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Soybean [Glycine max (L.) Merr.] is one of the most important legume crops abundant
in edible protein and oil in the world. In recent years there has been increasingly
more drastic weather caused by climate change, with flooding, drought, and unevenly
distributed rainfall gradually increasing in terms of the frequency and intensity worldwide.
Severe flooding has caused extensive losses to soybean production and there is an
urgent need to breed strong soybean seeds with high flooding tolerance. The present
study demonstrates bioinformatics big data mining and integration, meta-analysis,
gene mapping, gene prioritization, and systems biology for identifying prioritized genes
of flooding tolerance in soybean. A total of 83 flooding tolerance genes (FTgenes),
according to the appropriate cut-off point, were prioritized from 36,705 test genes
collected from multidimensional genomic features linking to soybean flooding tolerance.
Several validation results using independent samples from SoyNet, genome-wide
association study, SoyBase, GO database, and transcriptome databases all exhibited
excellent agreement, suggesting these 83 FTgenes were significantly superior to others.
These results provide valuable information and contribution to research on the varieties
selection of soybean.

Keywords: soybean, flooding tolerance, genomic data meta-analysis, gene prioritization, gene-set enrichment
analysis

INTRODUCTION

Soybean [Glycine max (L.) Merr] is an important food crop worldwide that provides an essential
source of anthocyanins and isoflavones for human beings (Cederroth and Nef, 2009). Previous
studies have shown that soybean isoflavones can decelerate at the apoptotic rate of the cerebral
cortex of rats and minimize the occurrence of ischemic stroke (Schreihofer et al., 2005; Burguete
et al., 2006; Lovekamp-Swan et al., 2007). Some anthocyanin compounds possess novel antioxidant
capacity and have neuroprotective effects on the central nervous system (Wang et al., 2010; Lu et al.,
2012) that are beneficial for conditions such as Alzheimer’s disease and Parkinson’s disease (Huang
et al., 2009; Zhang et al., 2019). Therefore, maintaining a stable supply of soybean is important for
the treatment of complex diseases.

Even though global soybean production has steadily risen in recent years (FAOstat,
faostat.fao.org), there is still a shortage of food supply for human beings due to increases in
natural disasters. Soybean is stress-sensitive and is particularly affected by flooding (Hou and
Thseng, 1991; VanToai et al., 2010), one of the major abiotic stresses that can cause enormous
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losses in soybean production (Rosenzweig et al., 2002; Ahmed
et al., 2013). In 2011, flooding and drought stress accounted
for more than 70% of the reduction of major crops in the
United States (Bailey-Serres et al., 2012). According to the
degree of damage, flooding stress is classified into waterlogging
and submergence, which means the water covers only the root
system and the water covers both the shoot and the root
system, respectively (Fukao et al., 2019). The roots and shoots
of soybeans grow much more slowly if they are submerged in
water (Oosterhuis et al., 1990). The nitrogen fixation in their root
systems is also impeded (Board, 2008; Youn et al., 2008). As the
time of submergence increases, it interferes with photosynthesis,
stomatal conductance, and the absorption of nutrients (Jackson
et al., 2009). Therefore, breeding work for flooding-tolerant
soybean varieties is imperative.

Many studies have examined the selection of flood-tolerant
soybean varieties. Shannon et al. (2005) conducted flood-
tolerance experiments using 350 soybean germplasm lines and
found that six lines (Archer, Misuzudaiz, PI408105A, PI561271,
PI567651, and PI567343) were highly related to flooding
tolerance during early reproductive stages. Wu et al. (2017)
evaluated 722 soybean germplasms through foliar damage score
and plant survival rate for accessing flooding tolerance during
2012 and 2016. Eleven flooding-tolerant lines (PI408105A,
PI471931, PI471938, RA-452, Walters, R11-6870, R10-4892, R10-
230, R07-6669, R07-2001, and R04-342) were identified which
showed consistent flooding tolerance during 4- to 5- year
continual evaluations. Meanwhile, the genetic information of
several of these were involved with flood-tolerant related studies
in soybean had been reported and accumulated. For instance,
in gene expression studies, Chen et al. (2016) used RNA-Seq
transcriptome profiling to identify differentially expressed genes
and found that 3,498 of them were significantly associated with
flooding tolerance. Since flooding tolerance was a quantitative
trait, many previous studies used linkage mapping analysis to find
quantitative trait locus (QTLs) (VanToai et al., 2001; Sayama et al.,
2009; Nguyen et al., 2012, 2017). Cornelious et al. (2005) used
912 simple sequence repeat (SSR) markers to select QTLs and
identified 17 SSR markers that were significantly associated with
flooding tolerance in soybean. In the pathway function regulation
platform, a total of 31 genes were identified under flooding stress
by using quantitative reverse transcription-polymerase chain
reaction (qRT-PCR). These genes were linked to the pathways
including protein synthesis, nucleotide metabolism, hormone
metabolism and glycolysis signaling which were induced by
submergence conditions (Yin et al., 2017). Although previous
studies were abundant, it was still costly and time-consuming
for experimental validation of each of the flooding tolerance
candidate genes (Rhee and Mutwil, 2014; Zhai et al., 2016).
Furthermore, the data collected from previous studies had large
batch effects (Goh et al., 2017), thus making it thorny to unify and
integrate. Consequently, a gene prioritization technique, based on
the computational method was developed.

The first research applying gene prioritization to plants was
published by Xia et al. (2013). They utilized a keyword search in
the NCBI PubMed database to collect data related to rice blight
and used chaos-algorithm based classifiers to identify 74 blight
resistance-related candidate genes in rice. Recently, network

analysis advanced the development of gene prioritization. Zhai
et al. (2016) proposed rank aggregation-based data fusion for
a gene prioritization (RAP) method that integrated RafSee and
AraNet v2 prioritization algorithms, a total of 380 flowering-time
genes of Arabidopsis thaliana were identified. They found that
the prioritized genes identified by the RAP method had a higher
ranking in comparison to those that identified by AraNet v2.
However, the limitation of the RAP gene prioritization method
is that the prediction ability decreases when the number of core
genes is deficient. This indicates that the RAP gene prioritization
method is not suitable for other crops with fewer known
functional genes. In soybean, 59 prioritized genes were identified
by using the SoyNet database, which contains 40,812 soybean
genes and 1,940,284 links from several data platforms covering
72.8% of the soybean genome (Kim et al., 2017). Nevertheless, the
prioritization of flooding tolerance genes (FTgenes) in soybean
has not been elucidated to date.

