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Abstract11

Spatial transcriptomics enables high-resolution gene expression measurements while preserving the12

two-dimensional spatial organization of the sample. A common objective in spatial transcriptomics13

data analysis is to identify spatially variable genes within predefined cell types or regions within the14

tissue. However, these regions are often implicitly one-dimensional, making standard two-dimensional15

coordinate-based methods less effective as they overlook the underlying tissue organization. Here we16

introduce a methodology grounded in spectral graph theory to elucidate a one-dimensional curve that17

effectively approximates the spatial coordinates of the examined sample. This curve is then used to18

establish a new coordinate system that better reflects tissue morphology. We then develop a generalized19

additive model (GAM) to detect genes with variable expression in the new morphologically relevant coor-20

dinate system. Our approach directly models gene counts, thereby eliminating the need for normalization21

or transformations to satisfy normality assumptions. We demonstrate improved performance relative to22

current methods based on hypothesis testing, while also accurately estimating gene expression patterns23

and precisely identifying spatial loci where deviations from constant expression are observed. We validate24

our approach through extensive simulations and by analyzing experimental data from multiple platforms25
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such as Slide-seq and MERFISH.26

1 Introduction27

Spatial transcriptomics (ST) technologies permit high-resolution measurement of gene expression while main-28

taining the spatial coordinates of the samples (Rao et al., 2021; Moses and Pachter, 2022). These technologies29

have the potential to improve our understanding of the influence of cellular spatial organization on important30

biological processes and disease. One of the starting points for ST analysis is the identification of spatially31

variable genes (SVGs) (Adhikari et al., 2024). Since spatial variability can often be explained by differences32

in cell type (Cable et al., 2022b), it is common to test for SVGs within a predefined cell type or spatial33

domain (Yu and Luo, 2022).34

Current statistical approaches for SVG detection perform a hypothesis test for each gene, quantifying35

the evidence of spatial variability using a p-value (Svensson et al., 2018; Sun et al., 2020; Hao et al., 2021;36

Zhu et al., 2021; Weber et al., 2023). However, these methodologies are incapable of distinguishing genes37

whose spatial expression patterns manifest in fundamentally different ways, such as along distinct anatomical38

features within the tissue. For example, MERFISH measurements of a healthy mouse colon revealed two39

dominant patterns of spatial variability, denoted here as localized (Fig 1a, left) and radial gradient (Fig 1a,40

right), respectively. Genes exhibiting localized variation, such as Ddx58, are characterized by a distinct patch41

of expression in one region of the colon, whereas genes exhibiting radial gradient variation, such as Apob, are42

characterized by a gradual change in expression between the outside and inside of the mucosa. Importantly,43

while both of these examples are illustrations of spatially variable genes, their distinct spatial distributions44

have important implications for their biological interpretation. Ddx58 is an interferon-stimulated gene,45

and the localized expression observed in the mucosa is representative of local patches of interferon activity46

and interferon-stimulated gene expression described previously (Van Winkle et al., 2022). By contrast, the47

radial distribution of Apob–a marker of the final stages of mature enterocytes–shows the known variation48

of epithelial cells from the base to the tip of colonic crypts (Moor et al., 2018). Although current leading49

approaches succesfully identified these genes as spatially variable (Fig S1, S2), they lack the capability of50

distinguishing between these two modes of spatial variation. Additionally, these existing methodologies do51

not allow for precise pinpointing of the locations where spatially relevant gene expression occurs.52

Although numerous statistical techniques exist for the estimation of two-dimensional surfaces (Wood,53

2003; Schulz et al., 2018), and some of these used for ST (Cable et al., 2022a), it is noteworthy that in many54

applications the primary interest is in genes that exhibit variation along one-dimensional paths. For example,55

the exercise of visually detecting the localized pattern shown in Ddx58 could be described as searching for56
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deviation from a baseline expression level along a curve tracing through the mucosa. The radial gradient57

pattern exhibited by Apob could be described as change in expression in the direction perpendicular to the58

curve. This implies that a curve-based coordinate transform could help separate genes with a localized burst59

from those with radial gradient, which, in turn, could facilitate new biological findings. In addition to the60

colon (Fig 1a), cell types in the brain also commonly exhibit distinct one-dimensional spatial structure. In61

this paper we also consider two Slide-seq datasets: granule cells from the mouse cerebellum (Cable et al.,62

2022b) (Fig 1b) and CA3 cells from the mouse hippocampus (Stickels et al., 2021) (Fig 1c), although63

numerous additional examples exist.64

In this paper, we introduce a statistical framework that estimates a one-dimensional curve passing through65

the ST coordinates and then uses that estimated curve to define amorphologically relevant coordinate system.66

Although similar curve-estimation methods have been used for pseudotime analysis in single-cell RNA-seq67

(Street et al., 2018), we find that our methodology grounded in spectral graph theory yields better results68

on two-dimensional ST data. Moreover, pseudotime methods do not measure variation orthogonal to the69

curve which is critical to distinguish between localized and radial gradient patterns.70

