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Abstract

Background: Trypanosoma cruzi is an intracellular parasite that, like some other intracellular pathogens, targets specific
proteins of the host cell vesicular transport machinery, leading to a modulation of host cell processes that results in the
generation of unique phagosomes. In mammalian cells, several molecules have been identified that selectively regulate the
formation of endocytic transport vesicles and the fusion of such vesicles with appropriate acceptor membranes. Among
these, the GTPase dynamin plays an important role in clathrin-mediated endocytosis, and it was recently found that
dynamin can participate in a phagocytic process.

Methodology/Principal Findings: We used a compound called dynasore that has the ability to block the GTPase activity of
dynamin. Dynasore acts as a potent inhibitor of endocytic pathways by blocking coated vesicle formation within seconds of
its addition. Here, we investigated whether dynamin is involved in the entry process of T. cruzi in phagocytic and non-
phagocytic cells by using dynasore. In this aim, peritoneal macrophages and LLC-MK2 cells were treated with increasing
concentrations of dynasore before interaction with trypomastigotes, amastigotes or epimastigotes. We observed that, in
both cell lines, the parasite internalization was drastically diminished (by greater than 90% in LLC-MK2 cells and 70% in
peritoneal macrophages) when we used 100 mM dynasore. The T. cruzi adhesion index, however, was unaffected in either
cell line. Analyzing these interactions by scanning electron microscopy and comparing peritoneal macrophages to LLC-MK2
cells revealed differences in the stage at which cell entry was blocked. In LLC-MK2 cells, this blockade is observed earlier
than it is in peritoneal macrophages. In LLC-MK2 cells, the parasites were only associated with cellular microvilli, whereas in
peritoneal macrophages, trypomastigotes were not completely engulfed by a host cell plasma membrane.

Conclusions/Significance: Taken together our results demonstrate that dynamin is an essential molecule necessary for cell
invasion and specifically parasitophorous vacuole formation by host cells during interaction with Trypanosoma cruzi.
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Introduction

Trypanosoma cruzi is a flagellate protozoan that causes

American trypanosomiasis, also known as Chagas’ disease,

which affects millions of people in Latin America. During its

complex life cycle, the parasite has three morphologies

(epimastigote, trypomastigote and amastigote forms) and

alternates between invertebrate hosts (vectors) and vertebrate

hosts such as mammals in which the infection is established

[Reviewed in 1]. In vertebrate hosts, the trypomastigote is a

highly infective form able to penetrate into all nucleated cells

independently of their phagocytic capacity. Trypomastigote

entry initially occurs through the formation of the parasitophor-

ous vacuole. Interaction of this vacuole with endosomes and

lysosomes takes place even during its initial formation, giving

rise to a transient phagolysosome [Reviewed in 1]. The

mechanisms by which T. cruzi is recognized and internalized,

culminating in the formation of the phagolysosome, are still

under debate. Accumulated evidence indicates that T. cruzi

entry may occur by at least two basic processes: endocytosis/

phagocytosis, in which the parasite is passively internalized

through a classic endocytic pathway or by an active process in

which the parasite is the agent of invasion. In both types of

invasion, T. cruzi induces host cell PI 3-kinase (PI3K) activity

[2,3]. In addition, it has been shown that parasite entry may

involve the participation of host cell membrane microdomains

like flat domains (rich in flotillin proteins) and caveolae [4]. T.

cruzi invasion also involves host cell assembly of actin

microfilaments [5].

In mammalian cells, several molecules that selectively regulate

the assembly of an endocytic vacuole have been identified. Among

them, dynamin has been shown to play a major role in processes

such as clathrin-mediated endocytosis [reviewed in 6,7], synaptic

vesicle recycling [8], phagocytosis [9,10], transport from the trans-

Golgi network [11] and ligand uptake through caveolae [reviewed

in 12]. Dynamin is a GTPase family comprising three isoforms:

dynamin 1, dynamin 2 and dynamin 3 [13]. All dynamins contain

four domains: a GTPase domain (N-terminal), a pleckstrin
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homology domain (PH), a GTPase effector domain and a proline-

arginine rich domain (PRD, C-terminal). The PH domain works

as a binding motif for phosphatidylinositol 4,5–biphosphate, and

the PRD domain mediates interaction with various proteins

containing SH3 domains [14]. One protein class that interacts

with dynamin is phosphatidylinositol 3-kinase (PI3K) [15].