In the present study, we mined and collected genetic
information and databases from different data sources on flood-
tolerant in soybean. Here we defined flooding tolerance genes
(denoted as FTgenes) to be significantly associated with traits
that are related to flooding tolerance or responded to the stress
after flooding treatment was given during germination and
vegetative stages of soybean. The flooding treatment mainly
focused on submergence. Genes that regulated physiological
mechanisms involving both submergence and waterlogging were
also considered to extend the pool of genomic data collected from
multiple dimensional data platforms.

To minimize possible selection bias and noise, we considered
nine data platforms, including association mapping study
(including genome-wide association study, GWAS), linkage
mapping analysis, gene expression, pathway regulation,
protein-protein interaction networks (PPIN), network analysis,
proteomes, and text mining, as well as functional genomic
data from model plants. A scoring and weighting scheme was
proposed to extract, integrate, and prioritize genomic data
across multidimensional data sources using meta-analysis and
prioritization system. To avoid false positive results, all positive
and negative results were considered and integrated to give a
real value for every genetic locus to construct an evidence-based
gene pool (denoted as test genes). We computed a weighted
combined score summarized from multiple data sources for each
of the test genes. Similarly, a set of core genes were established
for prioritizing the test genes. A clear separation between the test
genes and the core genes was determined to identify prioritized
FTgenes. This provides a valuable contribution for subsequent
research and soybean variety selection.

MATERIALS AND METHODS

We constructed a comprehensive framework to computationally
optimize the test genes to construct prioritized FTgenes in
soybean. There were four stages in the framework, including
bioinformatic big data mining and integration, meta-analysis and
gene prioritization, evaluation, and gene-set enrichment analysis.
Detailed methods and materials used in this study were illustrated
below (Figure 1).
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Test Genes and Core Genes
The test genes and the core genes were generated at the
bioinformatics big data mining and integration stage. The
collection of the test genes used text/data mining from multiple
dimensional data sources. For detailed methods and approaches
please refer to our proposed techniques described below in
the “Bioinformatics Big Data Mining and Integration” sub-
section. The establishment of the core genes was to provide an
important basis for gene prioritization. The selection of the core
genes was based on three criteria as follows. (1) Only genes
that were reported in previous studies that significantly related
to flooding tolerance or responded to flooding stress. These
genes were also ranked in the top 2% of gene prioritization
procedures. (2) Only genes that were significantly reported to
be associated with flooding tolerance in network data platform.
(3) Only genes that were significantly reported on at least
four data platforms, where they scored higher than 40 in
a weighted score and scored higher than 4 in each of the
data platforms. We used the core genes to prioritize test
genes according to their magnitude of association or response
change to the stress from multiple data sources to search for
prioritized FTgenes.

Validation Databases
We used the whole genome expression database (RNA-seq data)
of soybean seedling submergence published by Lin et al. (2019)
as our validation databases. They investigated and recorded the
expression change of soybean roots at four different time-points
(3, 6, 12, and 24 h) after given submergence treatments. A total

of 14,772, 17,017, 19,060, and 18,889 gene expression data were
contained in the four time-point databases, respectively.

Bioinformatics Big Data Mining and
Integration
We collected genomic data that related to flooding tolerance
or responded to the stress in soybean from the National
Center for Biotechnology Information (NCBI) PubMed1, Airiti
Library2, and China PubMed3. A keyword search method
was applied to mine genomic data extracted from published
journal articles and available open databases that were published
before March 2020 that were relevant to our target. The
keywords consist of combinations of three terms (crop,
trait, and data platform). The keywords for “crop” terms
were “soybean,” “cultured soybean,” and “glycine max.” The
keywords for “trait” terms were “flooding tolerance,” “flooding
stress,” “waterlogging,” and “submergence.” The keywords for
“data platform” were “GWAS,” “association mapping,” “linkage
mapping,” “gene expression,” “pathway regulation,” “PPIN,”
“networks,” “proteomes,” and “text mining.” All genomic data,
including journal articles and databases, collected from the
cloud were examined and integrated carefully by experienced
experts who are well-trained in big data mining for data
management and data quality control. Studies that involved
human trails, animal experiments, genetically modified organism
studies, non-soybean studies, not applicable, and others that

1https://www.ncbi.nlm.nih.gov/
2https://www.airitilibrary.com/
3http://www.pubmedchina.com/

FIGURE 1 | The framework of the present study.
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were irrelevant to the present study were excluded from big
data integration.

The selection criteria of genomic data are illustrated
below. In the association mapping data platform (including
GWAS), only SNP markers having minor allele frequency
(MAF) >5%, heterozygous allele calls <10%, call rate >90%,
and P-value <0.05 were included. In the gene expression
data platform, only genes with a P-value <0.05 and/or fold
change (FC) >1.5 were considered. In linkage mapping and
proteomes data platforms, only genetic data that P-value < 0.05
and/or logarithm of odds (LOD) >3 were mined. In the
networks data platform, only genes that P-value <0.05 were
collected. In the pathway regulation data platform, only
pathways that were significantly reported to be associated
with flooding tolerance were considered and we then screened
out the genes involved in the pathways. In text mining
data platform, we searched the keyword combinations of
“gene symbol + crop + trait” using both MySQL and R
package for parallel web crawling in the NCBI PubMed,
Airiti Library, and China PubMed. The gene symbols were
downloaded from SoyBase4. A hit was made if the journal
article matched the keyword combinations. In the PPIN
data platform, a total of 717,676 protein-protein interactions
(regulations) were downloaded from the PlantRegMap5 in
February 2020. We considered both positive findings and
negative results to minimize possible false positive results
and false negative results so that a precise evidence-based
score for each genomic data could be calculated with fewer
biases and noise.

To extend our method to summarize the roles of selected
genes in regulating tolerance by integrating available genes
from model plants, we included homologous genes from
A. thaliana and Medicago truncatula. For the homologous
gene data platform, protein sequences from the Glycine
max genome were, respectively, aligned to those from the
two model plants using BLASTP (Camacho et al., 2009).
All protein sequence data, integrated from several studies
(Schmutz et al., 2010; Tang et al., 2014; Cheng et al., 2017),
were downloaded from the phytozome database6 (Goodstein
et al., 2012). We searched for sequences with the highest
similarity from alignment results to identify homologous
proteins or genes corresponding to soybean genes. These
homologous genes were further confirmed whether they were
significantly reported as flooding related genes in A. thaliana and
M. truncatula.

