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ABSTRACT: The casting mono-like silicon (Si) grown by directional solidification (DS) is promising for high-efficiency solar cells.
However, high dislocation clusters around the top region are still the practical drawbacks, which limit its competitiveness to the
monocrystalline Si. To optimize the DS-Si process, we applied the framework, which integrates the growing experiments, transient
global simulations, artificial neuron network (ANN) training, and genetic algorithms (GAs). First, we grew the Si ingot by the
original recipe and reproduced it with transient global modeling. Second, predictions of the Si ingot domain from different recipes
were used to train the ANN, which acts as the instant predictor of ingot properties from specific recipes. Finally, the GA equipped
with the predictor searched for the optimal recipe according to multi-objective combination, such as the lowest residual stress and
dislocation density. We also implemented the optimal recipe in our mono-like DS-Si process for verification and comparison.
According to the optimal recipe, we could reduce the dislocation density and smooth the growth rate during the Si ingot growing
process. Comparisons of the growth interface and grain boundary evolutions showed the decrease of the interface concavity and the
multi-crystallization in the top part of the ingot. The well-trained ANN combined with the GA could derive the optimal growth
parameter combinations instantly and quantitatively for the multi-objective processes.

1. INTRODUCTION
The directional solidification (DS) process is widely used for
several types of silicon (Si) ingot growth.1 Based on the
conventional multi-crystalline Si (mc-Si), the cast mono-like Si
method was proposed for the cost-effective fabrication of Si
solar cells.2 Thus, the main body of the ingot, which has the
monocrystalline structure, can realize the high-power con-
version efficiency. Recently, the Seed Manipulation for
Artificially Controlled Defect Technique (SMART)3 has
been expected to be a better choice for high-efficiency solar
cell processing on cast mono-like Si by inhibiting the multi-
crystallization along the crucible wall.4 However, the bottom
red zone because of the metal contamination and the high
dislocation region at the top of the ingot are still the practical
drawbacks, which limited its competitiveness to the mono-
crystalline Si grown by the Czochralski method.5 Crystal
structures and properties of the mono-like DS-Si ingots depend

on the seed arrangement, growth interface evolution,
generation and propagation of dislocations, thermal stress
relaxation, impurity transport, etc. Especially, the high
dislocation density gives negative influence on the conversion
efficiency of solar cells by providing not only recombination
sites for minority carriers but also shunt regions for majority
carriers.6 Therefore, it is crucial to control and optimize the
thermal process of DS-Si for realizing the high percentage
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monocrystalline and low dislocation density in mono-like Si
ingot.
The design of a DS-Si furnace and optimization of multiple

process parameters require tremendous effort and professional
knowledge owing to their nonlinear interactions. Extensive
experimental7−10 and numerical works11−14 have been
conducted on the parameter studies and the designs of recipe
or geometry to realize the cast monocrystallization in the entire
ingot. These qualitative analyses offer a deep understanding of
the correlations among the input parameters and ultimate
objectives of the DS-Si process. However, quantitative
optimization and optimal design are still challenging tasks for
this nonlinear dynamic process, which includes many coupled
controlling elements to affect ingot quality properties.
Recently, data-driven modeling methods have shown great

potential in modeling complex industrial processes.15−21

Machine learning integrated with optimization algorithms has
been successfully implemented for the geometrical design of
the crystal growth systems22 and the adaptive control of
process parameters to speed up the optimization.23 They
applied optimization algorithms to get and parameterize the
best combination of different controlling elements.24,25

According to this integrated approach, the training data
preparation is the prerequisite for the accurate machine
learning model. However, massive growing experiments are
expensive and time-consuming for the training data generation.
Therefore, the reliable global simulation for the DS-Si process
could be a trade-off option for the artificial neuron network
(ANN) model training and the following genetic algorithm
(GA) optimization. The key point is the reliability of the
numerical model in this integrated optimization framework,
including computational fluid dynamics (CFD), ANN, and
GA. Therefore, experimental validations for the original and
optimal recipe must be performed to guarantee the
optimization performance. Besides validating heating profiles,
many detailed validations for the ingot properties are essential
for this integrated framework.26

