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Abstract: Co(II) mononuclear complex with different coordination geometry would display various
of field-induced single-ion magnet (SIM) behaviors. Here, we identify a field-induced single-ion
magnet in a mononuclear complex Co(H2DPA)2·H2O (H2DPA = 2,6-pyridine-dicarboxylic acid)
by the hydrothermal method. The long axial Co-O coordination bond (Co1· · ·O3) can be formed
by Co1 and O3. Therefore, Co(II) ion is six-coordinated in a distorted elongated octahedron. AC
magnetization susceptibilities show that the effective energy barrier is up to 43.28 K. This is much
larger than most mononuclear Co(II). The distorted elongated octahedron caused by the axial Co-O
coordination bond is responsible for the high effective energy barrier. The distribution of electron
density in Co1 and O3 atoms in the long axial bond would influence the magnetic relaxation process
in turn. Our work deepens the relationship between the effective energy barrier and the weak
change of ligand field by long axial bonds, which would facilitate constructing SIM with high
energy temperature.

Keywords: single-ion magnet; high effective energy barrier; long axial bond

1. Introduction

The first single-ion magnet (SIM) [Tb(III)Pc2] was reported in 2003 [1]. From then, a
lot of lanthanide-based SIMs were prepared and studied owing to their large single-ion
magnetic anisotropies which may lead to higher energy barriers [2–7]. Owing to the valence
orbitals of transition metal ions, the 3d orbital angular momentum could be quenched
easier than that of lanthanide by the ligand field. Therefore, the magnetic anisotropy of
a transition metal based complex could be greatly owned to the second-order spin–orbit
coupling in the mixed states between excited and ground states [8,9]. Among the transition
metal ions, Co(II) ion has been mostly researched owing to its strong magnetic anisotropy.
In addition, Co(II) ion based complex show numerous coordination geometries such as two
coordination [10], three coordination [11], four coordination [12,13], five coordination [14],
six coordination [15–17], seven coordination [18] and eight coordination [19].

Until now, most reported field-induced SIM behavior is shown in the six-coordinated
Co(II) mononuclear complex. As the central symmetry of paramagnetic complex plays an
important role in the slow relaxation. Their magnetostructural relationships have been
studied deeply [8]. Song’s group has even reported the relationship between the coordina-
tion geometry of Co(II) ions and slow relaxation in the six-coordinated Co(II) complex in
2018 [20]. However, there are few studies on SIMs with a distorted elongated octahedron
coordination environment of Co(II) ions in the complex. The effects of the weak change
of the ligand field on the slow relaxation and the positive/negative value of D are still
insufficient in Co(II) complexes [7,21–37]. Therefore, it is necessary to study the relationship
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between magnetic characteristics and the long axial Co-O bond in Co(II) complexes with
SIMs behavior. Here, we synthesized a six-coordination mononuclear cobalt complex
Co(H2DPA)2(H2O) (1, H2DPA = 2,6-pyridine-dicarboxylic acid) with a distorted elongated
octahedron environment, which shows field-induced slow-relaxations. We demonstrate
that the distorted octahedron caused by the long axial Co-O bond (Co1· · ·O3) could play
an important role in increasing the effective energy barrier of SIM, which is about 43.28 K.

2. Materials and Methods

First, 2.0 mmol piperazine (172.28 mg) in 10 mL C2H5OH was added dropwise to
0.5 mmol CoCl2·6H2O (118.97 mg) and 0.5 mmol H2DPA (83.56 mg) in 20 mL H2O. Then,
by filtering and evaporating naturally at room temperature for three days [38–40], we
obtained crystals with the distorted octahedral geometry named complex 1. The yield of
the complex crystal is about 40%.

Crystallographic data for the selected complex 1 crystal were obtained at 296 K through
Bruker D8 Venture [41–43]. The structure data were uploaded in a CIF file. Detailed
structural analysis is displayed in Table S1 in the Supplementary Materials. The related
distances and angles are listed in Table S2. The experimental XRD pattern was collected
by Bruker D8 Advanced, and the simulated XRD pattern was fitted by the software of
Diamond. The magnetization was measured from 1.8 to 300 K by SQUID (MPMS-XL 7).
Then, measurements of isothermal magnetization were carried out from 0 to 7 T. The
corresponding AC susceptibility of the same crystals was also measured at different external
fields, with different frequencies from 1 to 999 Hz [44,45].