Dynamin interacts with the p85 regulatory subunit of PI3K, and

this interaction stimulates dynamin’s GTPase activity. Gold and

colleagues [9] reported that inhibition of PI3K prevents the

recruitment of dynamin 2 to the site of particle binding, suggesting

that, in phagocytosis, the activation of PI3K is upstream of

dynamin. Among the three mammalian isoforms, dynamin 1 and

dynamin 2 are the best characterized; however, despite extensive

studies, the molecular mechanism by which dynamin participates

in any of these processes is still a matter of debate [15]. According

to some models, dynamin is a mechanochemical enzyme that is

directly responsible for pinching off the vesicle [16]. According to

others, it is a regulatory protein that recruits the downstream

partner, which, in turn, drives the fission step [17]. Macia and

colleagues [18], with the objective of identifying novel tools to

study dynamin, discovered dynasore, a new reagent that has the

ability to block the GTPase activity of dynamin. Dynasore

noncompetitively inhibited the basal and stimulated rates of

GTP hydrolysis without changing the GTP-binding affinity. Cells

treated with dynasore showed a significantly decreased capacity to

internalize transferrin and cholera toxin. The blockage is

reversible and specific for dynamin-dependent endocytosis at the

plasma membrane.

Wilkowsky and colleagues [17] showed, using dominant-

negative dynamin (K44A) HeLa cells, that dynamin is involved

in the invasion of T. cruzi in non-phagocytic host cells. However,

since T. cruzi enters different host cells using a variety of different

pathways, in view of the highly specific effect of dynasore, we

decided to analyze its effect on the entry of T. cruzi into

professional phagocytic and non-phagocytic cells. In view of the

close functional connection between dynamin and PI 3-kinase

activity, we also analyzed the effect of inhibitors of this enzyme on

parasite attachment and penetration into macrophages. The

effects of the various drugs on the morphology of the interaction

process, as evaluated using high-resolution scanning electron

microscopy and transmission electron microscopy, were also

analyzed. The results obtained show that in both phagocytic and

non-phagocytic cells, the process of T. cruzi entry into the host cell

is drastically diminished when host cells are treated with dynasore,

thus indicating the participation of dynamin in this process.

Results

Dynasore Blocks Trypanosoma cruzi Invasion in a Dose-
Dependent Manner

To determine whether dynamin is involved in Trypanosoma cruzi

entry and in phagolysosome formation, cells were infected with the

three T. cruzi forms (trypomastigotes, epimastigotes and amasti-

gotes) in the presence of dynasore at varying concentrations. The

peritoneal macrophages were treated with increasing amounts of

dynasore or 0.005% DMSO (dymetilsulfoxide) and, after treat-

Figure 1. Dynasore impairs Trypanosoma cruzi internalization by host cells. Adhesion and internalization indexes of the interaction process
betwen host cells treated for 20 minutes with increasing concentrations of dynasore (20, 40, 60, 80 and 100 mM) and exposed to T. cruzi (Y strain) A–C:
After treatment with dynasore, peritoneal macrophages interacted with 10:1 trypomastigotes (A), 10:1 epimastigotes (B) or 10:1 amastigotes (C) for
45 minutes, after which they were washed and stained with Giemsa. D: After treatment with dynasore, LLC-MK2 cells were allowed to interact with
trypomastigote forms (10:1). Quantification was carried out under a light microscope where 300 cells were counted in each coverslip, divided in two
parameters: cells that present parasites inside and cells that present parasite attached to the cell surface. Each experiment was performed three times
in duplicate. Values are the mean 6 SD. Statistics were done by ANOVA and pair-wise comparisons were done by the Bonferroni test. p,0.05.
doi:10.1371/journal.pone.0007764.g001