Upon estimating the curve, we employ a generalized additive model (GAM) to model expression as71

a (possibly non-linear) function of the morphologically relevant coordinates. We refer to our approach72

as MorphoGAM. Unlike previously published hypothesis tests for SVGs, MorphoGAM identifies the exact73

location and mode of the pertinent expression pattern, thereby resulting in more interpretable findings. An74

additional advantage of summarizing the two-dimensional coordinates using one-dimensional projections is75

increased statistical power to detect relevant SVGs due to reduced complexity of model fit to estimate spatial76

effects.77

2 Results78

MorphoGAM identifies morphologically relevant coordinates in spatial transcriptomics data.79

We begin by modeling the spatial location of cell j, 1 ≤ j ≤ n, using morphologically relevant coordinates tj80

and rj . Specifically, we assume that the standard two-dimensional spatial coordinates xj ∈ R2 lie close to a81

latent curve:82

E(xj) = f(tj) (2.1)

where f : [a, b] → R2 is a smooth one-dimensional parametric curve. We write f(t) = (f1(t), f2(t)) to denote83

the two component functions of the curve. The first morphologically relevant coordinate tj describes the84

position of cell j along the curve. In the Methods we describe in detail our approach based on spectral85
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graph theory to estimate tj and f . Briefly, our approach relates the distance between coordinates |ti − tj |86

to the shortest path in a k-nearest neighbor graph Gk and then shows that tj can be estimated through an87

eigendecomposition of a centered shortest path matrix. Upon obtaining an estimate t̂j , the curve f can be88

estimated by smoothing each dimension separately. We plug in t̂j to (2.1) to obtain89

E(xj1) = f1(t̂j) (2.2)

E(xj2) = f2(t̂j) (2.3)

We thus obtain f̂1 and f̂2 by using regression splines as implemented in mgcv (Wood, 2017).90

Our methodology to estimate tj in the case of a linear curve (i.e., when f(a) ̸= f(b)) is motivated91

by the ISOMAP (Tenenbaum et al., 2000) technique for non-linear dimensionality reduction. We extend92

this approach to allow our method to address scenarios wherein f constitutes a closed curve (i.e., when93

f(a) = f(b)).94

A detailed visual assessment indicates that, when applied to the slice of healthy mouse colon, Mor-95

phoGAM excels in estimating f(t) (Fig 2a) and the morphologically relevant coordinate tj (Fig 2b).96

The second morphologically relevant coordinate, denoted here by rj , is defined by using the distance from97

the cell’s coordinates to the position on the curve f(t). Explicitly, the magnitude of rj is given by98

|rj | = ||xj − f̂(x̂j)||2. (2.4)

To determine the sign of rj , we set99

sign(r̂j) = sign
[
⟨xj − f̂(t̂j), Rf̂

′(t̂j)⟩
]

(2.5)

where R : R2 → R2 is a counter-clockwise 90 degrees rotation: R(v1, v2) = (−v2, v1). The conceptual100

framework behind equation (2.5) can be understood by envisioning a traversal along the curve, where the101

velocity vector at time t is f ′(t). Residuals exhibiting a positive sign would be placed on the left-hand side102

of the curve as one progresses, whereas those with a negative sign would be on the right-hand side. The103

left-hand side can be ascertained through a counter-clockwise rotation R of the velocity vector f ′(t). This104

coordinate for each cell is also morphologically pertinent, as illustrated in Figure (Fig 2c).105

After transforming to the morphologically relevant coordinate system, the difference between localized106

and radial gradient patterns becomes immediately clear. SVGs with localized patterns show variation in107

the first morphologically relevant coordinate tj (Fig 2d) whereas SVGs exhibiting a radial gradient pattern108
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show variation in the second morphologically relevant coordinate rj (Fig 2e).109

MorphoGAM outperforms existing curve estimation approaches. Hastie and Stuetzle (1989) in-110

troduced model (2.1) as a general approach to estimate a curve passing through a set of points (in arbitrary111

dimension). This method, known as Principal Curves, is used by the popular pseudomtime method Sling-112

shot (Street et al., 2018). Hastie and Stuetzle (1989) employ an iterative algorithm that alternates between113

updating f and updating tj . However, we find that this iterative approach is unsuitable for the highly non-114

linear structures observed in spatial transcriptomics data. To demonstrate this, we applied Principal Curves115

to granule cells from the mouse cerebellum, measured using Slide-seqV2 (Cable et al., 2022b) (see Figure116

1b). We found that this approach did not accurately estimate the curve for a variety of tuning parameter117

choices (Fig 3a-c). In contrast, if we set the number of nearest neighbors k to 5, MorphoGAM accurately118

identified the path and the first morphologically relevant coordinate (Fig 3d, Fig S3). The performance is119

similar for k = 10 (Fig 3e) and only begins to degrade once k = 30 (Fig 3f).120

To quantitatively evaluate the robustness of these methods with respect to their tuning parameters, we121

defined ground truth tj by carefully hand-drawing a path (Fig S4) and compared estimates t̂j obtained122

with different values of the tuning parameter to the ground truth tj . We observed that the spearman123

correlation between the estimates t̂j(df) and tj was below 0.6 for Principal Curves (Fig 3g). In contrast,124

with MorphoGAM, the correlation exceeded 0.95 for k < 10 and remained above 0.9 for values up to k = 30125

