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The distribution of the microbiome in women with advanced maternal age (AMA) is poorly
understood. To gain insight into this, the vaginal and gut microbiota of 62 women were
sampled and sequenced using the 16S rRNA technique. These women were divided into
three groups, namely, the AMA (age ≥ 35 years, n = 13) group, the non-advanced
maternal age (NMA) (age < 35 years, n = 38) group, and the control group (non-pregnant
healthy women, age >35 years, n = 11). We found that the alpha diversity of vaginal
microbiota in the AMA group significantly increased. However, the beta diversity
significantly decreased in the AMA group compared with the control group. There was
no significant difference in the diversity of gut microbiota among the three groups. The
distributions of microbiota were significantly different among AMA, NMA, and control
groups. In vaginal microbiota, the abundance of Lactobacillus was higher in the pregnant
groups. Bifidobacterium was significantly enriched in the AMA group. In gut microbiota,
Prevotella bivia was significantly enriched in the AMA group. Vaginal and gut microbiota in
women with AMA were noticeably different from the NMA and non-pregnant women, and
this phenomenon is probably related to the increased risk of complications in women
with AMA.

Keywords: advanced maternal age, vaginal microbiota, gut microbiota, diversity, abundance
INTRODUCTION

The International Federation of Gynecology and Obstetrics refers to maternal age ≥35 years at the
time of expected delivery as advanced maternal age (AMA). The proportion of births to women of
AMA has increased over time throughout the developed world and in developing countries because
of improved awareness and availability of effective contraception and improvement in assisted
reproductive technology (Hsieh et al., 2010; Matthews and Hamilton, 2014; Arya et al., 2018).
According to a survey in 2011, the proportion of AMA was 10.1%, including 8.3% aged 35–39 and
1.8% aged 40 or older in China (Liu et al., 2015). Women with AMA are also at increased risk of
adverse pregnancy outcomes, such as gestational diabetes mellitus, hypertensive disorders of
gy | www.frontiersin.org May 2022 | Volume 12 | Article 8198021
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pregnancy, preterm delivery, fetal dysplasia, and fetal growth
restriction (Cakmak et al., 2017; Fuchs et al., 2018; Marozio et al.,
2019; Teng et al., 2020).

Pregnancy is a special physiological process in women. The
microecology of different body sites will change during
pregnancy as the hormones, immunity, metabolism, and other
changes occur in women. Several differences in vaginal
microecology occur during pregnancy in women of different
ages (Li and Wang, 2020). Age is also a factor affecting the
composition of oral microbiota in pregnant women (Wang T.
et al., 2021). The diversity of gut microbiota decreases
significantly in women with AMA and gestational diabetes
(Huang, 2019). In addition, the colonization and diversity of
gut microbiota are influenced by internal and external
environmental factors during the co-evolution of the gut
microbiome with their hosts, such as gender, age, race, dietary
characteristics of the hosts, genotype, immune system, and
region (Gohir et al., 2015b; Winer et al., 2016; Kvit and
Kharchenko, 2017). It is necessary to understand the vaginal
and gut microbiome in women with AMA. Therefore, we
propose a hypothesis that the microbiota in women with AMA
may be dysregulated. In order to provide direction for the
prevention of adverse pregnancy outcome of women with
AMA, we need to explore the specific bacteria of women with
AMA. To confirm our hypothesis and explore the correlation
between the microbiome and advanced pregnancy, we tested the
distribution of vaginal and gut microbiota in women with AMA
during the third trimester using 16S rRNA gene sequencing in
this research.
METHODS

Study Population and Sampling
A total of 51 healthy pregnant women who had antenatal care at
Zhujiang Hospital, Southern Medical University were recruited
fromMay 2020 to August 2020. They were divided into the AMA
(age ≥ 35 years, n = 13) and non-advanced maternal age (NMA)
(age < 35 years, n = 38) groups based on the age at the expected
date of delivery. All of them were singleton pregnancies. A
number of 11 non-pregnant healthy women over 35 years old
were recruited as the control group. Women experiencing or
undergoing the following were excluded: hematochezia, vaginal
bleeding, sexual intercourse, rigorous cleaning with or without
the use of any cleaning or disinfecting agents in the vaginal or
perianal area within 7 days of sampling, treatment with
antibiotics within 30 days of sampling, prenatal bleeding,
premature rupture of membranes, placenta previa, placental
abruption, or previa blood vessels.