T.cruzi Invasion Inhibition

PLoS ONE | www.plosone.org 2 January 2010 | Volume 5 | Issue 1 | e7764



ment, the medium containing the drugs was removed, and the

parasites were added. Dynasore was removed before exposure to

the parasites in order to guarantee that it affected only the host cell

and not the parasites. After 15 minutes of incubation with

parasites, which provides sufficient time for them to attach to cells,

the free parasites were removed, and as dynasore activity is

reversible after 20 minutes, the medium with increasing dynasore

concentrations was added back until the end of the incubation

period [18]. As shown in Figures 1 and S2, at all concentrations

tested, dynasore did not interfere significantly with parasite

adhesion but markedly inhibited the internalization of trypomas-

tigote (A), epimastigote (B) and amastigote forms (C) by

macrophages. Irrespective of concentration, the inhibition of

internalization was more pronounced for the trypomastigote and

epimastigote forms. For instance, at 80 nM, inhibition values of

98, 95 and 60% were observed for trypomastigote, epimastigote

and amastigote forms, respectively. The same experiments were

conducted using LLC-MK2 (non-phagocytic) cells and trypomas-

tigotes. We observed that, even at 20 mM, dynasore reduced

trypomastigote internalization by 55%, reaching 70% inhibition at

100 mM (Figure 1D). We observed no statistical differences in the

adhesion and internalization indexes when we used pre-treated

parasites with dynasore 60 and 100 mM before interaction with

non treated host cells (Figure S1).

As a positive control, we also analyzed the effect of dynasore on

the uptake of gold-labeled albumin by macrophages and LLC-

MK2 cells, a process previously characterized as endocytosis

(Figure 2A–D). As shown by light microscopy, while control cells

(Figure 2A–C) showed a large number of ingested gold particles,

very few or no particles were seen in dynasore-treated macro-

phages (Figure 2B), and no particles were seen in LLC-MK2 cells

(Figure 2D). A quantitative analysis showed 80% inhibition with

100 nM dynasore in peritoneal macrophages and 100% inhibition

in the LLC-MK2 cell line (Fig. 2E).

Light microscopy observation showed that, in dynasore-treated

cells, all T. cruzi forms remained attached to the host cell surface

(Figure 3). In some cases, we had the impression that part of the

protozoan was in the process of being internalized by the

macrophages.

Dynasore Blocks the Formation of the Parasitophorous
Vacuole

Field emission scanning electron microscopy showed that even

after a short interaction time, all developmental stages of T. cruzi

are readily ingested by the macrophages. After 15 minutes of

interaction, a variety of interaction types could be distinguished

morphologically. In the case of trypomastigote forms, most of

them entered the macrophages with their posterior region, where

Figure 2. Dynasore inhibits endocytosis of BSA-Au by peritoneal macrophage and LLC-MK2 cell line. Observations by light microscopy
of peritoneal macrophages and LLC-MK2 cells treated (or not) with 100 mM dynasore for 20 minutes and incubated with BSA-Au (10 nm, 5 mg/mL) for
45 minutes. A: Peritoneal macrophages without treatment. BSA-Au appeared inside the cells (arrows). B: Peritoneal macrophages treated with 100 mM
dynasore. Inhibition of the GTPase dynamin by incubation with dynasore impaired BSA-Au entry. C: LLC-MK2 cells without treatment. BSA-Au
appeared inside the cells (arrows). D: LLC-MK2 cells treated with dynasore. Inhibition of the GTPase dynamin prevented BSA-Au entry. E: Quantitative
analysis of BSA-Au internalized by peritoneal macrophages or LLC-MK2 cells. The quantification was performed by light microscopy where 300 cells
were counted in each coverslip. We divided in two parameters: cells that present BSA-Au molecules inside and cells that did not internalize BSA-Au.
These experiments were done three times, each one in duplicate. The results were expressed in percentage of cells that present internalized particles
or not. Values are the mean 6 SD. Statistics were done by ANOVA and pair-wise comparisons were done by the Bonferroni test. p,0.05.
doi:10.1371/journal.pone.0007764.g002
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the kinetoplast is located, pointing towards the host cell

(Figure 4A). However, some of them entered through the anterior

flagellar region (Fig. 4B). Quantitative analysis showed that 65%

of entry events occurred via the posterior region (Figure 5).

Epimastigotes were internalized mainly via the flagellar region

(Figure 4D). The macrophages’ plasma membrane recovers the

parasite by forming a funnel-like structure (Figure 4D) or with a

structure previously described as a coiled-coil phagosome by

Rittig and colleagues [19] (Figure 4C). Amastigotes did not show

a preferential region of entrance. After 2 hours of interaction, no

attached parasites were seen since the parasites had been

ingested. In contrast, in dynasore-treated macrophages, very

few parasites were internalized. However, a significant number of

parasites attached to the macrophage surface and triggered the

assembly process of filopodium-like, lamelopodium-like and even

funnel-like structures. Images were obtained showing clearly that

many parasites were partially internalized. In dynasore-treated

macrophages, those few trypomastigote forms that were inter-

nalized preferentially used their posterior region (Figure 6A–B).