Another advantage of the ANN application is the
acceleration of CFD simulation to derive the GA database
for process optimization. Tsunooka et al.15 proposed the rapid
flow pattern prediction by combining the CFD simulation and
machine learning. Combined with their approach, the
efficiency of GA optimization for the local or global, steady,
or transient simulations can be improved. Some intermediate
parameters, such as growth interface deflection, or the stress
and dislocation of the monitored locations, were chosen as the
objective functions. However, it is difficult to validate these
intermediate parameters by the final ingot quality. Fast
prediction and optimization for the quality properties and
growing interface evolution of the entire ingot are preferable
for the DS-Si optimization framework. In the final ingot from
the mono-like DS-Si process, the dislocations decrease the
conversion efficiency, whereas the residual stress can cause the
crystals to fracture. It is desirable to connect the ingot quality
properties and the input parameters by the rapid response
database directly.
The present study focuses on optimizing the DS-Si process

by the integrated framework, including transient global
modeling, machine learning, optimization algorithm, and
growing experiments. A lab-scale mono-like DS-Si furnace
was taken as an application example. First, the validated 2D
transient simulations with the real controlling parameter and
recipe settings were performed to prepare the training data set

for the machine learning model. Then, the ANN was well
trained as the instant predictor, which could predict the Si
ingot properties, such as the residual stress, dislocation density,
and growth rate. Finally, the multi-objective GA was employed
to search for the optimum recipes for the lowest stress and
dislocation density with a stable growth rate. The ingots grown
by the original recipe and the optimal recipe were compared in
different measurement scales.

2. EXPERIMENTAL METHODS AND NUMERICAL
FORMULATIONS

The optimization framework includes four parts: lab-scale
growing experiment, transient global modeling, ANN training,
and GA optimization. The lab-scale DS-Si furnace was the
proof-of-concept (PoC) system for a growth of ∼100 mm
square ingot. We built the 2D transient global model to predict
the full process from melting to annealing the mono-like DS-Si
process. The final results of the entire Si ingot domain from
different recipes were used to train the ANN, which acts as an
instant predictor from the growth recipe to the quality
properties. Then, the GA equipped with the predictor could
search for the optimal recipe according to the multi-objective
combination. Finally, the validation of the optimal recipe was
performed by our PoC system of DS-Si.

2.1. PoC Growing System of DS-Si. The schematic of the
DS-Si furnace for the growing experiments and their transient
global simulations is shown in Figure 1. Five mono-Si bricks of

100 × 20 × 50 (mm3) were first placed as the seeds in a
rectangular quartz crucible, which could grow the mono-like Si
ingot of 112.5 × 112.5 × 130 (mm3). Then, the poly-Si
feedstock of 2200 g was loaded above the 50 mm mono-Si seed
of ⟨110⟩ orientation. The solidification process is realized by
lowering the crucible from the high-temperature zone to the
low-temperature zone with an imposed speed, which was
controlled by three three heating modules (H1: upper, H2:
middle, and H3: lower), and the vertical moving of the
crucible, respectively. Six thermocouples (T/Cs) were installed
along the bottom and sidewall of the crucible to monitor the
growing conditions. The original growing recipe includes three
temperature profiles (TC1, TC2, and TC3) and the crucible
movement profile (V).27 The growing stage was designed with
the three constant temperatures at H1 by TC1, H2 by TC2, and

Figure 1. Schematic of the DS-Si furnace for the growing experiments
and their transient global simulations.
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H3 by TC3, and the fixed crucible downward speed of V = 0.5
mm/min in 400 min, as listed in Table 1.

2.2. Transient Global Modeling of DS-Si. The
commercial crystal growth simulator, CGSim, was used for
the 2D transient global modeling of DS-Si, which includes the
entire thermal process from melting to annealing.28 According
to the principle of equivalent volume method and thermal
resistance approximation, we simplify the square crucible to a
cylindrical shape to save the computational cost. The furnace
components are divided into a series of blocks and mesh by a
structured/unstructured combined grid, as shown in Figure 1.
Equations of mass, momentum, and energy were solved by the
finite volume method. As mentioned in our previous
works,24,25 the major assumptions of the model are as follows:
(1) the Si melt flow is incompressible, and the Boussinesq
assumption is applied; (2) the geometry of the furnace is
axisymmetric; and (3) all radiative surfaces are diffuse-gray.
The three-level second-order implicit method is applied for the
approximation of time derivatives. The temperature of the
outer wall of the chamber and the time step are set as 300 K
and 30 s, respectively.
Same with the growing experiment, three heating modules