The genomic data collected in the present study included
SNPs, genes, SSRs, and QTLs. We conducted gene mapping
to assign all genomic data to a gene region using a window
spanning 20 kb upstream to 20 kb downstream of the gene
(Ravelombola et al., 2019). The principle of gene mapping was
shown in Supplementary Figure 1. We notice that regions
of QTL with longer than 5 centiMorgan (cM) in length were
excluded (Liu et al., 2019) from big data integration to reduce

4https://soybase.org/dlpages/#annot
5http://plantregmap.cbi.pku.edu.cn/download.php#networks
6https://phytozome.jgi.doe.gov/pz/portal.html

possible false positive results and noise, in particular, QTLs across
two different chromosomes. All genomic data were mapped into
gene-level data corresponding to the correct gene version that
was used in the original studies. Finally, we conducted gene
version correspondence analysis to unambiguously match the
above mapped gene-level data using the SoyBase Gene Model
Correspondence Lookup tool7 to unify various gene versions
(Glyma v1.0, Glyma v1.1, and Glyma v2.0) into Glyma v2.0 gene
version. As a result, a set of test genes in the Glyma v2.0 version
were established.

Meta-Analysis and Gene Prioritization
We developed a scoring scheme according to the corresponding
magnitude of association of flooding tolerance or response to
flooding stress in soybean to address the issue of different
types of data sources. The evidence from multidimensional
data sources was in a wide range of different types of values,
including association P-value, LOD, FC, score, degree, cluster
coefficient, and correlation (r). The scoring systems for different
platforms are different. Generally, we applied− log10(P − value),
|FC| and bLODc to separately convert P-value, FC, and LOD
into a score bounded within [0, 10]. The symbol of log(·),
|·|, and b·c represents 10-based logarithm, absolute value, and
floor function, respectively. We denoted SM as a scoring system
computed by using a transformation function described above,
where the superscript letter M is a measurement characterized
by a P-value, FC, LOD, degree, and r. In the association
mapping data platform, we applied SP = − log10(P − value) for
scoring. In the linkage mapping and proteomes data platforms,
we calculated max{SP, SFC, Sdegree}, and max{SP, SFC, Sdegree}
separately for loci, respectively. In gene expression data platform,
the max{SP, SFC} was applied for scoring. In the networks
data platform, we quantified max{SP, SFC, Sr} to obtain a
score range [1,6]. In the pathway regulation data platform, we
proposed a reported frequency-based algorithm for the scoring of
selected genes. In text mining and model plant data platforms, we
scored 1 if the keyword search was made or the homologous gene
was confirmed and scored 0 otherwise. In the PPIN data platform,
we scored the regulation networks according to the strength of
degree and cluster coefficient. If two or more types of different
data were present for a gene within the same data platform, we
computed a score for each data type and selected the maximal
value as the score for the gene. A detailed scoring system can be
found in Supplementary Table 1.

In the stage of weighting, we evaluated each of the
selected genomic data using an impact factor corresponding
to their published journal articles to access data reliability
(Supplementary Table 2). For each gene, we calculated a
weighted score using score multiply weight across multiple data
platforms to quantify the importance of gene linking to flooding
tolerance in soybean. Generally, the distribution of weighted
scores for the test genes and the core genes are skewed to the right
and skewed to the left, respectively. Hence, an optimal cutoff-
score can be found to distinctly separate the two distributions of

7https://soybase.org/correspondence/index.php
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the test genes and the core genes. Only genes that scored greater
than the cutoff-score were selected as prioritized FTgenes.

Evaluation
Two approaches were applied to access the reliability and the
robustness of the prioritized FTgenes using the RNA-seq data
(Lin et al., 2019). First, we compared the prioritized FTgenes
using a weighted scheme to examine whether the prioritized
FTgenes showed a higher change to obtain smaller P-values
(or larger FCs) than those using the unweighted scheme.
Comparisons of the intersection, the difference of unweighted
FTgenes from weighted FTgenes (denoted as FTgenesw\nw), and
the difference of weighted FTgenes from unweighted FTgenes
(denoted as FTgenesnw\w) were also examined.

We also compared the prioritized FTgenes (using weighted
scheme) selected by our proposed algorithm with other existing
methods, e.g., random forest algorithm (Rafsee) (Zhai et al., 2016)
and network-based gene prioritization method (SoyNet) (Kim
et al., 2017). Due to the difference of sources and characteristics
for data mining between other methods and our study, we
modified the random forest algorithm used in Rafsee without
changing the idea and concept and applied it to our test genes. We
modified the random forest algorithm as follows. (1) Bootstrap:
we generated a subset of the same size from the test genes
by sampling with replacement, and selected the top 83 genes
with the highest weighted score (denoted as bootstrap genes).
(2) Permutation: we randomly shuffled (i.e., under the null)
the order of genes to break inherent structure of dependence
between genes and the scores in each bootstrap subset, and
selected the top 83 genes with highest weighted score (denoted
as permutation genes). (3) Selection: we selected the bootstrap
genes if the weighted score of the top 83 bootstrap gene was
greater than the highest weighted score in permutation genes,
and discarded them otherwise. (4) Loop: we repeated steps
1–3 until 10,000 sets of bootstrap genes were achieved. (5)
Ranking: we counted gene frequencies for each set of 10,000
bootstrap genes, and selected the top 83 bootstrap genes with
the highest frequencies as prioritized genes. The second method
compared to our algorithm was SoyNet (Kim et al., 2017), which

is a co-functional network webserver8. The SoyNet contained
40,812 soybean genes and 1,940,284 links collected from 21
distinct data types, covering 72.8% of the soybean genome. We
conducted gene prioritization based on Bayesian statistics using
the top 2,000 weighted genes using function II “Find context
associated genes.” We selected the top 83 prioritized genes from
502 significant genes (P-value < 1.0×10−8). We compared our
prioritized FTgenes to those two top genes prioritized using other
methods described above for validation using the Wilcoxon rank-
sum test, and a P-value was calculated based on 100,000 bootstrap
samples for each method.