Trypomastigotes were always partially covered by the macro-

phage plasma membrane. Similar experiments carried out with

the non-infective epimastigote form showed the host cell plasma

membrane covering mainly the flagellar regions (Figure 7A–B). In

the case of amastigotes, internalization by dynasore-treated cells

took place across the whole protozoan surface (Figure 8A–C).

When the same experiments were conducted using the LLC-

Figure 3. Light microscopy observations confirms T cruzi inhibition invasion of dynasore treated host cells. Observation after Giemsa
staining by light microscopy of the interaction process between peritoneal macrophages treated (or not) with 60 mM dynasore for 20 minutes and
exposed to different stages of T. cruzi (45 minutes). A, C and E: Peritoneal macrophages without treatment (control) and exposed to
trypomastigotes (A), epimastigotes (C) and amastigotes (E). B, D and F: Peritoneal macrophages treated with 60 mM dynasore and exposed to
trypomastigotes (B), epimastigotes (D) and amastigotes (F). The black arrows indicate internalized parasites, and the arrowheads indicate adhered
parasites. Bars = 10 mm.
doi:10.1371/journal.pone.0007764.g003
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MK2 cell line, the parasites appeared only attached to the host

cell surface, with host cell microvilli starting to engulf the parasite

(Figure 9A–C).

Transmission electron microscopy of thin sections showed the

presence of trypomastigote (Figure 10A) and amastigote

(Figure 10B) forms attached to the macrophage surface after two

hours of incubation in the presence of dynasore. Those few

internalized parasites seen in macrophages treated with dynasore

were found in large vacuoles located at the cell periphery

(Figure 10C), in contrast to the interaction with untreated

macrophages (Figure 10D) where trypomastigotes appeared in

the central portion of the cell. We considered whether these

vacuoles were completely closed using goniometry and confirmed

that this was in fact the case (Figure 11). In the case of attached

parasites, close contact between the parasite and the macrophage

membrane took place. Surface macrophage projections were also

seen around the parasites.

PI 3-Kinase Inhibitors Block the Formation of the
Parasitophorous Vacuole in the Same Manner as
Dynasore

In view of the well-established close connection between

dynamin and PI 3-kinase activation [9], we also analyzed the

effect of wortmannin and LY294002, two well-characterized

inhibitors of PI 3-kinase, on the T. cruzi-macrophage interaction

process. Kinetic studies showed that both drugs inhibit parasite

internalization by 60, 65 and 70% for epimastigote, amastigote

and trypomastigote forms, respectively (Fig. 12). Scanning electron

microscopy showed that trypomastigotes and epimastigotes

remained attached to the macrophage surface, with plasma

membrane extensions covering the parasites’ bodies (Fig. 13A–

B). In contrast to what happened with control macrophages in

which trypomastigotes entered mainly through the posterior

region, in drug-treated cells the trypomastigotes entered mainly

through the anterior region. However, in the case of epimastigotes,

PI3K inhibitors did not interfere with the entry pattern

(Figure 13C).

Figure 4. Trypanosoma cruzi can enters into host cells both by anterior and posterior ends. Observation by field emission electron
microscopy (FESEM) of control peritoneal macrophages and trypomastigotes or epimastigotes. A: Trypomastigote invasion by the posterior body
region (white arrow). B: Trypomastigote invasion by the anterior body region (white arrowhead). C and D: Epimastigote internalization by the flagella
(anterior region - black arrow and arrowhead). Note that in D the epimastigote is internalized by coiled phagocytosis (black arrowhead) and in C the
epimastigote is internalized by a funnel-like host cell plasma membrane structure (black arrow). Bars = 1 mm.
doi:10.1371/journal.pone.0007764.g004

Figure 5. Quantitative analysis of trypomastigotes and epi-
mastigotes entry’s site in peritoneal macrophages. Trypomasti-
gotes enter macrophages mainly by posterior region, while epimasti-
gotes utilize preferentially anterior region. Values are the mean 6 SD.
doi:10.1371/journal.pone.0007764.g005
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Discussion