We collected vaginal and rectal swabs from non-pregnant
healthy women who were not menstruating and women between
the 36th and 37th week of gestation in AMA and NMA groups.
Vaginal secretions were sampled from the lower third of the
vagina and feces were sampled from the rectum using a sterile
swab. Meanwhile, vaginal and gut secretions were collected in the
same swab for every pregnant women to culture whether they
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
were infected with group B streptococcus. Moreover, the blank
control group included three swabs, namely, a blank sample
swab, a swab with the laboratory air sample, and a swab with the
laboratory distilled water sample. All swabs were placed on ice
immediately before being snap-frozen and stored at −80°C
within 5 min of collection until DNA extraction.

Similar toWang’s study (Wang Y. et al., 2021), a self-designed
questionnaire by us was also used to evaluate the past year
frequency and structure of maternal diet prior to delivery. As
recommended by the Chinese Society of Nutrition (Zeng, 2018),
six common foods for Chinese women during pregnancy were
collected, namely, rice, flour, meat, vegetables, fruit, and yogurt.
We assessed the intake of these foods every day.

The information of women was obtained from medical
records. Neonatal information and histology of the placentas
were collected after delivery. The histology of the placentas
included normal placenta and mild, moderate, or severe fetal
membrane inflammation. This study was carried out with the
approval of the Ethics Service Committee of Zhujiang Hospital,
Southern Medical University (China).

Total Bacterial DNA and 16S rRNA
Gene Sequencing
We extracted the total bacterial DNA from vaginal secretions
and feces by a hexadecyltrimethylammonium bromide (CTAB)
and magnetic soil and stool DNA kit. The purity and
concentration of the DNA were monitored on 1% agarose gel
electrophoresis. We used genome DNA that had been diluted
with sterile water to 1 ng/ml as a template to perform polymerase
chain reaction (PCR). To identify the bacterial diversity, we used
the barcoded 515F 5′-CCTAYGGGRBGCASCAG-3′ and 806R
5′-GGACTACNNGGGTATCTAAT-3′ primers to amplify
bacterial 16S rRNA V3–V4 fragments. Thermal cycling
consisted of initial denaturation at 98°C for 1 min, followed by
30 cycles of denaturation at 98°C for 10 s, annealing at 50°C for
30 s, elongation at 72°C for 30 s, and finally 72°C for 5 min. The
same volume of 1X loading buffer (contained SYB green) was
mixed with PCR products and electrophoresis was carried out on
2% agarose gel for detection. PCR products were mixed in
equidensity ratios. Then, the mixture of PCR products was
purified with a Qiagen Gel Extraction Kit (Qiagen, Germany).
Sequencing libraries were generated using the TruSeq® DNA
PCR-Free Sample Preparation Kit (Illumina, USA) following the
manufacturer’s recommendations and index codes were added.
The library quality was assessed on the Qubit@ 2.0 Fluorometer
(Thermo Scientific) and the Agilent Bioanalyzer 2100 system.
Lastly, the library was sequenced on an Illumina NovaSeq
platform and 250-bp paired-end reads were generated.

Data Analysis
Paired-end reads were assigned to samples based on their unique
barcode and truncated by cutting off the barcode and primer
sequence. Paired-end reads were merged using FLASH (Magoc
and Salzberg, 2011), a very fast and accurate analysis tool, which
was designed to merge paired-end reads when at least some of
the reads overlap the read generated from the opposite end of the
May 2022 | Volume 12 | Article 819802
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same DNA fragment, and the splicing sequences were called raw
tags. Quality filtering on the raw tags was performed under
specific filtering conditions to obtain high-quality clean tags
(Bokulich et al., 2013) according to the QIIME (Caporaso
et al., 2010) quality-controlled process. The tags were
compared with the Silva database using the UCHIME
algorithm (Edgar et al., 2011) to detect chimera sequences, and
then the chimera sequences were removed (Haas et al., 2011).
Then, the effective tags were finally obtained.

Alpha diversity is applied in analyzing the complexity of
species diversity of a sample through three indices, namely, the
Shannon index, phylogenetic diversity (PD), and abundance-
based coverage estimator (ACE). The Shannon index considers
the total number of species and their relative abundances. PD is
based on the proportion of branch length in a phylogenetic tree
that leads to different organisms, whereas ACE is used to estimate
the total number of species contained in a community sample. All
these indices in our samples were calculated with QIIME (Version
1.9.1) and displayed with R software (Version 2.15.3).

