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Abstract
Multi-state models are a flexible tool for analyzing complex time-to-event problems with mul-

tiple endpoints. Compared to the Cox regression model with a single endpoint or a summa-

rizing composite endpoint, they can provide a more detailed insight into the disease

process. Furthermore, prognosis can be improved by including information from intermedi-

ate events occurring during the course of the disease. Different model variants, options and

additional assumptions provide many possibilities, but at the same time complicate the im-

plementation of multi-state techniques. So far, no guiding literature is available to specify a

multi-state model systematically. The objective of this work was to set up a general specifi-

cation procedure for an illness-death model that optimizes the model fit and predictive accu-

racy by stepwise reduction of the model. As an application example, we reanalyzed data

from an observational study of 434 ovarian cancer patients with progression as intermediate

and death as absorbing state. The technique is described in general terms and can be ap-

plied to other illness-death models without recovery. The clock-reset approach was used,

implicating that the time was reset to zero after progression. The non-homogeneous semi-

Markov characteristic stated that the present time as well as the time between surgery and

progression influenced survival after progression. Covariate effects on transitions were esti-

mated and proportionality of transition baseline hazards was tested. The finally developed

model optimized the accuracy of predictions for two simulated patients. This stepwise pro-

cedure yields parsimonious but targeted multi-state models with well interpretable coeffi-

cients and optimized predictive ability, even for smaller data sets.

Introduction
Multi-state models are a flexible tool for analyzing complex disease processes, where individu-
als are allowed to move between a finite number of states. The states may be defined through
the stages of the disease, incidences of clinical symptoms or occurring complications, or death.
The states and the possible transitions between these states fully characterize the disease pro-
cess. In recent years, multi-state models have been studied widely [1–9] and clinical
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applications have become more frequent [10,11]. Multi-state models are an extension of the
classical survival model, usually solved by the Cox proportional hazard model [12,13]. There
are two major advantages of multi-state models: Firstly, they can provide a detailed insight into
disease processes, as covariate effects on each transition can be estimated. Etiological aspects of
different phases of the disease can be studied. Analysis of competing states is possible, such as
different causes of death or competing therapy outcomes (competing risk models) or a se-
quence of states such as disease recurrences (classical multi-state models). Secondly, prognosis
from multi-state models can be more accurate than from the standard model with one single,
potentially combined, endpoint. During the course of the disease, predictions can be adjusted
when additional information like the occurrence of intermediate events becomes present.

In return for these advantages, the drawback of statistical instability has to be accepted. Di-
viding a process into multiple sub-processes bears the risk of small event counts within some of
the studied transitions which in turn can result in unstable estimates with large confidence inter-
vals and p-values. During the past years, multi-state models have been improved by allowing ad-
ditional assumptions that can stabilize the results [2,7,8]. Various extensions and assumptions
provide high flexibility, but at the same time complicate the specification of a multi-state model.
Applications using these extensions are rare in the literature [7,11,14,15]. One cause may be un-
certainty among investigators how to specify a multi-state model using these techniques. The
purpose of our work was therefore to provide a formal instruction to specify an optimized
multi-state model using the established options. The described adaptation procedure was mod-
eled after a technique by P.F. Thall and J.M. Lachin [16]. Within another context, they described
a formal model specification process for reducing stratified proportional hazards models. We
expanded this Thall-Lachin-approach and transferred it into the multi-state context.

In the further work, we call the optimized models as restricted or reduced multi-state mod-
els. For a clinical example on ovarian cancer patients, we adapt a restricted multi-state model
stepwise, following a defined procedure that starts with a full multi-state model with a mini-
mum of restrictions. Modeling results and prognoses for two simulated patients will be out-
lined for every specification step. Our example shows that even for smaller data sets with rare
event counts, multi-state models can improve estimation results and increase predictive
accuracy.