One fundamental element in the life cycle of intracellular

parasites, as is the case for Trypanosoma cruzi, is the mechanisms

that they use to infect the host cells. The available evidence

indicates that this process involves several steps, including (a) initial

contact of the parasite to the cell surface, (b) attachment, (c)

triggering of early host cell response that includes protein

phosphorylation and assembly of surface cell projections, a process

in which actin microfilaments are involved, (d) scission of the large

endocytic vacuole containing the parasites and (e) interaction of

endosomes/lysosomes from the host cell with the endocytic

vacuole in formation. Previous studies have identified macromol-

ecules exposed on the T. cruzi surface that are involved in the

interaction process [reviewed in 20]. However, up to now, a host

cell receptor has not been well characterized, although experi-

mental evidence points to a role for laminin and fibronectin

binding sites [21]. The involvement of different kinases [2] and the

participation of actin filaments [5] in the interaction process have

been well established. In addition, the interaction of organelles of

the endocytic pathway with the parasitophorous vacuole in

formation has been confirmed with the use of markers such as

Rab5 and Rab7 [17]. HeLa cells (K44A) with increased GTP

binding and hydrolysis showed a significant reduction in

trypomastigote invasion [17].

Our present observations showing that previous treatment of

macrophages with dynasore significantly inhibited internalization

of all developmental stages of T. cruzi strongly support the idea that

the host machinery involved in completion of the assembly of an

endocytic vacuole plays a fundamental role in the process of

Figure 6. Field emission electron microscopy observations of the interaction process between peritoneal dynasore treated
macrophages and T. cruzi trypomastigotes. After macrophage treatment with 60 mM of dynasore for 20 min, these cells were put to interact
with trypomastigotes (120 minutes), washed and processed to FESEM. The parasites were covered by macrophage plasma membrane forming
tubular structures around them (arrows). In A, the parasite is recovered by the macrophage plasma membrane observing a small portion of the
parasite body recovered by the plasma membrane while in B we observed a large portion of partion of parasite, indicating that the bockage of
GTPasic dynamin activity did not impairs the pseudopds extension impairing only the complet vacuole formation. The interaction time is enough to
complete the parasite entry into control macrophages. Bars = 1 mm.
doi:10.1371/journal.pone.0007764.g006

Figure 7. Field emission electron microscopy observations of the interaction process between peritoneal dynasore treated
macrophages and T. cruzi epimastigotes. Field emission electron microscopy of the interaction between peritoneal macrophages treated with
60 mM of dynasore (for 20 minutes) and T. cruzi epimastigotes (Y strain). After macrophage treatment, these cells were allowed to interact with
epimastigotes (120 minutes), before being washed and processed to FESEM. The parasites were covered by macrophage plasma membrane forming
tubular structure around them (arrows). This tubular structure is linked tightly with the parasite. Note that epimastigotes can be internalized by
treated macrophages without any host plasma membrane projection (B; arrowheads). The interaction time is enough to complete parasite entry.
Bars = 1 mm.
doi:10.1371/journal.pone.0007764.g007
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parasite invasion. It has been shown that dynasore impairs the

normal pinching off at the neck of the plasma membrane of the

nascent parasitophorous vacuole, a process in which GTPases of

the dynamin family play a key role by interfering both with initial

vesicle formation and with vesicle liberation [18]. The effect was

observed only when the host cells entered in contact with

dynasore. One unexpected result is the fact that, although

dynasore inhibited invasion, it did not cause an increase in the

number of parasites attached to the macrophage surface.

Dynasore inhibition of T. cruzi penetration into macrophages

was more evident in the infective trypomastigote forms, for which

inhibition of up to 98% was observed at a concentration of 80–

100 mM. This is the highest inhibition value reported up to now

for interaction of T. cruzi with host cells. Studies using cytochalasin

D [5], jasplakinolide [5], PI 3-kinase inhibitors [3,22], negative

dominant mutations of PKB, antibodies recognizing parasite

molecules such as Tc85 [23] and cytokeratin 18 [24] reached

inhibition values of 73%, 86% 40%, 88% and 30%, respectively.

We considered whether dynasore might be affecting the parasite

directly during when the medium was added back by incubating

parasites with the drug. We found no evidence of dynasore

adversely affecting the parasites themselves at the concentrations

used (data not shownFigure S1????) Previous studies using

dynasore have shown that dynamin is involved in the infection

of mammalian cells by papillomavirus [25] and in phagocytosis by

Sertoli cells [15]. In all cases, treatment of the host cells with

dynasore significantly inhibited internalization.

Our morphological observations, using high-resolution scanning

electron microscopy of macrophages allowed to interact with T.

cruzi, showed significant variation in the pattern of interactions of

the various developmental stages. While the trypomastigote form is

preferentially internalized by peritoneal macrophages using its

posterior region, epimastigotes are internalized via the flagella.

This difference was shown here for the first time using a

quantitative approach. It is possible that it is due to different

mechanisms of ingestion of the two developmental stages of T.

cruzi by the macrophages.