(Fig 3h). We also applied both methods to simulated swiss roll data (Fig S5) and the mouse colon126

dataset (Fig S6) and found similar performance gains from using MorphoGAM. An additional advantage127

of MorphoGAM is that the tuning parameter k (number of nearest neighbors) is more interpretable than128

degrees of freedom (df) for a smoothing spline, which makes it easier to find a reasonable value in practice.129

MorphoGAM allows for interpretable detection of spatially variable genes. Following the estima-130

tion of morphologically relevant coordinates t̂j and r̂j , MorphoGAM identifies spatially variable genes using131

a generalized generalized additive model (GAM) (Hastie and Tibshirani, 1986). Specifically, we denote the132

count for gene g in cell j with Ygj and model it with133

Ygj ∼ NegBinom(njµgj , θg)

logµgj = βg0 + hg(t̂j) + sg(r̂j)

(2.6)

where hg and sg are unknown smooth functions, βg0 is an unknown intercept, and nj is the total counts134

for cell j. θg is the inverse dispersion parameter because Var(Ygj) = njµgj + (njµgj)
2/θg. In this model,135

the gene g is spatially variable if hg ̸= 0 or sg ̸= 0. Estimating the parameters of model (2.6) is achieved136

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2024. ; https://doi.org/10.1101/2024.11.21.624653doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.21.624653
http://creativecommons.org/licenses/by-nc-nd/4.0/


by writing hg and sg as the sum of basis functions and then adding a penalty to encourage smoothness137

(Methods). Although p-values can be computed by testing the null hypothesis hg = 0 or sg = 0, we138

recommend inspecting the estimated functions ĥg and ŝg along with estimates of their covariance (to measure139

uncertainty). We specifically use adaptive shrinkage (Stephens, 2017) to further regularize the functions with140

higher uncertainty (see Methods).141

Although we can examine the entire function estimate, we also introduce two summaries useful for ranking142

genes automatically. Specifically, we consider the peak143

P̂g := sup
t
ĥg(t) (2.7)

which estimates the maximum log-fold change from the baseline log expression β̂g0. Because this measure-144

ment could prioritize large multiplicative changes in small genes we also define the range145

R̂g := sup
t

[
nmed exp(β̂g0 + ĥg(t))

]
− inf

t

[
nmed exp(β̂g0 + ĥg(t))

]
(2.8)

to account for genes that have large differences on the original scale of the counts. Here nmed is defined146

as the median of the nj , so that R̂g can be directly interpreted as a count difference. We note ŝg(t) could147

replace ĥg(t) in both equations (2.7) and (2.8).148

We emphasize that the model (2.6) can easily be modified depending on the particular scientific question.149

For example, if only variation along the curve is of interest then we only need to examine ĥg(t). Moreover,150

the model is flexible enough to account for other potential confounders in the linear predictor.151

MorphoGAM improves power to detect relevant spatially variable genes. We applied Mor-152

phoGAM to the CA3 mouse hippocampus cells (Fig 1c) to estimate a one-dimensional curve f̂ and mor-153

phologically relevant coordinates t̂j (Fig 4a). In the original analysis of this dataset, Cable et al. (2022b)154

used 2D locally weighted regression to identify genes with a high coefficient of variation (CV). This analysis155

identified two genes Rgs14 and Cpne9 that exhibited variable expression at different ends. We applied the156

GAM model (2.6) with sg removed to identify genes varying along the curve f̂ . Our approach corroborated157

the finding of Rgs14 (P̂g = 2.77, p < 10−16) and Cpne9 (P̂g = 1.41, p < 10−16) (Fig 4b).158

We hypothesized that MorphoGAM increases statistical power to detect SVGs by projecting the two-159

dimensional ST coordinates to a one-dimensional morphologically relevant coordinate. To demonstrate this,160

we simulated a gene such that µgj = 1+ κ exp
(
−σ(t̂j − 0.5)2

)
, where t̂j is as above. In order to compare to161

the approaches based on hypothesis testing, we labeled a gene as spatially variable if the p-value was below162

the transcriptome wide significance level of 0.05/20000. MorphoGAM had consistently higher power than163
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two state-of-the-art methods for detecting SVGs, nnSVG (Weber et al., 2023) and SPARK-X (Zhu et al.,164

2021) (Fig 4c). To show that the increase in power did not come at the price of an inflated type I error rate,165

we randomly permuted all spatial locations (to generate a null dataset with no spatially variable genes) and166

found that our method was conservative at a variety of significance levels (Fig S7). When ranking by genes167

with a large peak or range, our approach identified genes that were not reported in the original analysis of168