Beta diversity analysis was used to evaluate differences of
samples in species complexity. Beta diversity on both weighted
and unweighted UniFrac distances were calculated by QIIME
(Version 1.9.1). Principal coordinate analysis (PCoA) was
performed to obtain principal coordinates and visualize
complex, multidimensional data. A distance matrix of weighted
or unweighted UniFrac distances among samples obtained
before was transformed into a new set of orthogonal axes, by
which the maximum variation factor is demonstrated by the first
principal coordinate, the second maximum variation factor by
the second principal coordinate, and so on. PCoA was displayed
by the WGCNA package, stat packages, and the ggplot2 package
in R software (Version 2.15.3). UniFrac evaluates microbiota
similarity based on the shared evolutionary history of bacterial
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
taxa (Lozupone and Knight, 2005) but does not control subject
covariate information.

Linear discriminant analysis effect size (LEfSe) (Segata et al.,
2011) is a tool for discovering and interpreting biomarkers and
emphasizes statistical significance and biological correlation. It
can search for statistically different biomarkers between groups.

Statistical Analysis
The social characteristics of participants and diet were analyzed
based on t-tests, performed in IBM SPSS (Statistical Package for
the Social Sciences, version 21.0) at a 5% level of significance. The
measurement data were tested for normality using the
Kolmogorov–Smirnov test first. If the data conformed to
normal distribution, they were expressed as mean ± standard
deviation (x ± s) and analyzed with t-test. If the data were not
normally distributed, the median was used for expression and the
Mann–Whitney test was used for comparison. t-test and
Wilcoxon tests were used for the analyses of alpha and beta
diversity indexes between groups. Two-tailed p-values <0.05
were considered statistically significant unless otherwise stated.
RESULTS

Characteristics of the Study Population
The diets of women consisted mainly of grains, vegetables, and
meat in the AMA and NMA groups (Table 1). No significant
differences were observed with regard to pre-pregnancy body
mass index (BMI), mode of delivery, gestational age of sample
collection and delivery, gender of newborns, or weight and
height of newborns between the AMA and NMA groups (p >
0.05). Gravidity and parity in the AMA group were higher than
those in the NMA group (p < 0.05) (Table 1). No women were
TABLE 1 | Clinical and anthropometric characteristics of the mothers and their newborns.

Characteristics AMA group (n = 13) NMA group (n = 38) p-value

Age (years) 36.46 ± 1.81 29.42 ± 3.01 0.000*
Gravidity 3.15 ± 1.57 1.89 ± 1.03 0.002*
Parity 2.15 ± 0.80 1.53 ± 0.69 0.009*
Progestational BMI (kg/m2) 18.94 ± 6.43 20.22 ± 1.87 0.510
Gestational age of sample collection (weeks) 35.21 ± 1.12 34.39 ± 1.58 0.094
Gestational age of sample collection (weeks) 39.03 ± 1.11 39.46 ± 0.84 0.160
Mode of delivery 0.027*
Vaginal delivery 6 27
Cesarean section 7 7
Gender of newborns 0.282
Male 7 15
Female 6 9
Weight of newborns (kg) 3.33 ± 0.42 3.25 ± 0.30 0.506
Height of newborns (cm) 49.77 ± 1.69 50.15 ± 1.52 0.461
Daily intake (g)
Rice 207.69 ± 53.41 192.11 ± 43.51 0.298
Flour 37.69 ± 14.23 37.89 ± 31.03 0.982
Meat 155.38 ± 30.44 148.95 ± 39.78 0.598
Vegetables 359.23 ± 77.94 350.53 ± 75.19 0.723
Fruits 149.23 ± 46.99 171.84 ± 50.29 0.161
Yogurt 61.54 ± 46.34 70.53 ± 54.57 0.598
May 2022 | Volume 12 | Article
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infected with group B streptococcus in the two groups. No
difference was observed in the histology of placentas between
the two groups (Z = −1.08, p = 0.28).

Diversity of Vaginal and Gut Microbiota
DNA extraction, PCR amplification, and electrophoretic
detection in all the samples were deemed successful except for
the samples in the blank control group.