Previous incubation of the macrophages with dynasore did not

change the pattern of interaction of the parasites with the

macrophages.

The analysis of the process of pinching off of vesicles formed

during the formation of endocytic vesicles and vacuoles has shown

that PI3K is involved in the whole process [9]. Using drugs that

inhibit PI3K, such as wortmannin and LY294002, it has been

suggested that activation of PI3K is upstream of dynamin [9];

inhibition of PI3K inhibited the complete sealing of surface

Figure 8. Field emission electron microscopy observations of the process interaction between peritoneal dynasore treated
macrophages and T. cruzi amastigotes. Field emission electron microscopy of the interaction between peritoneal macrophages treated with
60 mM of dynasore (during 20 minutes) and T.cruzi amastigotes (Y strain). After macrophage treatment, these cells interacted with amastigotes (120
minutes), then were washed and processed to FESEM. In A, the parasite was enveloped by the macrophage plasma membrane (arrow). In B and C we
observed a large portion of partion of parasite, indicating that the bockage of GTPasic dynamin activity did not impairs the pseudopds extension
impairing only the vacuole closer (arrows). Bars = 1 mm.
doi:10.1371/journal.pone.0007764.g008

Figure 9. Dynasore treated LLC-MK2 shows only attached parasites. Field emission electron microscopy of the interaction between LLC-MK2
treated with 60 mM of dynasore (during 20 minutes) and T .cruzi trypomastigotes (Y strain). After LLC-MK2 treatment, these cells interacted with
trypomastigotes (120 minutes), were then washed and processed to FESEM. The parasites are only adhered. Note that adhesion regions are involved
by LLC-MK2 membrane projections. Bars = 1 mm.
doi:10.1371/journal.pone.0007764.g009
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projections that participate in the endocytic process. It has also

been shown that the close association between PI(4,5)P2-bound

dynamin 2 and actin dynamics modulation results in the assembly

of lamellipodia and ruffles [15]. Previous studies have shown that

treatment of macrophages with drugs that inhibit PI3K activity

also inhibited T. cruzi internalization. Our present observations

also confirm these results.

We also observed that the few parasites that entered into

dynasore-treated cells remained at the cell periphery and did

not move to the more central portion of the host cell, where the

nucleus is located, as occurs in untreated cells. We do not have a

clear explanation for this fact, but it is possible that inhibition of

the dynamin system also interferes in some way with the host

cell cytoskeleton that participates in the traffic of the initial

parasitophorous vacuole from the cell periphery to its most

central portion. Dynasore inhibition could be avoided by

washing the cells before host cell infection, which is in

agreement with the recovery of transferrin endocytosis observed

by Macia et al. [18].

Two observations made by transmission electron microscopy of

dynasore-treated macrophages allowed to interact with T. cruzi

deserve comment. First, actin polymerization took place immedi-

ately below the macrophage membrane at sites of contact with the

parasites, a result that is in close agreement with previous results

reporting actin redistribution (shown by immunofluoresccence)

and the effect of previous treatment of the cells with cytochalasin

D before interaction [5]. Second, the few trypomastigotes able to

penetrate into dynasore-treated cells remained in large peripheral

vacuoles.

In conclusion, the use of dynasore allowed us to show clearly

that the host cell plays an active and important role in the process

of Trypanosoma cruzi invasion.

Materials and Methods

The experimental protocol was approved by the Instituto de

Biofisica Carlos Chagas Filho (Universidade Federal do Rio de

Janeiro) Ethics Committee for animal experimentation.

Chemicals
Dynasore was kindly supplied by Dr. Tomas Kirchhausen

(Department of Cell Biology, Harvard University, Boston, and IDI

Research Institute, Boston, Massachusetts, USA). It was solubi-

lized in DMSO to obtain a stock solution at 200 mM. Aliquots

were stored at 220uC and diluted to final concentrations in the

culture medium just before use. Wortmannin and LY294002 were

purchased from the Sigma Chemical Company (St. Louis, MO,

USA).

Bovine Serum Albumin-Coloidal Gold Preparation
Coloidal gold particles (8–10 nm) were prepared as previously

described [26]. Bovine serum albumin (BSA) (electrophoretic

grade, Sigma Chemical Company, St Louis, MO, USA) were

coupled to gold particles as described [27] and used at final

concentration of 25 mg/mL in RPMI 1640 culture medium.