Cable et al. (2022b) such as Fxyd6 (P̂g = 3.28, p < 10−16) and Hpca (R̂g = 12.67, p < 10−16) (Fig 4d).169

MorphoGAM identifies spatially variable genes in the mouse colon data. We applied MorphoGAM170

to the MERFISH measurements of a slice of healthy mouse colon (Fig 1) with the goal of separating genes171

with localized and radial gradient patterns of expression. Because localized genes are characterized by a172

burst in expression along the curve, we used the peak of estimated functions ĥg(t̂j) to rank genes (Fig173

5a). Radial gradient genes, on the other hand, are characterized by a smooth transition along the second174

morphologically relevant coordinate, so for this we found genes with a large range in ŝg (Fig 5b). Figure175

5 also lists the ranking of each gene of both nnSVG and SPARK-X, showing that the targeted analysis176

of MorphoGAM prioritizes genes that could have been missed if only hypothesis-based tests were used for177

SVGs. In particular, Ddx58 was found to have a large peak in the first morphologically relevant coordinate178

(P̂g = 2.01, p < 10−16) and Apob was found to have a large peak in the direction of the second morphologically179

relevant coordinate (P̂g = 1.24, p < 10−16). We also plot the genes with the largest range in the direction180

of the first morphologically relevant coordinate and the genes with the largest peak in the direction of the181

second morphologically relevant coordinate in Figure S8.182

3 Discussion183

We introduced an approach to estimate the curve passing through spatial transcriptomics coordinates and184

leveraged this curve to define morphologically relevant coordinates. A GAM is used to model spatial variation185

along these morphologically relevant coordinates, which we have shown to be an interpretable and powerful186

approach to find relevant spatially variable genes. Importantly, we have advocated to directly use summaries187

of the estimated functions rather than relying on a null hypothesis test, as p-values do not provide information188

about the mode of spatial variation and are in general sensitive to misspecification in the assumed model189

(Greenland et al., 2016).190

The proposed methodology presents certain limitations. First, the final results depend on the accurate191

annotation of cell types or spatial domains, and inaccuracies at this stage may propagate to MorphoGAM.192

Furthermore, the approach is not inherently applicable in scenarios where the tissue structure cannot be193

adequately represented by a one-dimensional framework. As a result, as part of the software package sup-194
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porting the implementation of MorphoGAM, we have developed a tool allowing manual curve drawing f(t),195

as shown in Figure S4. This facilitates the application of MorphoGAM, although manually, in instances196

where variation along a predetermined trajectory is to be identified. More broadly, our GAM methodology,197

accompanied by summaries of estimated functions (such as range and peak), can be easily extended to the198

two-dimensional domain by employing thin-plate splines (Wood, 2003).199

Morphologically relevant coordinates may offer considerable utility beyond the scope of spatially vari-200

able genes. For instance, the alignment of multiple spatial transcriptomics (ST) slices may be enhanced201

by leveraging these morphologically relevant coordinates instead of conventional two-dimensional coordi-202

nates. Future research could profitably explore the application of morphologically pertinent coordinates in203

conducting multi-sample ST analyses.204
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4 Methods272

Statistical model for latent curve. Let xj ∈ R2 denote the spatial coordinates of cell 1 ≤ j ≤ n. We273

assume that274

E(xj) = f(tj) (4.1)
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where f : [a, b] → R2 is a smooth parametric curve. We will write f(t) = (f1(t), f2(t)) to denote the two275

component functions of the curve. For the moment, we assume that f does not intersect itself, so that ti ̸= tj276

implies f(ti) ̸= f(tj). Note that both f and tj are unknown and must be estimated. See Section S1.2 for277

detailed discussions on the identifiability conditions for f and tj .278

The arclength of f can be expressed in terms of the first derivative f ′(t) := (f ′1(t), f
′
2(t)):279

∫ b

a

||f ′(t)||2dt (4.2)

We will assume that f has a unit-speed parametrization, which means that ||f ′(t)||2 = 1 for all t. Any280

parametric curve such that f ′(t) ̸= 0 for all t can be reparametrized to satisfy this requirement (Section281

S1.2). In particular, this means the arc-length between two points on the curve is equal to the difference in282

their coordinates:283

ti − tj =

∫ tj

ti

||f ′(t)||2dt (tj < ti) (4.3)

First morphologically relevant coordinate. Our approach to estimate tj in the case of a non-intersecting284

curve (i.e., x1 ̸= x2 ⇒ f(x1) ̸= f(x2)) leverages the relationship in (4.3). Interestingly, it turns out that the285

estimated t̂j is the same as the first component produced by the ISOMAP algorithm for manifold learning286

(Tenenbaum et al., 2000). Based on equation (4.3), we can estimate the arclength between ti and tj using287

shortest paths in a k-nearest neighbor (KNN) graph Gk. If k is chosen sufficiently small, the shortest path288

between two vertices (cells) will have a similar shape as f . To make this precise, we define dGk
(i, j) to be289

the shortest path between xi and xj in Gk, so that290

dGk
(i, j) ≈ |ti − tj | (4.4)