In terms of the three alpha diversity measures in vaginal
microbiota, we observed that the index of PD and ACE in AMA
was obviously higher than that in NMA (Figures 1A–C). The
AMA group had a significantly higher alpha diversity than the
NMA group (ACE p < 0.05). More species were detected in
the vaginal microbiota of the AMA group, and the community
diversity was higher. On the contrary, the Shannon index was
lower, and PD and ACE were higher in the AMA group than in
the control group. The Shannon index indicates the total number
of taxa in the sample and their percentage. The higher the
community diversity and the more even the species
distribution, the higher the Shannon index will be. Therefore,
the distribution of species in the AMA group was more uneven
than that in the control group. As for gut microbiota, the alpha
diversity of the AMA group was slightly lower than that of the
NMA group, but significantly higher than that of the control
group (ACE p < 0.05) (Figures 1D–F). The community diversity
was lower, and distribution was uneven in the gut microbiota of
the AMA group, whereas all differences in the gut microbiota
between the AMA and NMA groups were not statistically
significant (p > 0.05).

PCoA was performed using weighted UniFrac distance
analysis to cluster the three groups at the OTU levels. We
found that PCoA clearly separated patients in the control
group and pregnant groups in terms of vaginal and gut
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
microbiota. However, the distance between the AMA and
NMA groups was close, which implies that the compositions of
the microbiomes were similar (Figures 2A, B). The median and
mean of the AMA and NMA groups were approximate. Thus, no
difference in vaginal and gut microbiota was observed between
the two groups (Figure 2C). The beta diversity of the vaginal
microbiota in the AMA group significantly decreased compared
with the control group (p < 0.001), whereas no difference in gut
microbiota was noticed between the two groups (Figure 2D).

Distribution of Vaginal and Gut Microbiota
The vaginal microbiota of the three groups mainly included
Firmicutes, Actinobacteriota, Proteobacteria, and Bacteroidota.
Firmicutes were abundant in pregnant women, with a proportion
of 83.4% in the AMA group and 84.1% in the NMA group,
whereas a value of 52.6% was observed in the control group. The
proportion of Actinobacteriota and Proteobacteria was higher in
the control group at values of 28.4% and 10.9%, respectively,
whereas 12.6% and 0.8% were noticed in the AMA group
(Figure 3A). At the genus level, the vaginal microbiota of the
three groups mainly included Lactobacillus, Bifidobacterium,
Gardnerella, Streptococcus, Escherichia-Shigella, and Prevotella,
among others. Lactobacillus predominated in vaginal microbiota,
and a lower proportion was observed in the control group
(38.6%) than the AMA (81.2%) and NMA (81.8%) groups. The
proportion of Gardnerella was higher in the control group (19%)
than in the AMA group (5.1%) (Figure 3B). From the above two
figures, we found that the composition of the vaginal
microbiome in AMA and NMA groups was similar. However,
the distribution in the control group was distinctly different.

The gut microbiota of the three groups was mostly made up of
Firmicutes, Bacteroidota, Fusobacteriota, Campilobacterota,
Proteobacteria, and Actinobacteriota. Firmicutes were still
A B

D E F

C

FIGURE 1 | (A–C) Alpha diversity index differences in vaginal microbiota between groups (Wilcoxon test). (D–F) Alpha diversity index differences in gut microbiota
between groups (Wilcoxon test). NS, not statistically significant; *p < 0.05; **p < 0.01.
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A B

DC

FIGURE 3 | (A) Abundance of species at the phylum level in vaginal microbiota. (B) Abundance of species at the genus level in vaginal microbiota. (C) Abundance
of species at the phylum level in gut microbiota. (D) Abundance of species at the genus level in gut microbiota.
A B

DC

FIGURE 2 | (A, B) PCoA (principal coordinates analysis) based on weighted UniFrac distance. (C, D) Beta diversity index differences between groups (Wilcoxon
test). The abscissa represents a principal component, the ordinate represents another. The percentage represents the contribution value of the principal component
to the sample difference. Each dot represents a sample, and samples in the same group are indicated in the same color.
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abundant in pregnant women, with a proportion of 55% in the
AMA group and 51.9% in the NMA group, whereas a 35.3%
proportion was recorded in the control group. The proportion of
Bacteroidota was higher in the control group (47.9%), whereas
35.4% was observed in the AMA group (Figure 3C). At the genus
level, the gut microbiota of the three groups mainly included
Bacteroides, Prevotella, Porphyromonas, Lactobacillus, and
Fenollaria, among others. Prevotella predominated in the vaginal
microbiota, featuring a lower proportion in the control group
(25.9%) than the AMA (19.7%) and NMA (16.8%%) groups. The
proportion of Bacteroides was higher in the control group (16.1%)
than in the AMA group (5.8%) (Figure 3D).