Parasites and Cell Culture
T. cruzi trypomastigotes (Y strain) were derived from the

supernatants of infected LLC-MK2 culture cells (ATCC CCL-7;

American Type Culture Collection, Rockville, MD) grown in

RPMI 1640 medium with garamycin (GIBCO, Grand Island, NY)

and 10% fetal bovine serum (FBS), at 37uC in 5% CO2.

Subconfluent cultures of LLC-MK2 cells were infected with

56106 trypomastigotes. Free parasites were removed after 24 h

and the cultures were maintained in 10% FBS-RPMI 1640. Five

days following infection, free trypomastigote forms could be found

Figure 10. T. cruzi adhesion and internalization in dynasore
treated macrophages. Transmission electron microscopy of perito-
neal macrophages treated with dynasore 60 mM before interaction with
trypomastigotes (A and C) or amastigotes (B). In A (trypomastigote) and
B (amastigote), parasites were only attached at the macrophage plasma
membrane’s. C represents an internalized trypomastigote. Note that
when compared with control (D) the vacuole observed in C is loose and
appears in the periphery of macrophage. Bars = 0,5 mm.
doi:10.1371/journal.pone.0007764.g010

Figure 11. Vacuole containing trypomastigotes are completely closed. Electron micrographs taken at +4u (A), 0u (B) and 24u (C), using a
goniometer, of macrophages treated with dynasore and infected with trypomastigotes of T. cruzi. Bars = 0,5 mm.
doi:10.1371/journal.pone.0007764.g011
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in the cell supernatants. After ten days, amastigote forms were

observed in the cell supernatants. Epimastigote forms (Y strain)

were cultivated in LIT medium as previously described [28], and

after four days of cultivation, they were collected by centrifugation

at 350 g.

Resident peritoneal macrophages were obtained from Swiss

mice. They were collected using Hank’s solution, plated on 13 mm

round glass coverslips and allowed to adhere for 45 minutes at

37uC in a 5% CO2 atmosphere. Subsequently, non-adhered cells

were removed by washing with Hank’s solution, and RPMI 1640

medium with 10% FBS was added. The cells were maintained in

culture for 24 hours at 37uC in 5% CO2 before experiments. In

experiments using LLC-MK2 cells, the cells were plated on

13 mm round glass coverslips and washed with RPMI 1640 before

the interaction assays.

Dynasore Treatment
Before the experiments, peritoneal macrophages and LLCMK2

were washed three times with RPMI 1640 without serum and

incubated for 20 minutes at 37uC in a 5% CO2 atmosphere in the

presence of different concentrations (20, 40, 60, 80 and 100 mM)

to test its effect on parasite adhesion and internalization into the

host cells. To perform experiments involving microscopic analysis

(light, scanning and transmission electron microscopy), dynasore

was used at a 60 mM concentration. After 20 minutes, the medium

containing dynasore was removed, and peritoneal macrophages or

LLC-MK2 were allowed to interact with trypomastigote, amas-

tigote or epimastigote forms added to achieve a ratio of 10

parasites per mammalian cell. The interaction lasted 15 minutes,

at 4uC; the free parasites were then removed, and RPMI 1640

medium with varying concentrations of dynasore was added and

left to incubate for 30 more minutes at 37uC in a 5% CO2

atmosphere. After the 45 minutes of interaction, the cells were

washed three times and fixed for subsequent light or electron

microscopy observation. All experiments included untreated

infected peritoneal macrophages as controls. Similar experiments

were carried out using gold-labeled BSA (25 mg/mL) in order to

verify whether or not dynasore interferes with the endocytic

uptake of the protein. Experiments were performed in duplicate,

and three independent experiments were completed. The viability

of the cells obtained from the cultures before and after incubation

experiments was performed using Tripan blue assay (0.2% of

trypan blue for 5 minutes). The quantification was carried out

using light microscopy where a total of 100 cells were randomically

counted.

Wortmannin and LY294002 Treatment
Peritoneal macrophages were treated with 10 nM wortmannin

or 100 mM LY294002 for 30 minutes before interaction and were

then washed three times with RPMI 1640 medium without serum.

The macrophages were then allowed to interact with T. cruzi

trypomastigotes for 15 minutes (40uC), washed and allowed to

interact for 90 more minutes (37uC/5%CO2). After this time, the

macrophages were fixed and prepared for light or scanning

electron microscopy. To quantify the body regions of T. cruzi used

to attach to peritoneal macrophages, one hundred scanning

electron micrographs obtained from experiments performed in

triplicate were analyzed.