were realized by the PID (proportional−integral−derivative)
controllers of TC1, TC2, and TC3. To verify the heat transport
model, the monitored temperatures along the crucible wall
were compared with the experimental measurements. Figure 2a
shows the temperature comparison at two of the monitored
locations, which were set at the outer crucible sidewall by 40
and 130 mm above the crucible platform corresponding to the
initial Si melt domain in the crucible. During the melting stage,
the volume and conductivity of the loaded Si feedstock differs
from the numerical model because of the porous packing
structure.29 Thus, the discrepancies between simulation and

measurement are slightly higher than other stages. Since the
presented work focused on the growing stage optimization, we
could observe that the discrepancy is acceptable for the
growing stage. Further, the temperature gradient from the
preserved seed to the melt free surface was also fitted well by
the transient global model. The growing interface evolution
was also validated with the measurements, as shown in Figure
2b. We reproduced the growing interface evolution by the
phosphorus doping contours, which are indicated by the
resistivity measurement of the wafers. Even the preserved
maximum seed height fitted well with the growing experiment,
the convexity or concavity of interface was underestimated
slightly due to the 2D axisymmetric simplification. Never-
theless, the accuracy of the 2D transient modeling is acceptable
for this nonlinear and multi-physics system.
The build-in Haasen−Alexander−Sumino (HAS) model30,31

was used to predict the stress and dislocation distributions in
the growing Si ingot. The reliability of the HAS model has
validated for the predictions of the stress and dislocation of the
DS-Si ingot.32,33 In this model, the total strain εij is assumed to
be subdivided into three components

ij ij ij ij
e T cε ε ε ε= + + (1)

that are the elastic ij
eε , thermal ij

Tε , and creep ij
cε , respectively.

The creep strain rate is related to the dislocation density. The
creep strain rate and the multiplication rate of mobile
dislocation density Nm are as follows
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Table 1. Control Parameter in the Original Recipe

parameter value

designed duration Δt (min) 400
H1 temperature TC1 (K) 1783
H2 temperature TC2 (K) 1733
H3 temperature TC3 (K) 1553
crucible downward speed V (mm/min) 0.5

Figure 2. Growing experiment validations for the original recipe. (a) Comparison of monitored temperature profiles at the outer crucible sidewall
(40 and 130 mm above the crucible platform) and (b) comparison of the growing interface evolutions in the growing stage.
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where b is the magnitude of the Burgers vector, τeff is the
effective stress, Q represents the Peierls potential, k is
Boltzmann’s constant, T is the absolute temperature in the Si
ingot, Sij stands for deviatoric stress tensor components, J2
represents the second invariant of the deviatoric stress, and D
stands for the strain hardening factor. k0, K, p, and λ are
material constants, and σij denotes the stress tensor
components. The crystal anisotropy was neglected, and the
boundary conditions of stress along the crucible wall are set by
the free boundaries due to the coating. The von Mises stress
σvon is used to represent the residual stress components and
defined as

i
k
jjj

y
{
zzzS S

3
2 ij ijvon

1/2

σ =
(7)

Here, we also considered the stress during the melting stage.
2.3. GA Coupled with 2D Predictor from ANN. Heating

profiles of the three heating modules and the crucible
downward speed are the primary input parameters in the
recipe for this DS-Si process. We built the ANN prediction
model to explore the mapping relationship between the
controlling parameters and ingot quality properties. A typical
ANN comprises three layers (input, hidden, and output) of
neurons and synapses, where the synapses’ function is to
transmit information. Each neuron receives inputs and
processes them before giving outputs. The most common
output operation for the j-th neurons in hidden or output
layers is shown as