Our estimate t̂j will be chosen to satisfy the approximation in (4.4). To construct this, we follow the291

steps of classical multidimensional scaling (cMDS) (Torgerson, 1952). Squaring both sides of (4.4) yields292

d2Gk
(i, j) ≈ t2i + t2j − 2titj (4.5)

Viewing d2Gk
as an n × n matrix, the operation of double centering (Lemma S1.1) yields bGk

∈ Rn×n such293

that294

−1

2
bGk

(i, j) ≈ titj (4.6)
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Given this, we set295

t̂ = argmint∈Rn || −
1

2
bGk

− t⊗ t||2F (4.7)

where ⊗ is the outer product defined in Section S1.1. The optimization problem in (4.7) has (under mild296

conditions) a closed form solution given by the leading eigenvector of − 1
2bGk

(scaled by the square root of297

the leading eigenvalue), see Lemma S1.2. In practice, we standardize the resulting t̂ so that it takes values298

between 0 and 1.299

Once t̂j is obtained, the curve f can be estimated by smoothing each component function separately. We300

plug in t̂j to (2.1) to obtain301

E(xj1) = f1(t̂j) (4.8)

E(xj2) = f2(t̂j) (4.9)

We obtain f̂1 and f̂2 by using regression splines as implemented in mgcv (Wood, 2017).302

Extending the method to closed curves. For closed curves, we have f(a) = f(b), violating the non-303

intersecting condition required above. In this case, the approximation in (4.3) no longer holds because there304

could be a shorter path passing over the endpoint. However, we can still obtain an explicit form for the305

shortest path between ti and tj by applying the law of cosines:306

θi := 2π

(
ti − b

b− a

)
dGk

(i, j) ≈ (b− a)arccos

(
1− (cos(θi)− cos(θj))

2 − (sin(θi)− sin(θj)
2

2

)
.

(4.10)

As d2Gk
appears to have no simple form, we make a second-order Taylor approximation:307

d2Gk
(i, j) ≈ c

[
(cos(θi)− cos(θj))

2 − (sin(θi)− sin(θj)
2
]

(4.11)

where c is some constant (the entire derivation is in Section S1.4). Applying the double centering operation308

to (4.11) yields309

−1

2
bGk

(i, j) ≈ c cos(θi) cos(θj) + c sin(θi) sin(θj). (4.12)

Because cos(θ), sin(θ) ∈ Rn are expected to be approximately orthogonal, a reasonable approximation θj310

is given by311

θ̂j = atan2 (v2(−bGk
/2)j , v1(−bGk

/2)j) (4.13)
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where vk(·) denotes the k-th leading eigenvector of a matrix and atan2 is the 2-argument arctangent function.312

Thus θ̂j can be converted back to t̂j via equation (4.13), although our downstream analysis of SVG detection313

will be invariant to this scaling.314

Second morphologically relevant coordinate. The second morphologically relevant coordinate r̂j ∈ R315

describes how far from the estimated curve a cell’s coordinates are. The magnitude of the coordinate is316

defined as317

||r̂j ||2 := ||xj − f̂(t̂j)||2 (4.14)

The sign of the second coordinate is determined by318

sign(r̂j) = sign⟨xj − f̂(t̂j), Rf̂
′(t̂j)⟩ (4.15)

where R : R2 → R2 is a counter-clockwise rotation by 90 degrees: R(v1, v2) = (−v2, v1).319

The intuition behind this equation is that cells/spots with a positive sign would be on the left-hand side320

if one was driving along the curve. The left-hand side is identified by a counter-clockwise rotation R of the321

velocity vector f ′(t). Again, in practice we standardize r̂j to be in the interval [0, 1] although this could be322

modified depending on the specific scientific question.323

Disconnected graphs. The estimation procedure described above requires Gk to be connected. However,324

if k is chosen large enough to ensure the graph is fully connected, then dGk
may not capture more subtle325

morphological features. For this reason, we permit the procedure to be applied separately to disconnected326

components of Gk and then stitched together to create the final curve. Given Gk has C connected com-327

ponents, let x
(c)
1 and x

(c)
2 denote endpoints of the curve describing the c-th component. We then identify328

the connections between x
(c)
i and x

(c′)
i′ , i, i′ ∈ {1, 2}, c ̸= c′ of minimum Euclidean distance that produce a329

single (connected) curve. Note that this may require reversing the direction of a curve fit to one particular330

component. We identify the optimal connections through a brute force search of the C! · 2C possibilities.331

Because this is computationally infeasible for large C, we require that k is at least large enough to ensure332

that C ≤ 5.333

Generalized additive model to identify spatially variable genes. Let Ygj denote the count for gene334

g (1 ≤ g ≤ G) in cell/spot j (1 ≤ j ≤ n). As noted before, we consider the model335

Ygj ∼ NegBinom(njµgj , θg)

logµgj = βg0 + hg(t̂j) + sg(r̂j)

(4.16)

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2024. ; https://doi.org/10.1101/2024.11.21.624653doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.21.624653
http://creativecommons.org/licenses/by-nc-nd/4.0/


where hg and sg are unknown smooth functions, βg0 is an unknown intercept, and nj :=
∑G

g=1 Ygj is a known336

offset. Note that we are using the following standard parameterization of the negative binomial distribution:337

P(Ygj = y) =
Γ(y + θ)

Γ(θ)y!