Gene-Set Enrichment Analysis
The GeneOntology (GO; http://geneontology.org/) database
collected abundant terms that were related to gene functions
in soybean. According to the gene products, these terms
can be classified into three categories: biological process
(7,332 terms), cellular component (2,761 terms), and molecular
function (3,199 terms). We applied gene-set enrichment analysis
to investigate significantly enriched potential physiological
regulation pathways, using the GO database and the prioritized
FTgenes. The hypergeometric test was conducted to identify
significantly enriched pathways, and adjusted P-values were
calculated using the Bonferroni correction method to avoid false
positive results.

RESULTS

Bioinformatics Big Data Mining and
Integration
In bioinformatics, big data mining, 66 journal articles, and
4 databases were qualified. Through quality control, we
removed 17 articles irrelevant to our study, there were 49
journal articles, and 4 databases in the end (Table 1). We
found 47,227, 2,014, 59, 47,931, and 376 genes, respectively,
from gene expression, pathway regulatory, networks, PPIN,
and the proteomes data platform. 79 SNPs and 66 SSR

8www.inetbio.org/soynet

TABLE 1 | Summary results of big data mining and bioinformatics across different data platforms for flooding tolerance in soybean.

Data platform Data mining results Selected data sources No. of genetic data extracteda

No. of articles No. of databases No. of articles No. of databases

Association mapping (includes GWAS) 8 0 2 0 79

Linkage mapping 10 0 7 0 66

Gene expression 11 2 9 2 47,227

Pathway regulatory 21 1 15 1 2,014

Gene networks 1 0 1 0 59

PPIN 0 1 0 1 47,931

Proteomes 4 0 4 0 376

Homologous gene 11 0 11 0 8,511

Total 66 4 49 4 106,263

Abbreviation: GWAS, genome-wide association study; PPIN, protein-protein interaction network.aGenetic data include SNPs, genes, SSRs, and QTLs.
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markers were found from association mapping and linkage
mapping data platforms, respectively. A total of 106,263
genotype data were included in this study. Two RNA-seq
databases (46,938 genes) (Nanjo et al., 2011; Chen et al.,
2016) and one GO pathway regulation database (2,014 genes
in 14 pathways) were included. In the PPIN database, a
total of 717,676 gene pairs were included (PlantRegMap:
http://plantregmap.cbi.pku.edu.cn/) (Supplementary Table 3
and Supplementary Material 1).

In the stage of bioinformatics big data integration, genetic
data including SNPs, SSRs, and QTLs are required to perform
gene mapping so that every loci was mapped onto the gene level.
A total of 79 SNPs and 66 SSRs were mapped to 117 genes and 296
genes, separately in association mapping and linkage mapping
data platform. For the homologous gene data platform, a total of
34,738 and 50,188 potential homologous genes, respectively, from
A. thaliana and M. truncatula were identified using BLASTP.
To confirm these genes whether associated with flooding, we
collected flooding-related studies in two model plants to extract
their candidate genes. In a total of 8,511, A. thaliana candidate
genes were found in 11 papers. Unfortunately, we did not find any
genetic information in M. truncatula. Next, the overlap between
homologous and candidate genes was verified to compute
homo.score for tested genes. Our results showed that 11,275
tested genes were reported in previous studies that related to
flooding stress. In total, 36,705 test genes were constructed
from multidimensional data platforms for meta-analysis and
gene prioritization.

Table 2 shows the summary results of genomic data on
flooding tolerance or response to flooding stress indices at a
particular growth stage in soybean. In the germination stage,
differentially expressed genes in root and/or leaf tissues were
measured in gene expression, pathway regulators, and proteomes
studies. During germination-reproductive stages, three indices
(flooding injury scores, germination rate, and normal seeding
rates) were often used to evaluate the degree of flooding tolerance
in linkage and association mapping studies.

Meta-Analysis and Gene Prioritization
There are three steps in big data meta-analysis of FTgenes in
soybean, including scoring, weighting, and ranking (Figure 1).
Different scoring schemes were set to score test genes for each
data source (Supplementary Table 1). In the association mapping
data platform, the scores of 117 genes were between 4.01 and
10. In the linkage mapping data platform, 296 genes were scored
between 1 and 10. In the gene expression data platform, the
scores of 47,227 genes ranged between 1 and 6.45. In the pathway
regulation data platform, the scores of 2,014 genes were between 5
and 6. In the PPIN data platform, the scores of 47,931 genes were
between 1 and 6. In the networks data platform, the scores of 59
genes were ranged from 0 to 3. In the proteomes data platform,
the scores of 376 genes were between 1.3 and 10.

In terms of weighting and weighted score (Supplementary
Table 2), first of all, the range of weighting in the association
mapping data platform is between 0 and 3. In the linkage
mapping data platform, the range of weighting is between 0 and
4. In the gene expression and networks data platforms, the ranges

of weighting were between 0 and 6. In pathway regulation and
proteomes data platforms, the range of weighting is between 0
and 3. In the PPIN data platform, the range of weighting is
between 0 and 2. Finally, after weighting by the impact factor,
the weighted score of 36,705 flooding tolerance test genes was
between 11.28 and 80.41. Furthermore, to identify FTgenes, a
total of 28 test genes that passed the criteria were selected as the
core genes (Supplementary Tables 4, 5).

In gene prioritization, after calculating the weighted score for
36,705 test genes and 28 core genes, we compared the distribution
of these two data sets. A trivial separation was observed between
the test gene set and core gene set at a cutoff score of 45 (Figure 2),
and a total of 83 genes were chosen as FTgenes (Table 3). The
physical location and numbers of 83 FTgenes in the soybean
genome are shown in Figure 3 and Supplementary Figure 2.
Among them, chromosome 13 (14 FTgenes), 8 (13 FTgenes), and
7 (9 FTgenes) contain the most FTgenes. However, there are no
FTgenes located on chromosomes 15 and 17.

Evaluation of Prioritized Genes
To evaluate the prioritized FTgenes, we compared two sets of
FTgenes using a weighted scheme and an unweighted scheme
(Supplementary Table 6). Table 4 showed the validation results.
First, the 83 weighted FTgenes had significantly smaller P-values
(higher FCs) than 100,000 random sets (3, 6, and 12 h:
P-values <1×10−5, 24 h: P-value <0.01) using an independent
whole genome RNA-seq database (Lin et al., 2019). However, the
83 unweighted FTgenes had significantly smaller P-values (higher
FCs) than random sets at only 3 h and 6 h (P-values <0.05).
The same situation was also observed in the intersection set
(74 out of 83 genes, 89.16%) between weighted FTgenes and
unweighted FT genes (Supplementary Table 10). Interestingly,
we found that the set of FT genesw\nw had significantly smaller
P-values (higher FCs) than 100,000 random sets at 3, 6, and
12 h (P-values < 0.05), but the set of FTgenesnw\w showed
no significant difference at 3, 6, 12, and 24 h. This indicates
that the set of FTgenesw\nw may play roles in regulating
mechanisms responding to flooding stress, suggesting that the
use of a weighted scheme would provide informative and
meaningful results.