Light Microscopy
For light microscopy, the cells were fixed with Bouin’s fixative

and stained with Giemsa (Merck). The cells were observed by

bright field microscopy in order to distinguish attached from

internalized parasites. The percentage of cells with attached and

Figure 12. PI-3 Kinase inhibitors impair parasite internalization by macrophages. Adhesion and internalization indexes of the interaction
process between peritoneal macrophage treated with wortmanin 10 nM or LY294002 100 mM (during 30 minutes) and T. cruzi (Y strain). After
peritoneal macrophages treatment, these cells interacted with 10:1 trypomastigotes (A), 10:1 epimastigotes (B) or 10:1 amastigotes (C) for 45 minutes
and were then washed and stained with Giemsa. The quantification was carried out under light microscope where 300 cells were counted in each
coverslip, divided in two parameters: cells that present parasites inside and cells that present parasite attached to the cell surface. Each experiment
was performed three times in duplicate. Values are the mean 6 SD. Statistics were done by ANOVA and pair-wise comparisons were done by the
Bonferroni test. p,0.05.
doi:10.1371/journal.pone.0007764.g012
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with internalized parasites and the mean number of parasites per

cell were determined by randomly counting at least 600 cells in

three independent experiments. The adhesion index was calculat-

ed by multiplying the percentage of cells with attached parasites by

the mean number of attached parasites per cell. The endocytic

index was calculated by multiplying the percentage of infected cells

by the mean number of parasites per infected cell. All endocytic

index were normalized.

To gold-BSA quantification was done by light microscopy

where 600 cells were conted in each coverslip. We considered two

parameters: cells that present BSA-Au particles inside and cells

that did not present BSA-Au in its interior. These experiments

were done three times, each one in duplicate. The results were

expressed in percentage of cells that present or not particles in its

interior.

Electron Microscopy
For field-emission scanning electron microscopy, the host cells

(peritoneal macrophages and LLC-MK2) were cultivated on

13 mm coverslips in 24-well plates. After interaction (15 minutes

for cells without any treatment and 2 hours for cells treated with

dinasore or wortmannin), the cells were washed and then fixed in a

solution containing 2.5% grade I glutaraldehyde (TedPella) in

0.1 M cacodylate buffer, pH 7.2, for 30 minutes to 1 hour, post-

fixed with 1% OsO4 in 0.1 M cacodylate buffer, pH 7.2, plus

0.8% potassium ferrocyanide (1 hour) dehydrated in ethanol series

(50, 70, 90 and 100%), critical point-dried in a Baltec CPD 030

apparatus and mounted on specimen stubs. The samples were ion-

sputtered to avoid charge effect with 2–3 nm gold layer and

observed with a Jeol 6340 field emission scanning electron

microscope operating at 5.0 kV and 12 mA.

For transmission electron microscopy, the cells were allowed to

grow in 60 mm2 Petri dishes. After the experimental procedure,

cells were fixed as described for scanning electron microscopy,

dehydrated in increasing concentrations of acetone and flat-

embedded in Polybed (PolysciencesH). En face sectioning avoided

removal of the cells from the substratum, which could disrupt and

disorient their architecture. Ultrathin sections were stained with

uranyl acetate and lead citrate and observed under a Zeiss 900

transmission electron microscope.

Figure 13. PI-3 Kinase inhibitors impair the vacuole complete formation and also change the parasite’s entry preferential site. Field
emission electron microscopy of peritoneal macrophage treated with wortmannin 10 nM interacting with trypomastigotes and epimastigotes. In A,
A9 and B micrographs showing that trypomastigote and epimastigote appear recovered with a tight tubular structure formed by the macrophage
membrane. Tubular structure was never observed sealing the entire parasite. (arrows). Bars = 1 mm. C: quantitative analysis of trypomastigotes body’s
region used to invade macrophages. Each experiment was performed three times in duplicate and a hundred interaction’ events were quantified by
FESEM. Values are the mean 6 SD.
doi:10.1371/journal.pone.0007764.g013
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Statistical Analysis
The statistical analysis was conducted using ANOVA with the

Bonferroni test. Values are presented as mean 6 SD. The results

were considered significant when P,0.05.

Supporting Information

Figure S1

Found at: doi:10.1371/journal.pone.0007764.s001 (5.83 MB TIF)

Figure S2

Found at: doi:10.1371/journal.pone.0007764.s002 (6.36 MB TIF)
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