Significant Changes in Abundance
of Microbiota
We performed LEfSe analysis and linear discriminant analysis (LDA)
to distinguish the three groups by identifyingmicrobiota biomarkers at
different taxonomic levels and estimating the effect size of each
differentially abundant microbiota. This LDA score was set to 4.
The larger the LDA score, the greater the effect of the microbiota had
on the difference of the abundance between the comparative groups.
Compared with the NMA group, the vaginal microbiota in the AMA
group was mostly enriched with Bifidobacterium. However,
Proteobacteria, Bifidobacterium bifidum, Gammaproteobacteria, and
Lactobacillus johnsoniiwere significantly abundant in the NMA group
(Figure 4A). Comparedwith the control group, the vaginalmicrobiota
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
in the AMA group was mostly enriched with Firmicutes,
Lactobacillales, Lactobacillaceae, Lactobacillus, Lactobacillus iners,
and Bifidobacterium dentium. However, Prevotella timonensis,
Bacteroidales, Ureaplasma parvum, Mycoplasmataceae,
Aquabacterium, Fusabacteriales, Comamonadaceae, Escherichia coli,
Enterobacteriaceae, Streptococcus agalactiae, Bifidobacterium,
Actinobacteria, Gardnerella, and Lactobacillus johnsonii were
significantly abundant in the control group (Figure 4B).

As for the gut microbiota in the three groups, the abundance of
Prevotella biviawas significantly higher in theAMAgroup than in the
NMAgroup (Figure4C).TheabundancesofPeptonophilus,Dialister,
Veillonellaceae,Negativicutes,Clostridia,Firmicutes, andVeillonellales
(Selenomonadales) were significantly higher in the AMA group
compared with the control group. However, the abundance of
Bacteroidota, Bacteroides vulgatus, and Gampylobacter hominis was
significantly higher in the control group than in the AMA
group (Figure 4D).

DISCUSSION

Recent studies have shown possible links between microbiota
and pregnancy complication (Guzzardi et al., 2022; Molina-Vega
et al., 2022; Yeo et al., 2022). However, the relationship between
microbiota and maternal age has been rarely reported. Therefore,
we investigated the changes of vaginal and gut microbiota in
women with AMA by using 16S rRNA sequencing.
A B

D

C

FIGURE 4 | (A) LEfSe (LDA effect size) between AMA and NMA groups in vaginal microbiota. (B) LEfSe between AMA and control groups in vaginal microbiota.
(C) LEfSe between AMA and NMA groups in gut microbiota. (D) LEfSe between AMA and control groups in gut microbiota.
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In our study, we found that the vaginal microbiota in the three
groups is mostly made up of Firmicutes, Actinobacteriota,
Proteobacteria, and Bacteroidota, as shown in Figure 3. Similar to
previous reports (Li et al., 2021), we observed thatLactobacilluswas
thedominantbacterium in the vaginaofwomen in the threegroups.
The compositionof the female genital tractmicrobiota is influenced
by numerous factors, including age, pH in vagina, hormonal
secretions, the menstrual cycle, contraceptives, antibiotic use, and
sexual activity (Prince et al., 2015; Nasioudis et al., 2017).
Lactobacillus, the dominant bacterium in the vagina of women
during pregnancy (Dominguez-Bello et al., 2010; Ma et al., 2012),
can bind to the surface of vaginal epithelial cells to prevent the
attachment of other microorganisms in the vagina. It can not only
produce lactic acid by decomposing glycogen in the vagina to
maintain a stable pH, but also kill intracellular microorganisms
by inducing the autophagy of vaginal epithelial cells (Witkin and
Linhares, 2017). The stability and abundance of Lactobacillus
species in the vaginal microbiota depend on hormone levels (Hay,
2005). In the present study, the abundance of Lactobacilluswas the
highest in the vagina of women in the three groups, as the yellow
part shows in Figures 3A, B, especially in the AMA and NMA
groups. This was consistent with Pacha-Herrera’s report earlier, in
which a higher amount of Lactobacillus was found in pregnant
women when compared to non-pregnant women (Pacha-Herrera
et al., 2020). The abundance of Lactobacilluswasmarkedly lower in
the control group, and this finding was related to the increase in
estrogen in women during pregnancy (Taddei et al., 2018). A high
proportion of Gardnerella (19%), which is an anaerobic bacterium
considered one of the etiological agents of bacterial vaginosis
(Morrill et al., 2020), was observed in the control group.
Gardnerella was the dominant bacterium in the vagina of women
over35yearsold.This resultof our researchwasconsistentwith that
of Chen et al., (2021).