The whole genome RNA-seq database was also used to
evaluate 83 prioritized genes identified by the SoyNet network
method (Kim et al., 2017). The results showed that there was
no significant difference in FC between the prioritized set and
100,000 random sets. The proportion of P-value less than 0.05
does not exceed 81% in the four time points (Table 4). On
the other hand, to compare the random forest method with
our prioritized algorithm, the modified random forest method
was conducted to satisfy our data format (Zhai et al., 2016). As
a result, a total of 83 prioritized genes (ranked in the top 83
genes) were also identified based on the modified random forest
method. Of which, the 83 prioritized genes were the same as
our prioritized 83 FTgenes identified via an algorithm. The result
suggested that the performance for our algorithm is as good as the
random forest method, indicating our resulting 83 FTgenes are
precise and reliable, which means our 83 weighted FTgenes had a
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higher chance to be involved in the physiological mechanism of
flooding tolerance in soybean.

Gene-Set Enrichment Analysis
To understand the physiological mechanisms of 83 FTgenes
in soybean under flooding tolerance, we used the GO
enrichment tool for gene-set enrichment analysis through
SoyBase website. As shown in Table 5, the 83 FTgenes

are significantly enriched in seven biological processes
and molecular functions (Padjusted – value <0.05). Our
results suggested that the 83 FTgenes were significantly
enriched in ethylene biosynthetic process, abscisic acid
(ABA) biosynthetic process, nuclear-transcribed mRNA
poly(A) tail shortening, glucan biosynthetic process,
ethylene mediated signaling pathway, phosphorylation, and
response to hypoxia.

TABLE 2 | Summary results of flooding tolerance index from each data platform.

Platform Growth stage Flooding tolerance related traits References

Association (including GWAS) Reproductive stage Flooding injury scores, level 1–5 Ye et al. (2018)

Association (including GWAS) Germination stage Germination rate, normal seedling rate, electric conductivity Yu et al. (2019)

Association (including GWAS) Reproductive stage Foliar damage score Wu et al. (2019)

Gene expression Germination stage Collect root and hypocotyl and detect the expression of
RNAs and proteins

Komatsu et al. (2009)

Gene expression Germination stage Extract RNA form roots (including hypocotyl) Nanjo et al. (2011)

Gene expression Germination stage Extract RNA form roots (including hypocotyl) Nishizawa et al. (2013)

Gene expression Germination stage Extract RNA form roots (including hypocotyl) Song et al. (2018)

Gene expression V1_Vegetative stage Extract RNA from root tissues Nakayama et al. (2014)

Gene expression V1_Vegetative stage qRT-PCR for roots Valliyodan et al. (2014)

Gene expression V4_Vegetative stage Use leaves to do RNA-sequencing and real-time PCR
analysis

Chen et al. (2016)

Gene expression V5_Vegetative stage Use leaves to do RNA-sequencing, RT-PCR, and qPCR Syed et al. (2015)

Gene expression Vegetative stage Extract RNA from root tissues Nakayama et al. (2017)

Linkage mapping Germination stage Germination rate, healthy growth rate, damage of roots and
shoots

Rizal and Karki (2011)

Linkage mapping Germination stage 100 seed weight, germination rate, normal seedling rate Sayama et al. (2009)

Linkage mapping R1_Reproductive stage Plant height, seed yield VanToai et al. (2001)

Linkage mapping R1_Reproductive stage Flooding tolerance score, score1–5 Nguyen et al. (2012)

Linkage mapping R2_Reproductive stage Plant injury score (score 1–9) Cornelious et al. (2005)

Linkage mapping V3_Vegetative stage Flooding tolerance index (seed weight of treated plants
divided by that of control plants), days to flowering, days to
maturity, plant height, branch number, pod number, seed
number, seed weight, 100-seed weight

Githiri et al. (2006)

Pathway Germination stage Hypocotyl Khan et al. (2015)

Pathway Germination stage Roots Khatoon et al. (2012)

Pathway Germination stage Roots Komatsu et al. (2013)

Pathway Germination stage Roots Mustafa and Komatsu
(2014)

Pathway Germination stage Roots and cotyledons Mustafa et al. (2015)

Pathway Germination stage Cotyledons Nanjo et al. (2010)

Pathway Germination stage Roots including hypocotyl Nanjo et al. (2011)

Pathway Germination stage 5 mm long root tips Nanjo et al. (2012)

Pathway Germination stage Root tips Yin and Komatsu (2016)

Pathway Germination stage Root tips Yin et al. (2014)

Pathway Germination stage Root tips Yin and Komatsu (2015)

Pathway Germination stage Root tips Yin et al. (2016)

Pathway Germination stage Root tips, including hypocotyl and cotyledons Yin et al. (2017)

Proteomes Germination stage Plant survival rate, lacking appartent damage, lateral root
development, radicle elongation rate

Nanjo et al. (2014)

Proteomes Germination stage Roots, hypocotyls, cotyledons Oh and Komatsu (2015)

Proteomes V2_Vegetative stage Leaf fresh weight, leaf dry weight, leaf turgid weight,
chlorophyll content chlorophyll content data

Mutava et al. (2015)

Proteomes Vegetative stage Root and leaf samples Kazemi Oskuei et al. (2017)

qRT-PCR, quantitative reverse transcription polymerase chain reaction; RT-PCR, reverse transcription polymerase chain reaction.
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FIGURE 2 | The optimal cut-off score in separating distributions of weighted scores between the test genes and the core genes.