Methods

Ethics statement
This study was approved by the Medical Board Hamburg, reference number #190504. All clini-
cal investigations have been conducted according to the Declarations of Helsinki. Written in-
formed consent was obtained from all patients to access their tissue and review their medical
records when they first attended the clinic according to our investigational review board and
ethics committee guidelines. Prior to analysis, patient information was anonymized and de-
identified.

Data example
Our data set covers the patients with epithelial ovarian cancer with primary surgery at the Uni-
versity Medical Center Hamburg-Eppendorf between 1993 and 2010. The anonymized and de-
identified data used to produce the presented results can be downloaded from http://dx.doi.
org/10.6084/m9.figshare.1248873.

Patients with neoadjuvant treatment (n = 50) before surgery were excluded to ensure com-
parability. Furthermore, patients with unknown progression status were excluded (n = 9). Pa-
tients with missing residual tumor status were recoded into no residual tumor (n = 8). Clinical
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details are described elsewhere [17]. 434 eligible patients with a median follow-up of 34.5
months (range 0.1–187 months) remained for analysis. To keep the example as simple as possi-
ble, only the three most important prognostic covariates are considered, i.e. the patients’ age at
diagnosis, existence of a residual tumor after primary surgery and dichotomous staging of dis-
ease using the originally four-class FIGO (Fédération Internationale de Gynécologie et
d'Obstétrique) classification scheme: low stage refers to FIGO i/ii; high stage represents FIGO
iii/iv. Descriptive statistics and frequencies of observed transitions are summarized in Table 1.

The multi-state model
We define three states for our data example, differentiating the states after surgery: 0 or
"healthy", 1 or "progression", and 2 or "death". All patients start in the "healthy" state, some of
them move to "progression" and some patients transit directly to "death". It is also possible to
move from "progression" to "death". In Fig 1, the multi-state model is displayed in a typical
manner: boxes represent the states and arrows symbolize the possible transitions.

A model with the structure given in Fig 1 is generally called an illness-death model or a dis-
ability model without recovery. It is a frequently approached example of a multi-state model
[3,18–20]. The transitions are quantified by hazard rates αij (t) of patients to leave state i for
state j. The hazard can be understood as instantaneous potential of a specific transition at time
t. For each transition, a Cox proportional hazards model [12,13] can be used to link the transi-
tion-specific hazard functions α01 (t),α02 (t) and α12 (t) with potentially prognostic factors. In
multi-state theory, there are two ways to define the time t in αij (t). With the "clock-forward"
approach, the time refers to the time since study start. The clock continues running, indepen-
dent of the occurrence of intermediate events. In contrast, the "clock-reset" approach assumes a
reset to zero, every time the subject moves to another state. The current time t then refers to
the sojourn time in the present state [8]. For that case, we redefine new time scales t0 and t1, de-
pending on the leaving states 0 = "healthy" and 1 = "progression".

A property that is often assessed in multi-state modeling is the Markov assumption. It im-
plies that the future depends on the history of a process only through the present [4,21,22]. In
clock-reset models the time scale itself depends on the time when the present state was reached,
therefore the Markov assumption is violated by definition. Thus, only clock-forward models
can meet the Markov assumption. The semi-Markov assumption [4,7,8] relaxes the Markov re-
striction: The process may depend on the present state and the time since entry of that state.
Further dependence of the time since initiation makes the homogeneous semi-Markov model a
non-homogeneous semi-Markov model. For the illness-death model, this implies that
a12ðt1; t001Þ, where t001 represents the sojourn time in the healthy state. Practically, t001 is included

Table 1. Frequencies of categories and of observed transitions.

Total Transition

Staying progression-
free

Progression Death without
progress

Death after
progression

0!0 0!1 0!2 1!2

Total (% of all patients) 434 (100%) 129 (29.7%) 285 (65.7%) 20 (4.6%) 214 (49.3%)

Residual tumor (% within transition) 129
(29.7%)

10 (7.7%) 113 (39.7%) 6 (30.0%) 98 (45.8%)

FIGO iii/iv (% within transition) 342
(78.8%)

68 (52.7%) 260 (91.2%) 14(70.0%) 193 (90.2%)

Age in years median (range) within
transition

59 (21–90) 55 (24–88) 60 (21–88) 62 (46–90) 62 (26–87)

doi:10.1371/journal.pone.0123489.t001
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as a covariate for the transition 1!2. Semi-Markov clock-reset models are often used when du-
ration dependencies should be modeled.as they bear the advantage that information from the
process history can be included as transition-specific explanatory covariates.