O A x b( )j
i

n

j i i i
1

,∑ ω= · +
= (8)

where ωj,i denotes the weight of connection from the i-th
neuron of the preceding layer to the current neuron. bi and A
are bias and activation functions, respectively.
Since the maximum temperature of H3 is lower than the

melting point of Si, it could not affect the growing stage on
which we were focusing. The upper heater (H1), middle heater
(H2), and the crucible downward speed were chosen as the
inputs of the ANN model, as well as the mesh coordinates (r,
z) of the ingot domain (51 × 51 points). Temperature
adjustments of H1 and H2 during the growing stage were
defined by ΔTC1 and ΔTC2, while the adjustment of the
crucible downward speed is defined by dV. The outputs were
the residual stress, the dislocation density, and the solid-
ification time for every grid (r, z) of the final Si ingot. With the
validated transient global model, 150 combinations of three
inputs, including the crucible movement and temperature
profile of two heaters, were simulated to prepare the training
data for the ANN. The total data are 150 sets with (51 × 51)
points, and they are divided randomly by 120 cases and 30
cases for training and test, respectively. It means (150 × 51 ×
51) data sets for ANN training because of the coordinate (r, z)
mapping. The ANN was well trained as the predictor, which
could instantly predict the Si ingot properties, such as the
solidification time, the dislocation density, and the stress level
for the entire domain of the final ingot. We employed NSGA-
II34 to search for the optimal recipe for the lowest residual
stress and dislocation density and the shortest solidification
time. Figure 3 shows the operational flow of the GA coupled
with a predictor of the ANN.

3. RESULTS AND DISCUSSION
3.1. Preliminary Analysis of the Original Process.

Generally, the DS-Si process includes three stages: melting,
growing, and annealing. Every stage of the recipe is designed to
realize different targets. For the melting stage, a certain height
of mono-Si seed must be kept for the mono-like DS-Si process.
During the growing stage, the growth interface evolution and
growth rate have to be well controlled to obtain the high
percentage of monocrystalline structure. Finally, the annealing
stage should prevent dislocation generation because of the
thermal stress relaxation. According to the growing experi-
ments with the original recipe, there were three disadvantages
in the growing process. First, the growing stage was always out
of the designed duration of about 30 min, when the heating
profile has started the designed annealing stage. Second, the
growing interface kept high concavity (Figure 2b) in most of
the growing time, which is harmful to the uniformities of
impurity and dopants in the final ingot. Third, multi-
crystallization occurred around the crucible wall and top
surface, which destroyed the designed vertical grain growth in
the upper part of the ingot. These disadvantages resulted in
that the final ingots were easy to lose the monocrystalline
structure in the later growth stage. The high concavity of the
growing interface and inhomogeneous growth rates in
horizontal and vertical directions are supposed to be the
drawbacks of the original recipe. Therefore, we tried to
optimize the casting process by adjusting the control
parameters in the process recipe with a 300 min prolonged
growing stage.

3.2. ANN Training Results from the CFD Data. For
preparing the training data by the transient simulations, we set
the ranges of the inputs, including ΔTC1, ΔTC2, dV, r, and z,
as listed in Table 2. From the 150 sets of training data
calculated by CFD simulations, we trained the ANN model to
predict the quality properties in the ingot domain at position
(r, z) from different process recipes. Table 3 lists the root-
mean-square errors (RMSEs) of cross-validation for different
hidden layers and neurons per layer. Our ANN was
constructed with 5 hidden layers and 128 neurons in each
layer, which achieved the lowest RMSE, while much more

Figure 3. Operational flow of the GA coupled with a predictor from
the ANN.
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hidden layer and neurons led to the unacceptable training
efficiency. Figure 4 shows the performance of machine learning
models on residual stress, dislocation density, and solidification
time for a test case. The machine learning prediction results
matched almost perfectly with the CFD simulation results for
the three outputs. It indicated that the well-trained ANN
model obtained the mapping relationship among process
parameters and ingot quality properties. The well-trained ANN
model could significantly speed up the predictions by more
than 27 thousand times, while the entire process CFD
simulation takes more than 6 h for a single case. Therefore,
our prediction model could act as the instant predictor and
data generator for the following NSGA-II optimization.
It is worth overviewing the effect of input parameters on the

output parameters using linear analysis such as correlation
analysis, although the ANN model is nonlinear. Figure 5 shows
the correlation coefficients between inputs and outputs. The
maximum residual stress and dislocation density showed
negative correlations with the three inputs, as well as the
mean dislocation density. In comparison, the maximum
solidification time showed a positive correlation with the
three inputs. Meanwhile, the crucible downward speed is
related to all the four outputs by the high-correlation
coefficients, which implies that the change of this crucible
movement could be the most effective way for the process
optimization. The solidification time and other outputs have
the opposite correlation coefficients with the inputs, which

implies the trade-offs between fast growing and low dislocation
density and residual stress.