DISCUSSION

In the present study, we proposed a comprehensive framework
that consists of bioinformatics big data mining, meta-analysis,
and a gene prioritization algorithm to prioritize 83 FTgenes
from 36,705 test genes set collected from multidimensional data
platforms. We collected bioinformatics information including
trait index, genetic data (SNP, gene, SSR, loci, and QTLs), variety,
biochemical and statistical value (P-value, LOD, FC, score, R2,
and keyword hits). The impact factors of journal articles were
also collected for determining the reliability and quality of data.
Our data was collected from a variety of countries, using different
methods, plant materials, and genotype data, which is a diverse
and informative database. There were three strengths to our gene
prioritization method. First, we used quality control in big data
collection to reduce the influence of noises effectively. Second,
regardless of the positivity and negativity of the genotype data,
we aimed to minimize the impact of publication bias. Third,
we checked and unified gene aliases to avoid overestimations
or underestimations that may occur in the calculation of the
weighted score. Therefore, 83 FTgenes were found to have good
characteristics of a more comprehensive, higher accuracy, and
less bias and noise. Compared with traditional methods, this gene
prioritization algorithm is more informative.

In the process of collecting bioinformatics big data, we found
that GWAS had not been popular in the field of flooding
tolerance in soybean, only two journal articles were found

in the GWAS data platform (Table 1) (Wu et al., 2019; Yu
et al., 2019). GWAS enables us to select the molecular markers
that are significantly related to target traits. However, the
main limitations of GWAS are low effect size and spurious
associations. To cope with these problems, our research collected
and integrated flooding tolerance candidate genes from different
data sources and attempted to find high-ranking genes with a
gene prioritization algorithm. Generally, high-ranking FTgenes
should be reported in multiple data platforms, suggesting more
potential that these are related to flooding tolerance compared
to other genes. In our framework of analytic strategy, we
can effectively reduced the chance of false positive results
and increased the effect size that GWAS may encounter
(Tam et al., 2019). In text mining, we searched the title
and abstract of keywords (crop, gene, trait) with structured
query language and R programming language, and found no
results. We searched the full text alternatively, but most of
the results were still irrelevant to the target. Therefore, in our
opinion, text mining was not suitable for searching in the plant
field at present.

The expression level of Glyma.04g240800, one of the 28 core
genes, was repeatedly used to index the response of flooding
stress of soybean in previous studies. Glyma.04g240800 is one of
the alcohol dehydrogenase (ADH) which participated in flooding
tolerance. Flooding causes oxygen deprivation and forthwith
activates anaerobic respiration in soybean. ADH reduces NAD+
to NADH in glycolysis, which is the first step of anaerobic
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TABLE 3 | Eighty-three prioritized FTgenes (weighted score ≥ 45).

Gene Weighted score Flooding treatment Gene Weighted score Flooding treatment

Glyma.13g243800 81.99 Submergence, waterlogging Glyma.08g119200 49.19 Submergence, waterlogging

Glyma.13g244000 80.41 Submergence, waterlogging Glyma.14g202300 49.00 Submergence

Glyma.11g055700 66.24 Submergence Glyma.08g119600 48.65 Submergence, waterlogging

Glyma.13g244100 63.75 Submergence, waterlogging Glyma.08g119000 48.10 Submergence, waterlogging

Glyma.13g243700 62.84 Submergence, waterlogging Glyma.13g251100 48.05 Submergence

Glyma.14g121200 62.81 Submergence Glyma.10g180800 48.02 Submergence

Glyma.03g132700 62.81 Submergence Glyma.08g083300 47.81 Submergence

Glyma.11g179300 62.81 Submergence Glyma.14g049000 47.81 Submergence

Glyma.02g148200 62.81 Submergence Glyma.07g105700 47.81 Submergence

Glyma.12g094100 62.81 Submergence Glyma.12g093100 47.81 Submergence

Glyma.13g243600 61.21 Submergence, waterlogging Glyma.09g172500 47.81 Submergence

Glyma.13g243900 61.00 Submergence, waterlogging Glyma.02g268200 47.81 Submergence

Glyma.05g108900 59.81 Submergence, waterlogging Glyma.03g173300 47.81 Submergence

Glyma.16g018500 59.81 Submergence, waterlogging Glyma.18g042100 47.81 Submergence

Glyma.07g036400 59.11 Submergence, waterlogging Glyma.17g174500 47.81 Submergence

Glyma.08g128500 58.40 Submergence, waterlogging Glyma.11g181200 47.81 Submergence

Glyma.08g128100 58.19 Submergence, waterlogging Glyma.06g100900 47.81 Submergence

Glyma.10g048000 57.16 Submergence, waterlogging Glyma.05g128200 47.81 Submergence

Glyma.09g153900 56.30 Submergence Glyma.07g049900 47.81 Submergence

Glyma.16g204600 55.96 Submergence Glyma.04g092100 47.81 Submergence

Glyma.12g150500 54.95 Submergence Glyma.17g158100 47.81 Submergence

Glyma.13g208000 54.63 Submergence Glyma.07g253700 47.81 Submergence

Glyma.08g199800 54.11 Submergence Glyma.09g149200 47.81 Submergence

Glyma.12g222400 53.87 Submergence Glyma.20g218100 47.81 Submergence

Glyma.10g048100 53.25 Submergence, waterlogging Glyma.12g187400 47.81 Submergence

Glyma.07g036300 52.67 Submergence, waterlogging Glyma.08g119100 47.64 Submergence, waterlogging

Glyma.10g047800 52.63 Submergence, waterlogging Glyma.11g180500 47.52 Submergence

Glyma.10g048200 52.48 Submergence, waterlogging Glyma.08g119400 47.29 Submergence, waterlogging

Glyma.05g123900 52.14 Submergence Glyma.13g279900 47.09 Submergence

Glyma.01g118000 52.09 Submergence Glyma.19g213300 46.87 Submergence

Glyma.07g036200 51.70 Submergence, waterlogging Glyma.08g176300 46.85 Submergence

Glyma.05g124000 51.54 Submergence Glyma.08g119500 46.70 Submergence, waterlogging

Glyma.07g036100 51.13 Submergence, waterlogging Glyma.13g234500 46.47 Submergence

Glyma.04g044900 50.81 Submergence Glyma.10g073600 46.36 Submergence

Glyma.08g218600 50.81 Submergence Glyma.13g251300 46.20 Submergence

Glyma.13g250400 50.80 Submergence Glyma.13g250300 46.13 Submergence

Glyma.07g032900 50.39 Submergence, waterlogging Glyma.01g037200 46.13 Submergence

Glyma.10g047900 50.24 Submergence, waterlogging Glyma.19g174200 46.00 Submergence

Glyma.13g270100 50.13 Submergence Glyma.11g149900 45.96 Submergence

Glyma.07g153100 50.03 Submergence Glyma.17g020600 45.85 Submergence

Glyma.18g009700 49.70 Submergence Glyma.17g205000 45.81 Submergence

Glyma.08g139100 49.57 Submergence, waterlogging

respiration (Russell et al., 1990; Komatsu et al., 2009; Tucker et al.,
2011; Nakayama et al., 2014; Song et al., 2018).