The non-homogeneous semi-Markov clock-reset model for the ovarian cancer example is
specified through the transition hazards in (1),

a01ðt0Þ ¼ a01;0ðt0Þ exp ðb01;1 � ageþ b01;2 � res tumþ b01;3 � stageÞ
a02ðt0Þ ¼ a02;0ðt0Þ exp ðb02;1 � ageþ b02;2 � res tumþ b02;3 � stageÞ
a12ðt1; t001Þ ¼ a12;0ðt1Þ exp ðb12;1 � ageþ b12;2 � res tumþ b12;3 � stageþ b12;4 � t001Þ:

ð1Þ

The hazard for each transition i!j, I� j 2 {0,1,2}consists of a nonparametric baseline hazard
function αij,0(t) and a factor containing covariate effects, which may be also time-dependent.
βij,c represents the transition-specific regression coefficient for covariate c. In (1), ten coeffi-
cients have to be estimated, three for each of the three transitions, plus one for t001.

Fig 1. The illness-death model without recovery.

doi:10.1371/journal.pone.0123489.g001
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Sometimes the assumption of transition-specific covariate effects results in overfit, which
may be a problem particularly in processes with rare event counts. In our data example, only
20 events are observed for the transition 0!2. The result is that estimates lose precision. Yet,
multi-state models offer options for adapting more parsimonious models. With further as-
sumptions on potentially proportional baseline hazards or identical covariate effects across
transitions, covariate effects can be estimated more efficiently.

The model specification process
The procedure starts with the full Markov model, where transitions and covariate effects are al-
lowed to vary between transitions. Further steps result from answering the following questions:

1. What is the appropriate time scale for the baseline hazards?

2. Is the Markov assumption met?

Can we assume equal (Hα: αij,0(t) = αkl,0(t), I,j,k,l 2 {1,2,3}) or proportional (Hγ: αij,0(t) =
αkl,0(t). e

γ, I,j,k,l 2 {1,2,3}) baseline hazard functions across transitions?
Can we assume some parameter effects to be identical (Hβ: βij, c = βkl,c, I,j,k,l 2 {1,2,3}) across

transitions?
Finally, a tailor-made restricted multi-state model is obtained in a step-down procedure.
Choosing the appropriate baseline time scale may depend on the context as well as on prac-

tical considerations. Generally, in clinical or epidemiological studies, there are various possible
time scales like the time since onset of a disease, time since surgery, time since a special treat-
ment or time since birth. All these chronological time scales differ only in their origins. Major
criteria for the choice of the time scale is the fact that its scale must be relevant in the investigat-
ed context to ensure the interpretability of the covariate effects [23]. The usability of different
time scales depends on the application. In the present context, the time since primary surgery
is considered.

In multi-state modelling, there are even more aspects to consider with respect to the time
scale. While the clock-forward approach uses the time from onset of the study for all transi-
tions, the observations start at time zero after each transition when the clock-reset approach is
used. For illness-death models, this choice concerns only the transition from illness to death,
since for transitions from the initial state the time since onset is the only available time scale. In
this work, we proceed with the clock-reset approach, as it bears the advantage that the sojourn
time spent in the healthy state before experiencing a progress may be explicitly included as a
covariate for the transition from progression to death. For the ovarian cancer example, the
non-homogeneous clock-reset semi-Markov multi-state model is specified according to Cox
[12,13] through the transition hazards as in formula (1), with transition-specific baseline haz-
ards αij,0 and covariate effects βij,c, i<j2 {1,2,3} for covariate c. The Markov assumption is vio-
lated by construction as a clock-reset model is adapted. Otherwise, it could have been checked
by testing the effect of the time in the healthy state t001 on the transition from progression to
death. Significance of t001 would reveal that the Markov assumption should be rejected in favor
of the semi-Markov assumption. Further, a non-parametric approach basing on Kendall's tau
was developed for testing markovianity [24].