(
θ

θ + njµgj

)θ (
njµgj

θ + njµgj

)y

y = 0, 1, 2, . . . (4.17)

For identifiability, we also assume that
∑n

j=1 hg(t̂j) =
∑n

j=1 sg(r̂j) = 0. We use mgcv (Wood, 2017) to338

estimate the functions in model (2.6); this method writes hg and sg as a linear combination of known basis339

functions340

logµgj = βg0 +

Lt∑
ℓ=1

β
(t)
gℓ ϕ(t̂j) +

Lr∑
ℓ=1

β
(r)
gℓ ψ(r̂j) (4.18)

Although there is flexibility in the choice of ϕ and ψ, we use cubic regression splines (cyclic for ϕ when f is a341

closed curve). Estimation proceeds by maximizing the log-likelihood of the model parameters ℓ(βg0, β
(t)
g , β

(r)
g )342

(here β
(t)
g ∈ RLℓ and β

(r)
g ∈ RLr are vectors of coefficients) subject to a smoothness penalty:343

argminβ

{
− ℓ(βg0, β

(t)
g , β(r)

g ) + λt(β
(t)
g )⊤Stβ

(t)
g + λr(β

(r)
g )⊤Srβ

(r)
g + λ

(
(β(t)

g )⊤β(t)
g + (β(r)

g )⊤β(r)
g

)}
(4.19)

where St and Sr are (known) matrices depending on the second derivative of the chosen basis functions344

(Wood, 2001). mgcv performs a procedure to select the best choice of λt and λs and we set λ = 1 by default.345

Upon estimating the coefficients, mgcv returns a Bayesian covariance matrix for uncertainty quantification.346

We use this to obtain the posterior standard deviation sd(β̂
(·)
gℓ ) for each coefficient. For further shrinkage347

towards 0, we apply adaptive shrinkage (ash) (Stephens, 2017) to the estimated coefficients and their standard348

deviations to obtain the final estimate of ĥ and ŝ.349

Data and code availability. The following datasets were used:350

• The granule cells in Figure 3 were obtained from the data provided by Cable et al. (2022b). Cells351

such that the 5-th nearest neighbor was 2 times greater than the median 5-th nearest neighbor were352

excluded. This procedure removed outlier cells.353

• The CA3 cells were obtained from STexampleData (Righelli et al., 2022). Cells such that the 20-th354

nearest neighbor was 3 times greater than the median 20-th nearest neighbor were excluded. These355

values were used so that the retained set of cells visually matched Figure 5 of Cable et al. (2022b).356

• MERFISH measurements of the adult healthy colon are available upon request from the authors.357

Briefly, these measurements were performed using standard MERFISH protocols (Cadinu et al., 2024)358

targeting a custom set of 1,920 genes.359
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MorphoGAM is available as an R package at https://github.com/phillipnicol/MorphoGAM. The reposi-360

tory also includes scripts to reproduce all results in the paper.361
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Figure 1: a. The spatial location of enterocytes identified in a cross section of the healthy mouse colon
as measured with MERFISH. Cells are colored by the log-transformed expression of the two listed genes.
The expression of Ddx58 is called localized whereas the expression pattern of Apob is called radial gradient.
The spatial locations of the plotted enterocytes lie close to a one-dimensional circular manifold. Additional
examples of cell types with coordinates that lie close to a one-dimensional curve can be found in b. granule
cells from the mouse cerebellum (Cable et al., 2022b) and c. CA3 cells in the mouse hippocampus (Stickels
et al., 2021)
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Figure 2: Overview of MorphoGAM. a. MorphoGAM begins by estimating a smooth parametric curve
passing through the spatial transcriptomic sample coordinates. b. The first morphologically relevant coor-
dinate is defined as the position of each cell (or more generally, sample) along the estimated curve from the
previous step. c. The second morphologically relevant coordinate is defined as the position of the cell in the
direction orthogonal to the curve at a given point. d. Genes with localized variation such as Ddx58 show
strong expression variation as a function of the first morphologically relevant coordinate. e. Genes with a
radial gradient pattern such as Apob show expression variation as a function of the second morphologically
relevant coordinate.
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Figure 3: MorphoGAM outperforms existing curve estimation approaches. a. Applying the
principal curves method (Hastie and Stuetzle, 1989) as implemented by the princurve (Cannoodt, 2018) R
package. a., b., and c. show the estimated curve for three different values of the tuning parameter, which is
degrees of freedom (df) of the smoothing spline. d., e. and f. show the estimated curve from MorphoGAM
with three different values of its tuning parameter k-nearest neighbor (kNN). g., h. Using the estimated
coordinate tj from a hand-drawn ground truth (Fig S3) we compute the squared spearman correlation
between this and the estimated coordinate from both methods as the tuning parameters vary.
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Figure 4: MorphoGAM increases power to detect relevant spatially variable genes. a. The
estimated curve f̂ on the CA3 cells from mouse hippocampus (see Fig 1d). b. The estimated functions

