose of this simulation is to demonstrate Proposition 2 from

Binary hypothesis testing.

Consider n = 400 positions, fxig
400

i¼1
, such that xi 2 S2 � R3, which are sampled from two

different regions on the sphere. Suppose that the positions of the objects follow a bimodal dis-

tribution as depicted in the middle-top figure in Fig 4A: an object is located in the blue region

with probability 1

2
and in the red region with probability 1

2
. The two regions represent the two

hypotheses, H1 and H2, where each region consists of 200 positions. Note the symmetry in this

setting, that is, the distances from the blue and red regions to the sensors are approximately

the same.

Here, we have 12 sensor observations ffjðxiÞg
12

j¼1
, measuring the positions of the objects,

located at sj. The multi-feature observations are random samples from

ffjðxiÞg
12

j¼1
�

1

2
N ð0;Σ1Þ þ

1

2
N ð0;Σ2Þ; ð54Þ

where fjðxiÞ 2 R
100, the standard deviation is sij ¼ 20 exp ð� k xi � sj k2

2
Þ, and the covariance

Sk;l � jN ð0; 0:5Þj for b k
100
c; b l

100
c 2 ½1; . . . ; 12�.

Table 2. Localization accuracy from measurements of Simulation 1.

Region Concatenated sensors Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5

Blue 43% 46% 18% 44.5% 58% 40.5%

Red 54% 15.5% 52.5% 45.5% 48.5% 55%

Black 46.5% 49.5% 29% 40% 37.5% 42%

Yellow 38.5% 33.5% 52% 30.5% 42.5% 50.5%

The performances obtained by the 10-fold cross-validations are presented. The percentages indicate the number of correctly classified positions divided by the true

number of total positions in each class.

https://doi.org/10.1371/journal.pcbi.1008741.t002
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In this simulation, a direct computation can show that Assumptions (A.1) and (A.2) hold.

Specifically, we note that

jjhg2i
Or
� hg2i

Ob
jj

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjhg2i

Or
jj

2
� jjhg2i

Ob
jj

2

q ¼ 0:03

and

jjhΣiOr � hΣiOb jjFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjhΣiOr jjF � jjhΣiOb jjF

q ¼ 0:02;

where Or and Ob denote the sets of red or blue object locations, respectively. In addition, the

conditions of Special Case 1 are satisfied, and thus, the total variation of these sensor observa-

tions is zero. In other words, using a single sensor is insufficient to distinguish between the

two regions. Conversely, we show that since the SSDs take into account the covariance infor-

mation between the sensors, they allow us to make this distinction.

In Fig 4C, we present a comparison between the classification results obtained by our

approach using SSDs and the classification results obtained by using the output of each sensor

as well as the concatenation of the output from all the sensors. The results are evaluated with a

10-fold cross-validation. We observe that the classification obtained by proposed algorithm is

significantly better than the classification obtained using the “raw” sensor outputs.

Simulation 3. This simulation demonstrates Proposition 3 from Binary hypothesis test-

ing. Consider n = 400 positions, fxig
400

i¼1
, such that xi 2 S2 � R3

, which are sampled from two

different regions on the sphere, as depicted in the right-top figure in Fig 4A. The rest of the set-

ting remains as described in Simulation 2.

Note that here, only two sensor observations satisfy the conditions of Special Case 1, namely,

s1
1
¼ s2

1
and s1

7
¼ s2

7
, and thus, the total variation of only these two sensor observations is zeros.

For each data point, we compute the difference between the left-hand side and the right-hand

side of the inequality in Proposition 2 per sensor. Then, in the right-top figure in Fig 4A, we cir-

cle the sensors attaining the largest difference. As expected, we observe that the circled sensors

are positioned in non-symmetric orientations with respect to the locations of the two regions.

Similarly to the previous simulation, we compare the classification results obtained by our

proposed method to the results attained by applying the classification directly to the observations

from each sensor separately and to the concatenation of the observations from all the sensors. In

addition, we also compute the results of Algorithm 1 applied to all the sensors except Sensor 1

and Sensor 7, which are the least contributing according to the inequality in Proposition 2.

The classification results presented in Fig 4C imply that by removing the least contributing

sensors, namely Sensor 1 and Sensor 7, the recomputed SSDs, denoted by π1;7
i , lead to slightly

improved classification accuracy.

Supporting information

S1 Appendix. Detailed derivation of Proposition 1.

(PDF)

S1 Fig. Examples of expression levels of CD4, LAG3, B7H4 and CD20 before and after a

median filter. (A): images from Dataset 1 with no filter (top) and after application of median

filter (bottom). (B): same as (A) but for Dataset 2.

(TIFF)
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S2 Fig. Heatmaps showing the accuracy of the prediction of treatment response obtained

by RBF SVM classifiers based on different choices of hyperparameters. The prediction is

based on A: the proposed method in Box 1, B: DM, C: HKS and D: WKS. At each panel, the

prediction results for Dataset 1 and Dataset 2 are presented.

(TIFF)

S3 Fig. Treatment response prediction based on an ensemble of classifiers. The confusion

matrices obtained by combining the RBF SVM classifiers based on different choices of hyper-

parameters. The combined parameter values are presented at the top. A: Dataset 1. B: Dataset 2.

(TIFF)

S4 Fig. Heatmaps showing the accuracy of the prediction of treatment response obtained

by Random Forest classifiers based on different choices of hyperparameters. Same as S2

Fig, but the results are obtained by random forest (RF) classifiers.

(TIFF)

S5 Fig. Heatmaps of the IMC data and the corresponding SSD features. A: Dataset 1. B:

Dataset 2. Each heatmap is divided into 2 vertical blocks representing the data collection from

non-responders and responders. Each column in the heatmaps on the left consists of

the multi-feature observations at one ROI. The column is composed of observations ofm = 29

markers, where each marker observation is represented by a vector of size of b × b, which is a

column stack representation of the corresponding image patch. Each column in the heatmaps

on the right consists of the SSD features of sizem = 29 at one ROI. The hyperparameters used

for extracting the SSD features are presented on the left.

(TIFF)

S6 Fig. Run time analysis. The run time (in seconds) of the proposed method in Box 1 and

the three competing methods applied to three different choices of the number of ROIs

(patches) N in Dataset 1 and Dataset 2. The run time is computed separately for the two stages

of the algorithms. It is based on a Matlab implementation running on a single core 2.2GHz i7

CPU on a Macbook Pro from mid 2015 with 16GB 1600 MHz DDR3 RAM. A: the run time of

Stage 1 for Dataset 1. B: the run time of Stage 2 for Dataset 1. C: the run time of Stage 1 for

Dataset 2. D: the run time of Stage 2 for Dataset 2.

(TIFF)

S7 Fig. Multi-SSD. We illustrate this multiscale property using a 3D shape from Princeton

ModelNet40 database [42]. Suppose the points on the shape are the graph nodes, and compute

the SSD of the graph with different values of �, where the � are chosen in logarithmic spacing

between [10−3, 101.5]. The color represents the values of SSD with different scales � computed

based on data points from a 3D shape of flowers in a vase. The red color represents high values

of SSD, and, the blue color represents the low value of SSD. We observe that πi highlights junc-

tions or hubs (in red), as in [43], both at local and global scales, depending on �. We also

observe that when � is small, the SSD highlights the neck of each flower. When gradually

increasing the value of �, we observe that the SSD transitions toward the center of the shape,

representing the global hub of the shape.

(EPS)

S1 Matlab Code. Localization toy examples code. The folder consists of a text file

(readme.txt) and three Matlab scripts demonstrating the three simulations in Localization

toy problem.

(ZIP)
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