To make assumptions on the proportionality of baseline hazards, clinical considerations, lit-
erature statements, graphical and statistical tests should be considered. From a clinical point of
view and as also literature states, it is reasonable to imply proportional baseline curves for tran-
sitions ending up in the death state, while transitions landing in progression follow a non-pro-
portional baseline hazard [25]. The assumption can be tested using standard approaches, like
the Schoenfeld test of proportional hazards or graphically plotting ln(cumulative baseline
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hazard) against ln(analysis time) for each transition. If the curves appear parallel, the assump-
tion of proportional hazards holds.

To test whether covariate effects are identical across transitions, interactions between covar-
iates and transitions are tested and eliminated stepwise. The likelihood ratio test and the AIC
are used as specification criteria. If an interaction is insignificant, a version of the model omit-
ting this interaction is recalculated. If the AIC of the latter model is improved and the likeli-
hood-ratio test does not attest a significant difference between the models, the latter model is
preferred. This step is repeated until the model contains only significant interactions. In a last
step, insignificant factors will be waived stepwise.

For further comparison and evaluation, we examine prognostic features of the different
models. We consider two simulated patients with opposite characteristics as in Table 2. Patient
A is supposed to have a good prognosis, while patient B has a bad prognosis at onset.

Prognosis in semi-Markov models is not self-evident, as the time in the healthy state is not
known at onset, but can be updated when the event occurs. It is included as prognostic variable
for transition 1!2, but omitted for transitions 0!2 and 0!1. For the two simulated patients
prognoses are computed at the essential steps through the adaptation process.

To evaluate which model performs best, the predictive ability will be compared using pre-
diction error curves, a time dependent estimate of the Brier score. The time-dependent Brier
score at time t is defined as the squared difference between the real survival status at time t (1 if
subject is alive at t, 0 otherwise) and the prediction from time 0 of surviving t, which is model
based. As the survival status at time tmay be right censored for single observations, inverse
probability of censoring weights (IPCW) are used [26,27]. The 0.632+ estimator of prediction
error for survival data [28] is used, which is a linear combination of the downward biased ap-
parent error and the upward biased bootstrap cross-validation estimator. The bootstrap cross-
validation component is based on 300 samples of training sets with each 300 subjects and ac-
cordingly 134 subjects in the validation sets. Technical details of the method are described in
[26–30].

For technical reasons, we subtracted half a month from the progression time in cases where
progression and death coincided.

Models and graphs are calculated with Stata and the R packagemstate and pec [30–32]. The-
oretical aspects of the prognosis can be found in the accompanying literature [25,32] and in the
works by Putter et al.[7,8].

Results
Throughout the adaptation process, we use the clock-reset approach and start with the non-ho-
mogeneous semi-Markov model introduced in (1). Because of the chosen time scale and the
fact that the time to progression t001 impacts the transition 1!2 significantly, the Markov as-
sumption is violated and replaced by the semi-Markov assumption (p<0.001). Further results

Table 2. Characteristics of two simulated patients with good (patient A) and bad prognosis (patient
B).

Patient A Patient B

Age in Years <60 >60

Residual Tumor no yes

FIGO stage i/ii iii/iv

Months in the healthy state 24–48 �12

doi:10.1371/journal.pone.0123489.t002
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of the non-homogeneous semi-Markov model with freely varying coefficients and with
transition-specific baseline hazards (in the latter: the "full model") are summarized in Table 3.