In our research, the alpha diversity (PD and ACE) of vaginal
microbiota was significantly higher in the AMA group than in the
NMAgroup (p<0.05),whichmeans that the number ofoperational
taxonomic unitswas higher in theAMAgroup.Thus,we speculated
that more miscellaneous bacteria were present in the vaginal
microbiota of women with AMA. However, due to the limited
sample size of the AMA group, our conjecture needs to be further
verified. In our research, the abundance of Bifidobacterium was
higher in the vaginalmicrobiota of theAMAgroup. Freitas andHill
(2017) observed that Bifidobacterium has a protective effect on
the vagina of older women. This bacterium can also reduce the risk
of preterm birth and improve the microecology of the vaginal
microbiome (Tabatabaei et al., 2019). L. johnsonii, which is one of
the most commonly detected strains in the vagina of reproductive
women (Dobrut et al., 2018; Mehta et al., 2020), was significantly
abundant in the NMA group in our study. This bacterium can not
only inhibit the growth of pathogens (Escherichia coli, Gardnerella
vaginalis, Proteus mirabilis, and Candida albicans) (Ahire et al.,
2021) but also reduce the incidence of preterm birth (Tabatabaei
et al., 2019). A significant drop ofLactobacilluswas also observed in
the women with aerobic vaginitis of different ages (Pacha-Herrera
et al., 2020). Therefore, the abundance of L. johnsonii decreased
significantly in the AMA group, and this result may be associated
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
with the increased risk of complications during pregnancy in
women with AMA. The beta diversity of vaginal microbiota in
the AMA group significantly decreased compared with the control
group (p < 0.001). This finding demonstrated the significant
difference between women with AMA and non-pregnant women
in termsof vaginalmicrobiota. Freitas et al. (2017) also reported that
the vaginal microbiome of healthy pregnant women had reduced
richness and diversity and less Mycoplasma and Ureaplasma sp.
comparedwithnon-pregnantwomen.TheabundanceofPrevotella,
Bacteroidales, Ureaplasma, Mycoplasmataceae, Streptococcus,
Comamonadaceae, Escherichia, and Gardnerella was significantly
higher in the control group than in the AMA group. Most of these
bacteria were anaerobic, the increased abundance of which was
related to bacterial vaginosis, premature rupture of membranes,
preterm birth, gestational diabetes mellitus, and preeclampsia
(Fettweis et al., 2019; Kong et al., 2019; Liu et al., 2019; Lin et al.,
2020; Mohamed et al., 2020; Sprong et al., 2020). Gardnerella and
Prevotella, in particular, increase the risk of bacterial vaginosis from
previous studies (Pacha-Herrera et al., 2020). It is well known that
bacterial vaginosis in pregnancy is associatedwith an increased risk
of preterm birth (Foessleitner et al., 2021). Therefore, the increased
abundance of beneficial bacterium and the decrease in pathogenic
bacterium and miscellaneous species may be a self-protective
mechanism for pregnant women to reduce the incidence of
infection and miscarriage.