3. Results and Discussion
3.1. Structure

By the analysis of single crystal X-ray diffraction, this Co(II) based complex 1 is
monoclinic with a space group of P21/n. Every Co(II) ion is six-coordinated in a distorted
elongated octahedron (Table S3) with two H2DPA molecules and one water (Figure 1a). All
the square positions of the distorted elongated octahedron are occupied by O7, O12, N1
and N2 respectively, where two oxygen and two nitrogen atoms are from H2DPA ligands.
The last oxygen atom named O1 is from water. Obviously, all the Co-O/N coordinated
bonds are in the range for a high spin of Co(II) ion. Among them, the Co-O bond lengths
are 2.0539, 2.0620, and 2.1042 Å, respectively, and Co-N ones are 2.0719 and 2.1423 Å for 1,
respectively. Note that the adjacent Co1· · ·O3 distance is 2.4265 Å named as the long axial
bond, which is much longer than that in the similar mononuclear Co complex. There is a
strong π· · ·π stacking (3.4199 Å) between the nearest molecules along the a axis as shown
in Figure 1b. Then the nearest two molecules form a one-dimensional (1D) chain along
c axis by π· · ·π stacking (3.5731 Å), therefore constructing its three-dimensional structure of
complex 1 (Figure 1c). The morphology of complex 1 crystals showing distorted octahedral
geometry is displayed in the inset of Figure 1d. The crystal edge length of the geometry is
about 0.5 mm. Then XRD spectra can be acquired from the grinded powders of the selected
complex crystals in Figure 1d (olive line). By contrasting the simulated spectra (orange
line), we can confirm the structure analysis of complex 1.
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Figure 1. Atomic structure of 1. (a) The distorted elongated octahedron centered with a Co(II) ion; 
(b,c) two different π‧‧‧π stackings along a axis (b) and c axis (c) in 1 respectively; (d) XRD spectra of 
experimental and simulated 1. The inset is the morphology of crystal complex 1. The scale bar is 0.2 
mm. 
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of 1. At 300 K, the complex 1 shows its χMT value of about 3.21 cm3 K mol−1 in Figure 2a. 
This χMT value is much larger than that of isolated high spin Co(II) (S = 3/2 and g = 2.0) of 
1.87 cm3 mol−1 K. The large χMT in complex usually originates from spin-orbit coupling 
[8]. The χMT values first decrease gradually as the room temperature decreases to 150 K, 
then shows a sharp decrease as the temperature lowers, finally reaching the ultimate val-
ues of 2.16 cm3 mol−1 K at 1.8 K. This is commonly owned to the depopulation of Kramers’ 
excited state levels (MJ = ±3/2 and ±5/2). Therefore, M(H) characteristics of complex 1 at 
1.8, 2.5, 5.0 and 10 K were measured under a field ranging from 0 to 7 T in the inset of 
Figure 2b. At 1.8 K, complex 1 increases continuously to 2.46 NμB at 7 T. This non-satura-
tion with a high-field further shows an obviously magnetic anisotropy of complex 1. To 
further confirm the magnetic anisotropy of complex 1, the corresponding reduced mag-
netization was shown in Figure 2b. The magnetization of 2.46 NμB at 7 T is as expected for 
an anisotropic ion. By utilizing the PHI program, the anisotropy parameters of complex 1 
can be quantified from the temperature and field-dependent magnetization data [46]. 
Good fits could be obtained by using the following spin Hamiltonian: 𝐻 = 𝐷 𝑆 − + 𝐸 𝑆 − 𝑆 + 𝑔𝜇 𝑆𝐻, 
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eter respectively, S is the spin projection and the last term is the Zeeman. The best fits of 
the reduced magnetization data show D = 67.63(22) cm−1, E = −16.29(15) cm−1, g = 2.77(3) 
and TIP = 1.21 × 10−4 for complex 1. This positive D value can be mainly owned to the 
coupled states between ground and excited states. 

Figure 1. Atomic structure of 1. (a) The distorted elongated octahedron centered with a Co(II) ion; (b,c)
two different π· · ·π stackings along a axis (b) and c axis (c) in 1 respectively; (d) XRD spectra of exper-
imental and simulated 1. The inset is the morphology of crystal complex 1. The scale bar is 0.2 mm.