3.3. NSGA-II Optimization.With the instant predictor, we
introduced the GA to select the optimum parameter settings.
We implemented NSGA-II with multi-objective functions for
the lowest values. They are the maxima of residual stress, the
dislocation density, and the solidification time, as well as the
mean dislocation density. NSGA-II generated 160 random
individuals in the unchanged parameter ranges and then
recommended the optimum parameter settings based on
different objective functions after 400 generations of evolution.
The calculation compared (160 × 160 × 160) sets of inputs for
the four objective combinations in less than 2 h. In addition,
the algorithm proposed 160 recipes according to different
objective combinations.
One advantage of NSGA-II is that we could select the

optimal parameter settings for the major target from the Pareto
fronts. Furthermore, the optimal growing condition could be
derived quantitatively from the well-trained ANN, while the
conventional parametric study could only show the qualitative
tendency. Figure 6a shows the plots of the Pareto fronts for the
maxima of residual stress and dislocation as the functions of
solidification duration. For our PoC system, we prefer the
lowest dislocation (mean and maximum) as the major target
for the growing experiment design. Thus, we selected the
lowest dislocation density with relatively shorter solidification
duration and lower residual stress as the optimal recipe, as
marked in Figure 6a. The selected optimum parameter setting
is ΔTC1 = −13.4 K, ΔTC2 = 28.5 K, and dV = −0.5 mm/min.

Table 2. Training Data Ranges for Machine Learning

parameter range samples

H1 temperature change ΔTC1 (K) −30 to +30 5
H1 temperature change ΔTC2 (K) −30 to +30 5
crucible speed change dV (mm/min) −0.5 to 0 6
radius (mm) r 0−57 51
height (mm) z 0−130 51

Table 3. RMSEs of Cross-Validation for the Different ANN
Structures

RMSE 64 neurons 128 neurons

three layers 0.0059 0.0053
five layers 0.0055 0.0048
seven layers 0.0057 0.0050

Figure 4. CFD results (left) and ANN predictions (right) for (a) residual stress, (b) dislocation density, and (c) solidification time or interface
shape.

Figure 5. Correlation coefficients between process controlling
parameters and ingot properties.
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Figure 6b shows the details of the selected optimal recipe for
the 700 min growing stage. Compared to the original recipe,
the optimal recipe indicated the slowing down crucible
downward, the temperature decrease of the TC1, and the
temperature increase of TC2.
We could feed the optimal recipes into the well-trained

ANN to get the detailed ingot properties instantly. We could
also conduct the transient global simulation to validate the

optimal recipe. Figure 7 compares quality properties in the
final Si ingot cross section between the original recipe (left)
and the optimal recipe (right). The residual stress distributions
showed similar patterns for the original and optimal cases,
while the maximum stress along the crucible wall and top
surface decreased about 20%, as shown in Figure 7a. Since we
focused on the dislocation reduction, the optimal recipe got a
maximum dislocation density of 2.2 × 107 1/m2. It achieved a

Figure 6. NSGA-II optimization results. (a) Multi-objective optimal recipes from NSGA-II and (b) selected optimal recipe for the growing stage.

Figure 7. Comparison of quality properties including (a) residual stress, (b) dislocation density, and (c) growing interface evolution and
solidification time in a final Si ingot cross section between the original recipe (left) and the optimal recipe (right).