Of the 83 FTgenes, chromosome 13 contains the most
FTgenes (Supplementary Figure 2), which reflects the results of
a previous study (Yu et al., 2019). In chromosome 13, six FTgenes
(Glyma.13g243800, Glyma.13g244000, Glyma.13g244100,
Glyma.13g243700, Glyma.13g243600, and Glyma.13g243900)
are in the top 12. Furthermore, the SNP marker QTN13 was
reported to be remarkably related to flooding resistance (Yu
et al., 2019), and these six genes are located within a 1.0 Mb

region where QTN13 has extended the region of 500 kb upstream
and downstream on both sides. The third-ranked FTgenes
Glyma.11g055700 was reported to show significant performance
under flooding conditions (P-value =0.00005) (Chen et al.,
2016), and also reported participating in the ABA biosynthetic
process in SoyBase. The 29th FTgene Glyma.05g123900 was
reported on four data platforms, which were gene expression,
pathway regulation, PPIN, and proteomes. Moreover, this gene
was also reported to show significant protein expression under
flooding conditions (P-value = 5.57×10−10) and participated in
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FIGURE 3 | The location of 83 FTgenes on soybean genome map.

TABLE 4 | The results of comparing fold change after 3, 6, 12, and 24 hours of flooding treatment between the prioritized set and the random sets using the Wilcoxon
rank-sum test.

Method Number of candidate genes P-value

3 h 6 h 12 h 24 h

FTgenes (weighted) 83 <1×10−5 <1×10−5 <1×10−5 0.01

FTgenes (unweighted) 83 0.01 0.04 0.12 0.90

FTgenes (weighted ∩ unweighted)a 74 0.01 0.04 0.13 0.87

FTgenes (weighted\unweighted)b 9 0.01 0.01 0.05 0.43

FTgenes (unweighted\weighted)c 9 1.00 1.00 1.00 1.00

SoyNetd 83 0.60 0.03 0.35 0.99

Random forest 83 <1×10−5 <1×10−5 <1×10−5 <1×10−5

aFTgenes (weighted ∩ unweighted) represents the intersection of weighted genes and unweighted genes.
bFTgenes (weighted\unweighted) represents the difference of unweighted FTgenes from weighted FTgenes.
cFTgenes (unweighted\weighted) represents the difference of weighted FTgenes from unweighted FTgenes.
dSoyNet represents the network analysis method used in Kim et al. (2017).

the MAPK signaling pathway and plant pathogen interaction
regulation pathway (Lin et al., 2019).

In gene-set enrichment analysis, we found that seven GO
pathways are significantly involved in the relevant mechanisms
of flooding tolerance (Table 5 and Figure 4). GO:0009688

was the ABA biosynthetic process. Previous studies indicated
that the concentration of ABA in hypocotyls will gradually
decrease if soybeans are subjected to flooding stress, thereby
leading to the growth of secondary aerenchyma (Shimamura
et al., 2015). GO:0001666 is the pathway that responds to
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TABLE 5 | Gene-set enrichment analysis using 83 FTgenes.

# GO annotation Category # FTgenes/# genes in pathway Adjusted P-valuea

Ethylene biosynthetic process Biological process 18/270 2.57×10−11

Abscisic acid (ABA) biosynthetic process Biological process 5/53 3.63×10−3

Nuclear-transcribed mRNA poly(A) tail shortening Biological process 3/11 6.94×10−3

Glucan biosynthetic process Biological process 3/15 1.88×10−2

Ethylene mediated signaling pathway Biological process 9/311 2.82×10−2

Phosphorylation Biological process 5/84 3.34×10−2

Response to hypoxia Biological process 7/195 4.19×10−2

aAnalysis was conducted using GO annotation database. Adjusted P-values were computed using the Bonferroni correction method.

FIGURE 4 | The gene-set enrichment analysis of 83 FTgenes.

hypoxia. Flooding causes hypoxia in plant roots and induces
hypoxia-related regulatory pathways, thus, it is intuitive that
GO:0001666 was selected. GO:0009693 and GO:0009873 are the
ethylene biosynthetic process and ethylene-activated signaling

pathways, respectively. Yin et al. (2014) showed that the
fresh weight of waterlogged soybean plants with ethylene
application was significantly higher than the control one. This
indicates that the presence of ethylene can help soybean plants
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resist flooding stress. In addition, the pathway of ethylene
biosynthesis had been determined to be significantly related
to the response of plants to flooding stress in previous
studies (Morgan and Drew, 1997; Kim et al., 2017). The
GO results above confirm that all of the 83 FTgenes we
identified are reliable.

We compared 83 FTgenes with 83 equal weight prioritized
genes for validation and found that there were 74 genes (89.16%)
overlapping in both gene-sets (Supplementary Table 6).
According to Fuller and Hester (1999), we speculated that it was
owing to the existence of large sample outliers (LSO) in our big
data meta-analysis. LSO will reduce the bias of the unweighted
method, thereby narrowing the ranking of weighted and
unweighted prioritized genes. Furthermore, three independent
databases were also used for verification. In the first database,
we included 27 SSR markers associated with flooding tolerance
in soybean from SoyBase (Cregan et al., 1999; Cornelious et al.,
2005; Githiri et al., 2006; Sayama et al., 2009; Rizal and Karki,
2011). We extended and selected the region 20 kb upstream
and downstream of the 27 SSR markers on both sides by gene
mapping. As a result, 87 genes were discovered (Supplementary
Table 7). Only six genes overlapped between these 87 genes
and the 83 FTgenes (Glyma.08g119000, Glyma.08g119100,
Glyma.08g119200, Glyma.08g119400, Glyma.08g119500, and
Glyma.08g139100). Subsequently, we found that the GO
pathways which involved these 87 genes were not significantly
associated with flooding tolerance. It is likely that the genes
located at the region 20 kb upstream and downstream of
the 27 SSR markers contain genes that were not related to
flooding tolerance.