ĥ(t̂j) for two previously reported spatially variable genes Rgs14 and Cpne9. c. Comparing hypothesis-based
frameworks to detect SVGs; a gene with µgj = 1+ κ exp(−σ(t̂− 0.5)2) and θ = 5 was simulated and labeled
as SVG is the corresponding p-value was smaller than 0.05/20000. The power reflects the proportion of 100
trials where the null hypothesis was correctly rejected. d. Plotting the genes with the largest peak and
range summaries.
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Figure 5: MorphoGAM identifies additional genes with localized and radial gradient pattern.
a. The top six genes identified when ranking by the peak of hg. That is, genes with a high log fold-change
relative to baseline in the direction of the first morphologically relevant coordinate. b. The top six genes
identified when ranking by the range of sg. That is, genes with a large changes on the scale of the counts in
the direction of the second morphologically relevant coordinate. Each label shows the ranking of the gene
from SPARK-X (Zhu et al., 2021) and nnSVG (Weber et al., 2023).
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Supplementary Material for364

“Identifying spatially variable genes by projecting to365

morphologically relevant curves”366

S1 Mathematical details of curve and coordinate estimation367

S1.1 Notation368

We use ⊗ to denote outer-product: if u, v ∈ Rn then u ⊗ v := uv⊤ ∈ Rn×n. If f : [a, b] → Rk denotes369

a parametric curve, then f can be written in terms of k component functions f(t) = (f1(t), . . . , fk(t)) and370

f ′(t) := (f ′1(t), . . . , f
′
k(t)). We say f is smooth if f ′i(t) exists and is continuous for all t. For a matrix371

A ∈ Rm×n, ||A||2F =
∑n

i=1

∑m
j=1A

2
ij denotes Frobenius norm.372

S1.2 Assumptions373

We assume the following conditions, which are necessary (but not sufficient) for the identifiability of model374

(2.1):375

1. t := 1
n

∑n
j=1 tj = 0 and t1 < 0.376

2. ||f ′(t)||2 = 1 for all t.377

For condition 1, note that for any constant c, f̃ : [a − c, b − c] → R2 defined by f̃(t) = f(t − c) satisfies378

f(tj) = f̃(tj + c) for every j. Similarly, f̃ : [−b,−a] → R2 defined by f̃(t) = f(−tj) satisfies f(tj) = f̃(−tj).379

For condition 2, define h(t) =
∫ t

a
||f ′(s)||2ds and note that h′(t) = ||f ′(t)||2. Then we can define the380

reparameterized curve f̃ := f(h−1(t)). h−1 exists and is differentiable by the inverse function theorem. In381

particular,382

||(f ◦ h−1)′(t)||2 = ||f ′(h−1(t)) · (h′(h−1(t)))−1||2 = ||f ′(h−1(t)) · (f ′(h−1(t))−1||2 = 1. (S1.1)

A full introduction to parametric curves is given by Lastra (2021). We also note that these conditions are383

not sufficient to ensure the identifiability of model (2.1) as a fully identifiable model would likely need to384

specify a distribution or a procedure from which the tj are obtained.385
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S1.3 Linear curve386

We now describe how to estimate the first coordinate in the case of a linear curve (i.e., x1 ̸= x2 ⇒ f(x1) ̸=387

f(x2)). If we assume that the approximation in equation (4.3) is equality, i.e., dGk
(i, j) = |ti − tj |, then388

d2Gk
∈ Rn×n can be written in matrix form as389

d2Gk
= t2 ⊗ 1n + 1n ⊗ t2 − 2t⊗ t (S1.2)

where t2 is applied entry-wise to t := (t1, . . . , tn) and 1n ∈ Rn is a vector of 1’s. Now define the centering390

matrix H ∈ Rn×n as391

H = I − 1

n
1n ⊗ 1n (S1.3)

Applying H on the right has the property of subtracting the row means while appliying H on the left392

subtracts the column means.393

Lemma S1.1. The “double centered” matrix bGk
satisfies394

−1

2
bGk

:= −1

2
Hd2Gk

H = t⊗ t (S1.4)

Proof. The proof is derived from Ghojogh et al. (2023). Because H(1n ⊗ t2) = 0 and (t2 ⊗ 1n)H = 0, we395

have396

−1

2
HG2

k
H =

(
−1

2
H(t2 ⊗ 1n) +H(t⊗ t)

)
H (S1.5)

= H(t⊗ t)H (S1.6)