Figure 8. Optimization results of growth rate and dislocation density in the Si ingot. (a) Stabilized growth rate by slowing down crucible downward
and (b) dislocation reduction along the central axis of the ingot.
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low-level dislocation in the top part of the ingot with a 84%
reduction of maximum dislocation, as shown in Figure 7b. In
the monocrystalline area, the dislocation density is also
decreased from 5.5 × 106 1/m2 in the original ingot to 3.8 ×
106 1/m2 in the optimized ingot. The interface evolutions of
the optimal recipe in the right section of Figure 7c implied an
interface shape transition from concave to flat but 164 min
longer solidification time.
As shown in Figure 8a, the original recipe showed faster

growth, while the optimal recipe decreased the growth rate.
The high growth rate of the original recipe resulted in high
dislocation in the upper half of the ingot (Figure 8b). The
optimal recipe smoothed the growth rate by slowing down the
crucible and decrease of temperature gradient in the upper half
of the ingot. The smoothed growth rate relaxed the stress
release at the end of the growing and transition stage, which
resulted in the remarkable dislocation reduction, as shown in
Figure 8b. Even the crucible was almost stopped finally, the
lowest growth rate was 0.2 mm/min due to the cooling effect
of gas flow.
3.4. Optimal Recipe Validation by Growing Experi-

ment. The optimal recipes recommended by NSGA-II were
implemented in our mono-like DS-Si process for verification
and comparison. Except for the optimized controlling
parameters, other growing conditions were kept the same as
the original recipe. Wafers for evaluation were cut out of the
ingots with a thickness of 1 mm. The slice was cut from the
center of the five parallel seeds in the plane perpendicular to
the crucible bottom and the long edge of the seeds. Figure 9

shows the growing interface comparison between the original
and optimal recipe. With a fixed crucible downward speed of
0.5 mm/min, the initial growing interface of the original case
started with a high convexity shape. The preserved seed in the
center is much thicker than the periphery area of the crucible
wall (Figure 9a). This is harmful to accurate controlling of the
seed preservation height and seed arrangement cost. As the
casting process proceeded, the growing interface experienced
convex to concave transition, which showed a high deviation of
growth rate from center to periphery. The concave interface
that lasted until the end of the casting stage was also not
preferable for the high-quality ingot growing. The optimal
recipe recommended slowing down the crucible speed from
0.5 mm/min to 0. Since the solidification started about 90 min
later than the crucible downward-moving started, the initial
growing interface on the higher crucible position was much

flatter than the original case, as shown in Figure 9b. This is
favorable for accurate controlling of the seed preservation
height and the vertical grain growth. Because of the aspect ratio
of the small crucible, the growing interface also switched to a
concave shape with the casting process proceeded. However,
the growing interface became flat at the end of solidification,
which differed from the original case. The almost stagnant
crucible at the end of solidification in the optimal case resulted
in a low growth rate, which might be dominated by the gas
flow cooling. This smoothed growth could reduce the multi-
crystallization in the top part of the ingot.
Figure 10 shows the grain growth comparison between the

original and optimal recipe. We took optical images for the

wafers, which sliced from the center of the ingots. The original
case (Figure 10a) showed the expansion of the multi-
crystallization zone from the crucible side wall to the top.
The optimal case (Figure 10b) showed the decrease of the
multi-crystallization in the top part of the ingot. The
comparison verified the effectiveness of the optimal recipe
for restraining multi-crystallization by the smoothed growth
rate and the flatter growing interface. It is noted that the slower
growth rate may decrease the yield in the practical industrial
process. Thus, further optimization has to be conducted on the
geometrical design of DS-Si growth by the optimization
framework.

4. CONCLUSIONS

We proposed a general workflow, including CFD, machine
learning, genetic optimization, and crystal growing experiment.
In this framework, an instant predictor has been trained for the
final crystal quality prediction. Optimal recipes for dislocation
reduction were recommended by NSGA-II and validated by
CFD. We also implemented the optimal recipe in our mono-
like DS-Si process for verification and comparison. According
to the optimal recipe, the low dislocation density and
smoothed growth rate were achieved in the Si ingot growing
process. Comparisons of the growth interface and grain
boundary evolutions implied the decreases of the interface
concavity and the multi-crystallization in the top part of the
ingot. Further optimization is also possible and essential for the
geometry design to realize the little convex growing interfaces
during the entire growing process. The presented workflow is
also applicable for the instant prediction and quantitative
optimization of other multi-parameter processes.

Figure 9. Growing interface evolution comparison between the
original and optimal recipe. Reproduced interface shapes for (a)
original recipe and (b) optimal recipe by resistivity contours in final
ingots.

Figure 10. Grain growth comparison between the original and
optimal recipe. Optical image of the original recipe (a) and the
optimal recipe (b).
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