In another database, we compared 83 FTgenes with
59 prioritized genes which were identified by Kim et al.
(2017) (Supplementary Table 8). We found that 16 genes
(Glyma.01g118000, Glyma.02g148200, Glyma.03g132700,
Glyma.07g153100, Glyma.08g199800, Glyma.09g153900,
Glyma.11g149900, Glyma.11g179300, Glyma.12g094100,
Glyma.12g150500, Glyma.12g222400, Glyma.13g208000,
Glyma.13g270100, Glyma.14g121200, Glyma.16g204600, and
Glyma.18g009700) overlapped in both gene-sets. The other
67 FTgenes without overlapping, were from the association
data platform and pathway regulation data platform. The
SoyNet database constructed by Kim et al. (2017) did not
include these two data platforms. In the other database, we
compared 83 FTgenes with the 117 prioritized genes identified
by Yu et al. (2019) (Supplementary Table 9). Soon we
found that 23 genes (Glyma.13g243800, Glyma.13g244000,
Glyma.11g055700, Glyma.13g244100, Glyma.13g243700,
Glyma.13g243600, Glyma.13g243900, Glyma.07g036400,
Glyma.08g128500, Glyma.08g128100, Glyma.10g048000,
Glyma.10g048100, Glyma.07g036300, Glyma.10g047800,
Glyma.10g048200, Glyma.07g036200, Glyma.07g036100,
Glyma.13g250400, Glyma.10g047900, Glyma.14g202300,
Glyma.13g251100, Glyma.13g251300, and Glyma.13g250300)
overlapped in both gene-sets. Comparing the fold change of
these 117 prioritized genes with 100,000 bootstrap random
groups by using the Wilcoxon rank-sum test, we discovered
that their fold change did not show a significant difference

(P-value >0.05). After validating the three independent
databases above, we confirmed that our multi-data platforms
are superior to a single data platform in terms of the accuracy of
identifying FTgenes.

There are six FTgenes (Glyma.13g243600, Glyma.13g243700,
Glyma.13g243800, Glyma.13g243900, Glyma.13g244000, and
Glyma.13g244100) located in the same region in chromosome
13. However, the six FTgenes were reported in four different
data platforms, including GWAS, linkage mapping, gene
expression, and PPIN. Of which only linkage mapping
data platform reported a QTL. Although the six FTgenes
were significantly reported in several data platforms using
various experiments or methods, further validation using
an independent sample is needed to access which are
casual genes or whether they are gene clusters. Another
way of finding a casual gene (or an index SNP) in a
QTL is to apply an LD-based clumping association test
(Marees et al., 2018).

The similarities and differences of molecular mechanisms
and responses to submergence and waterlogging have been
studied in a wide range of species (Voesenek and Bailey-Serres,
2015). Both types of flooding stress limit oxygen availability
in plant cells and produce hypoxia (<21% O2) (Sasidharan
et al., 2017). There are two survival strategies, low-O2 escape
syndrome (LOES) and low-O2 quiescence syndrome (LOQS),
for flood-tolerant plants (Bailey-Serres and Voesenek, 2008,
2010; Voesenek and Bailey-Serres, 2013). The key responses
for root waterlogging include the formation of aerenchyma
and barriers in adventitious roots to avoid oxygen loss
(Mustroph, 2018), which involves ethylene, reactive oxygen
species (ROS), and hormonal signaling pathways including ABA
and gibberellin (Voesenek and Bailey-Serres, 2015). The key
responses for submergence include escape by elongation of aerial
organs (LOES strategy for partial submergence), quiescence
of metabolism and growth, protection of meristems or organs
(Bailey-Serres and Voesenek, 2008, 2010; Bailey-Serres et al.,
2012) (LOQS strategy for prolonged complete submergence),
which involve signaling of ethylene, reduced light, low O2,
nitric oxide, and ROS (Voesenek and Bailey-Serres, 2015).
Our results in gene-set enrichment analysis (Table 5) are
based on 83 prioritized FTgenes supported previous reported
mechanisms or pathways including thylene biosynthetic
process, ABA biosynthetic process, ethylene mediated signaling
pathway, phosphorylation, and response to hypoxia. We
conducted pathway analysis based on SUMSTAT with 10,000
permutations (Tintle et al., 2009), using 27 FTgenes that were
identified to be associated or responded to both types of
flooding stress (Table 3). Interestingly, the 27 FTgenes were
significantly enriched with N-terminal protein myristoylation,
response to hypoxia, defense response, secondary cell wall
biogenesis, and biosynthetic process (P-values <1×10−4; data
not shown), which again echo previously reported results
reviewed by Voesenek and Bailey-Serres (2015).

There were two limitations to our study. The deficiency of a
verified experiment of 83 FTgenes, e.g., RNA-seq transcriptome
profiling and qRT-PCR, was the first limitation. Thus, the gene
expression database from Lin et al. (2019) was adopted to evaluate
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the 83 FTgenes. We then obtained a significant difference
between the prioritized set and the random set. In addition,
83 FTgenes were verified to be more reliable and robust by
using three databases (GWAS, SoyNet, and SoyBase). The other
limitation was that potential problems may exist in the results of
previous studies, including noises and biases that affect our final
prioritized results. To take over this problem, our big data meta-
analysis and gene prioritization method can remove the genes
with spurious associations. We are looking into the possibility of
minimizing the effect of noises and biases from previous studies.

CONCLUSION

To the best of our knowledge, this study is the first to report
prioritized FTgenes for soybean. We introduced a comprehensive
framework to integrate and prioritize diverse genetic data
collected from multiple dimensional data sources to search
for important genes that are highly connected to flooding
tolerance or responding to stress. In the present study, a total
of 83 FTgenes were prioritized, based on their magnitude of
association or expression change, from a 36,705 test genes pool of
flooding tolerance in soybean. These FTgenes were significantly
enriched with a response to hypoxia, ethylene, ABA, and glucan
biosynthetic process pathways, which play an important role in
the biosynthesis of plant hormones in soybean.

These results provide a basis for breeders to design efficient
markers near or within the target locus of the FTgenes, and then
marker-assisted selection can be applied to introduce FTgenes
into the genome of commercial cultivars, such that these cultivars
will be characterized by the ability to adapt to stress caused by
flooding. The proposed analytic framework applied in the present
study provides a shortcut to overcome a challenge in identifying
the most promising genes from a large candidate-gene pool for
agricultural traits of interest.
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