= t⊗ t (S1.7)

where the last line follows because t = 0 by assumption.397

The above result shows that − 1
2bGk

is a rank 1 matrix with a positive eigenvalue ⟨t, t⟩ > 0. In practice,398

however, − 1
2bGk

will be expected to have higher rank due to noise. For this reason, we estimate t using399

the top eigenvector associated with the largest eigenvalue. The following theorem shows that, under some400

conditions, the top eigenvector of a symmetric matrix leads to the best rank-one approximation with the401

smallest reconstruction error.402

Lemma S1.2. Let A ∈ Rn×n be a symmetric matrix, and suppose that λmax(A) > 0 and λmax(A) >403
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|λmin(A)|, where λmax and λmin denotes the largest and smallest eigenvalues, respectively. Then404

argmint∈Rn ||A− t⊗ t||2F =
√
λmax(A)u1 (S1.8)

where u1 is the unit eigenvector corresponding to λmax(A).405

Proof. As A is symmetric, we may write406

A =
n∑

i=1

λi(ui ⊗ ui) (S1.9)

with u1, . . . , un ∈ Rn orthornormal. Then407

A =
n∑

i=1

|λi|(sign(λi)ui)⊗ ui (S1.10)

is a singular value decomposition (SVD) of A. By Eckart and Young (1936), we have408

min
u,v∈Rn

||A− u⊗ v||2F =
n∑

i=2

|λi| (S1.11)

Moreover,409

min
u,v∈Rn

||A− u⊗ v||2F ≤ min
t∈Rn

||A− t⊗ t||2F (S1.12)

so mint∈Rn ||A− t⊗ t||2F ≥
∑n

i=2 |λi| as well. This minimum is achieved by setting t =
√
λmax(A)u1.410

In practice, it seems to be the case that the condition λmax(A) > 0 and λmax(A) > |λmin(A)| always411

holds.412

S1.4 Closed curve413

In the case of a closed curve f(a) = f(b) and the approximation in equation (4.10) must be used for dGk
:414

θi := 2π

(
ti − b

b− a

)
dGk

(i, j) ≈ (b− a)arccos

(
1− (cos(θi)− cos(θj))

2 − (sin(θi)− sin(θj)
2)

2

)
.

(S1.13)

Consider (b−a)2 arccos2(1−x2/2) as a function of x. We make a second order Taylor approximation around415

x = 0, which yields416

arccos(1) + (b− a)2x2 = (b− a)2x2 (S1.14)
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Taking c = (b− a)2 yields the approximation in (4.12). Then by double centering,417

−1

2
bGk

(i, j) ≈ c cos(θi) cos(θj) + c sin(θi) sin(θj). (S1.15)

This implies that − 1
2bGk

will be approximately rank 2. Moreover, if n is large and θi densely populated418

within [0, 2π] then we have419

1

n

n∑
i=1

cos(θi) sin(θi) ≈
∫ 2π

0

cos(θ) sin(θ)dθ = 0 (S1.16)

which shows that (S1.15) is also an (approximate) eigendecomposition of − 1
2bGk

. In particular, if the two420

eigenvectors recover cos(θi) and sin(θi), respectively, then taking the arctangent function of the ratio should421

be a reasonable approximation to θi. Because both cos(θ) and sin(θ) are approximate eigenvectors with422

eigenvalue c, the top two eigenvectors could be invariant to rotation. However, in any case, the top two423

eigenvectors would still represent the location of each cell on a circle, and the two-argument arctangent424

function would still recover the angle along that circle.425
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S2 Supplementary figures426

Figure S1: The top 9 SVGs identified by SPRAK-X (Zhu et al., 2021) in a MERFISH measurement of a
slice of the healthy mouse colon. Specifically, Ddx58 had a reported (adjusted) p-value of 6.38× 10−67 and
Apob had a reported (adjusted) p-value of 8.04× 10−9.
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Figure S2: The top 9 SVGs identified by nnSVG (Weber et al., 2023) in a MERFISH measurement of a slice
of the healthy mouse colon. Specifically, Ddx58 and Apob both had reported (adjusted) p-values of 0.
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Figure S3: The estimated coordinate from the hand-drawn path on the granule cells.

Figure S4: The hand-drawn curve on the granule cells.
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Figure S5: Repeating the analysis in Figure 3 instead using a simulated swiss roll. The inability of the
standard principal curves algorithm to accurately reconstruct the swiss roll was discussed in (Kégl et al.,
2000).
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Figure S6: Repeating the analysis in Figure 3 instead using the mouse mucosa data. In this case a periodic
smoother was used in princurve.
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Figure S7: Spatial locations in the CA3 data were randomly permuted to produce a null dataset where there
should be no SVGs. The proportion of genes with a p-value smaller each significance level was computed
(the Type I error rate). The red-dashed line indicates the nominal type I error rate.
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Figure S8: Repeating the analysis of Figure 5 plotting the genes with the largest range in the direction of
the first morphologically relevant coordinate tj and the the genes with the largest peak in the direction of
the second morphologically relevant coordinate rj .
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