In recent years, studies related to gut microbiota and pregnancy
have been extensively focused. The gut microbiota, composed of
trillions of symbiotic microorganisms, is essential for host’s health
and survival (Fung et al., 2017). The gut microbiota changes along
with modifications in hormone levels and immune metabolism
during gestation (Gohir et al, 2015a). Themicrobial diversity in the
gut at the start of pregnancy appears to be similar to that in
nonpregnant women, and the abundance of gut bacteria
associated with inflammatory states increases as pregnancy
advances (Edwards et al., 2017). Zhang et al. (2021) used 16S
rRNA sequencing to explore the longitudinal changes of gut
microbiota in diabetic mice. They observed a trend toward
increased diversity and richness from 6 to 26 weeks in mice. In
the present study, we observed a trend toward decreased diversity
and richness in the AMA group as indicated by the PD, ACE, and
Shannon indices, also suggesting that aging is an important factor
affecting microbial composition. Similar to Lee and Sanlibaba’s
studies (Lee et al., 2022; Sanlibaba et al., 2022), the gut microbiota
changes are generally characterized by the decrease in biodiversity
and enrichment of opportunistic pathogens with aging. The
gestational gut microbiota is characterized by a low alpha
diversity index (intraindividual bacterial diversity) and a high
beta diversity index (interindividual bacterial diversity) in the
third trimester (Wallace et al., 2019; Mesa et al., 2020). We also
found that the alpha diversity of the AMA group was slightly lower
than that of theNMAgroup.Thedifferencebetween the twogroups
was not statistically significant; it might be related to the small
sample size of this study. Firmicutes and Bacteroidota are the most
abundant gut microbiota in human beings (Ley, 2016). Liu et al.
(2017) indicated that the gut microbiota of pregnant women was
mostly made up of Firmicutes, Bacteroidota, Fusobacteriota, and
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Proteobacteria in South China. In addition, they observed that the
abundance of Bacteroidotawas higher than that ofFirmicutes in the
gut microbiota in the third trimester. However, the results of our
study showed the contrary; the proportion of Bacteroidota was the
highest in non-pregnant women. The microbiota undergoes
changes according to age, represented by a human study showing
that the coremicrobiotaof elderly subjectswasdifferent fromthat of
younger adults, with a higher proportion of Bacteroides species
(Claesson et al., 2011).The results are consistentwith ours, inwhich
the proportion of Bacteroides was higher in the control group.
Prevotella bivia, a kind of Gram-negative anaerobic bacillus, was
enriched in the AMA group and a part of the human oral
microbiome (Accetto and Avgustin, 2021). Prevotella species are
more common in non-Westerners who consume a plant-rich diet
(Wu et al., 2011). The association with a plant-rich diet has
suggested that Prevotella is a beneficial microbe. They are
dominant in the rumen and hindgut of cattle and sheep, where
they facilitate the fermentation of protein and carbohydrate from
foods. Consumption of dietary fiber improves glucose metabolism,
which is associated with increased abundance of Prevotella
(Kovatcheva-Datchary et al., 2015). However, Prevotella in the
gut has also been linked to inflammatory conditions (Dillon et al.,
2016). The reasons for the increased abundance of Prevotella of gut
microbiota in women with AMA still need further research.
Peptonophilus, Dialister, Veillonellaceae, Negativicutes, and
Clostridia were concentrated in the AMA group. Dialister is
enriched in the gut microbiota of patients with osteoporosis and
may be a microbial marker of spondylarthritis disease (Xu et al.,
2020). A decrease in blood pressure in rats was associated with the
lowering of Veillonellaceae, which includes succinate-producing
bacteria (Galla et al., 2020). The abundance of Veillonellaceae
increased in the gut microbiota of mice with abnormal glucose
metabolism (Cheng et al., 2018).A research inPakistan showed that
Negativicutes are enriched in the gut microbiota of obese type 2
diabetes mellitus patients (Ahmad et al., 2019). Therefore, the
accumulation of these bacterium may be associated with the
increased risk of gestational diabetes and gestational hypertension
in AMA.

As far asweknow, this research is thefirst study that analyzed the
vaginal and gutmicrobiota ofwomenwithAMA.We observed that
the alpha diversity of vaginal microbiota in women with AMA
significantly increased. The beta diversity was significantly
compared with that of non-pregnant older women. The presence
of various statistical biomarkers in the AMA group suggests
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
significant differences in the distribution of microbiota in women
with AMA and NMA. However, this was only a preliminary
research because the total quantity of the samples was limited.
Although we have not found the kind of specific bacterium of
womenwithAMA, the dysregulation in vaginal and gutmicrobiota
of womenwith AMAwas confirmed in our study. In the future, we
would like to increase the sample size and detect the metabolic
characteristics of the microbiome in women with AMA by
metagenomic sequencing and to further find the type of specific
bacteria from women with AMA and deeply explore the
relationship between specific bacteria and adverse pregnancy
outcomes in women with AMA.
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