3.2. Magnetic Properties

Static direct-current (DC) magnetization measurements were performed ranging from
1.8 to 300 K under an external magnetic field of 1 kOe on the polycrystalline samples of 1.
At 300 K, the complex 1 shows its χMT value of about 3.21 cm3 K mol−1 in Figure 2a. This
χMT value is much larger than that of isolated high spin Co(II) (S = 3/2 and g = 2.0) of 1.87
cm3 mol−1 K. The large χMT in complex usually originates from spin-orbit coupling [8].
The χMT values first decrease gradually as the room temperature decreases to 150 K, then
shows a sharp decrease as the temperature lowers, finally reaching the ultimate values
of 2.16 cm3 mol−1 K at 1.8 K. This is commonly owned to the depopulation of Kramers’
excited state levels (MJ = ±3/2 and ±5/2). Therefore, M(H) characteristics of complex 1
at 1.8, 2.5, 5.0 and 10 K were measured under a field ranging from 0 to 7 T in the inset
of Figure 2b. At 1.8 K, complex 1 increases continuously to 2.46 NµB at 7 T. This non-
saturation with a high-field further shows an obviously magnetic anisotropy of complex
1. To further confirm the magnetic anisotropy of complex 1, the corresponding reduced
magnetization was shown in Figure 2b. The magnetization of 2.46 NµB at 7 T is as expected
for an anisotropic ion. By utilizing the PHI program, the anisotropy parameters of complex
1 can be quantified from the temperature and field-dependent magnetization data [46].
Good fits could be obtained by using the following spin Hamiltonian:

Ĥ = D
[

Ŝ2
z −

S(S + 1)
3

]
+ E

(
Ŝ2

x − Ŝ2
y

)
+ gµBSH,

where D is the axial parameter and E is parameter of rhombic zero-field-splitting parameter
respectively, S is the spin projection and the last term is the Zeeman. The best fits of the
reduced magnetization data show D = 67.63(22) cm−1, E = −16.29(15) cm−1, g = 2.77(3)
and TIP = 1.21 × 10−4 for complex 1. This positive D value can be mainly owned to the
coupled states between ground and excited states.
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Figure 2. (a) Temperature-dependent χMT for 1. The solid line is fitted by PHI; (b) Isothermal re-
duced magnetization at different temperatures for 1. Insert: Experimental M(H) plots at different 
temperatures for 1. Solid lines represent the best fit. 
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ured. For complex 1, there is no obvious signal of χM″ of AC susceptibility (out-of-plane) 
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associated with the appearance of quantum tunneling of the magnetization (QTM) [12]. 
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field-induced SIM. To further explore the magnetostructural correlation, 1.5 kOe was the 
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Then, plots of χM″ vs χM′ (Cole–Cole plot) for complex 1 were fitted well by using the 
CCFIT2 program and the modified Debye function (Figure 5a) [47]. From the Arrhenius-
like diagrams in Figure 5b and Table S4, relaxation times (τ0) and effective barrier energies 
could be calculated. Equation (1) was applied to fit, which contains three relaxation pro-
cesses, where A means the direct process, B indicates the process of Raman, Ueff means the 
effective energy barrier of magnetization reversal. According to these corresponding data, 
these fitted parameters are A = 43.54 K−1 S−1, B = 1.22 × K−4.67 S−1, n = 4.67 respectively. We 
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about 43.28 K. Ueff is much larger than the ones in most mononuclear Co complexes ever 
reported.  
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Figure 2. (a) Temperature-dependent χMT for 1. The solid line is fitted by PHI; (b) Isothermal
reduced magnetization at different temperatures for 1. Insert: Experimental M(H) plots at different
temperatures for 1. Solid lines represent the best fit.

To probe the magnetic relaxation dynamics, the magnetic susceptibilities were mea-
sured. For complex 1, there is no obvious signal of χM

′′ of AC susceptibility (out-of-plane)
at 2 K. However, typical signals of χM

′′ can be observed directly, when an external DC
magnetic field is applied. Figure 3 shows the typically frequency-dependent AC magnetic
susceptibility under different magnetic fields from 0 to 2.5 kOe at 2.0 K. Such behavior is
associated with the appearance of quantum tunneling of the magnetization (QTM) [12].
This result indicates that each molecule of complex 1 containing a cobalt behaves as a
field-induced SIM. To further explore the magnetostructural correlation, 1.5 kOe was the
best to be chosen to measure the dynamic magnetization due to the longest relaxation time.
The variable frequency χM

′ and χM
′′ for 1 at temperatures ranging from 1.8 to 4.5 K are

shown in Figure 4a,b, respectively. Obvious frequency-dependent out-of-phase peaks could
be observed at the temperature from 1.8 to 4.5 K in Figure 4b. Such behavior is commonly
related to the super-paramagnet-like slow magnetic relaxation in a typical SIM. Then, plots
of χM

′′ vs. χM
′ (Cole–Cole plot) for complex 1 were fitted well by using the CCFIT2 pro-

gram and the modified Debye function (Figure 5a) [47]. From the Arrhenius-like diagrams
in Figure 5b and Table S4, relaxation times (τ0) and effective barrier energies could be
calculated. Equation (1) was applied to fit, which contains three relaxation processes, where
A means the direct process, B indicates the process of Raman, Ueff means the effective
energy barrier of magnetization reversal. According to these corresponding data, these
fitted parameters are A = 43.54 K−1 S−1, B = 1.22 × K−4.67 S−1, n = 4.67 respectively. We
can also gain that τ0 is 2.11 × 10−8 s of the slow relaxation time. Ueff shows a large value
of about 43.28 K. Ueff is much larger than the ones in most mononuclear Co complexes
ever reported.

τ−1 = AT + BTn + τo
−1exp(−Ueff/kBT). (1)
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Figure 5. (a) The Cole-Cole curves of complex 1. Solid lines are fitted by CCFIT2; (b) Plot of τ0 versus
T for complex 1, where the orange solid line represents the fitted results using CCFIT2.

Compared with other mononuclear Co(II) complexes [22,27–37], the χMT value of
3.21 cm3 K mol−1 in 1 is much larger than other Co based complexes. This result may be
due to the long axial Co-O bond formed by Co1 and O3 (Co1· · ·O3 distance is 2.4265 Å),
which certainly is not a coordination bond. Owing to the long axial Co-O bond, the Co(II)
complex shows the distorted elongated octahedron. Therefore, the larger χMT values
look like the one in six coordination Co(II) complexes. On the other hand, the distorted
elongated octahedron could further change the electron density between Co(II) and O ions.
We applied the first-principles calculations based on the density functional theory (DFT) to
evaluate the distribution of spin state with different length of axial Co-O bond in Figure
S1. There is a strong relationship between the distribution of spin state and the length of
axial Co-O bond. The complex with longer axial Co-O bond, shows the existence of spin
states. Furthermore, the charge density difference was calculated to distinctly analyze the
charge variation with different spin states. Figure S2 and Figure S3 shows that Co1 donates
more charge and O3 accepts more charge with a spin up state (longer axial Co-O bond)
than those without a spin state (shorter axial Co-O bond). Meanwhile, the charge transfer
is relatively less between spin up and spin down states. Therefore, we conclude that the
long axial Co-O bond in complex 1 may play an important role in increasing the effective
energy barriers up to 43.28 K. However, the effective energy barriers of most mononuclear
Co(II) complexes are lower than 20 K.

4. Discussion

We report a mononuclear Co(II) complex with the distorted elongated octahedral
geometry. The result value of D obtained by fitting the DC susceptibility is positive,
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indicating that complex 1 is an easy-plane complex. Furthermore, complex 1 is a typical
SIM representing field induced slow-relaxation. AC magnetic susceptibility measurement
results confirm that complex 1 is a field-induced SIM with a high effective energy barrier
Ueff of above 43.28 K and relaxation time τ0= 2.11 × 10−8 s. By DFT calculation, this
high effective energy barrier and high χMT value of complex 1 could be originated from
the distorted elongated octahedron environment caused by the long axial Co-O bond.
These results may offer a different strategy to improve blocking the temperature of a
single-ion magnet.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12040707/s1, Table S1: Crystallographic data and structural
refinement parameters for complex1; Table S2: Bond lengths [Å] and angles [deg] for 1; Table S3:
Deviation parameters calculated by SHAPE from each ideal polyhedron for complex Co1; Table S4:
The fit parameters of the analyses of the ac susceptibilities of 1 under 1.5 kOe bias DC field; Figure
S1: Structures for complex 1 with different length of axial Co-O bonds. Figure S2: Charge density
difference between different spin states. Figure S3: The standard distribution of electron density
determined by single-crystal X-ray diffraction; Structure S1: crystallographic CIF. References [48–51]
are cited in the Supplementary Materials.
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