The state probabilities from the full model for patients A and B are shown in Fig 2. They can
be interpreted as the probability of being in a particular state at a certain time after starting in a
given state. Probabilities in Fig 2 are stacked, this means that the probability of being in each
state is represented by the height of the corresponding band. The states are ordered by increas-
ing severity, so that the probability of being alive can be simply read off by adding the neigh-
bored gray belts. The two upper graphs show the state probabilities over time since study onset,
starting in the healthy state. Of course, the probability of staying in the healthy state decreases
from 1 at time 0. At the same time, the probabilities of progression and dying increase. It is visi-
ble that the probability of being in the state after progression decreases again around the 30th
month, because these individuals further transit to the death state. Correspondingly, the lower
graphs display the probabilities of staying in the progression state or dying after progression.

Next, we test the assumption of proportional baseline hazards of the transitions into
"death". Schoenfeld's test does not attest a significant violation of the PH assumption concern-
ing all three baseline hazard functions (transition 0!1 and transition 0!2: p = 0.086; transi-
tion 0!1 and transition 1!2: p = 0.731; transition 0!2 and transition 1!2: p = 0.068). But
of course, this test depends on the sample size and may be underpowered, especially as the
transition 0!2 has only 20 events. From the log-log plot in Fig 3 it is unclear whether the as-
sumption holds for the death hazards. For proportionality, the curves have to be parallel. How-
ever, there seems to be no clear violation of the PH assumption either.

To exemplify the options of the multi-state model we assume proportional baseline hazards
for mortality and an arbitrary baseline hazard for progression in this example.

Accordingly, hazards are specified through

a01ðt0Þ ¼ a01;0ðt0Þ exp ðb01;1 � ageþ b01;2 � res tumþ b01;3 � stageÞ
a02ðt0Þ ¼ a02;0ðt0Þ exp ðb02;1 � ageþ b02;2 � res tumþ b02;3 � stageÞ
a12ðt1; t001Þ ¼ exp ðgÞa02;0ðt1Þ exp ðb12;1 � ageþ b12;2 � res tumþ b12;3 � stageþ b12;4 � t001Þ:

ð2Þ

In (2), the factor for proportionality between the baseline hazards for the transitions to death

Table 3. Results from the full semi-Markovmulti-state model for distinct transitions.

Covariate HRa Lower 95%-CI Upper 95%-CI p-value

Transition 0!1

Age 1.003 0.992 1.014 0.579

Residual tumor 1.991 1.551 2.555 <0.001

FIGO iii/iv 4.146 2.691 6.389 <0.001

Transition 0!2

Age 1.044 1.006 1.084 0.021

Residual tumor 1.255 0.431 3.655 0.677

FIGO iii/iv 0.786 0.260 2.381 0.671

Transition 1!2

Age 1.015 1.003 1.028 0.014

Residual tumor 1.713 1.282 2.287 <0.001

FIGO iii/iv 0.709 0.440 1.143 0.158

Time to progression 0.971 0.958 0.983 <0.001

aHazard ratio

doi:10.1371/journal.pone.0123489.t003
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α02and α12 is denoted by exp(γ). It demonstrates how the risk of dying changes with occurrence
of a progression. This semi-Markov model with proportional baseline hazards for transitions
into "death" is called the "PH model" in the further text. Estimated hazard ratios from the PH
model are reported in Table 4. The predicted state probabilities from the PH model for Patients
A and B are displayed in Fig 4.

To test whether covariate effects can be assumed to be identical across transitions, interac-
tions between covariates and transitions are tested and eliminated stepwise. As in the previous
model, we assume proportional baseline hazards of the transitions into "death". The PH model
is the most general model considered. In the first step, equalizing the effect of residual tumour
across all three transitions (model B) yields a reasonable model reduction regarding AIC and
the likelihood ratio test. Assuming furthermore equal FIGO effects across all transitions does
not improve the model. However, equal effects of FIGO staging across transitions into "death"

Fig 2. Predicted state probabilities from the full model. Probabilities for patients A (left) and B (right) for being in distinct states after study onset (upper)
and immediately after progression (lower).

doi:10.1371/journal.pone.0123489.g002
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(model C) increases the model fit. The effect of age should be modelled independently for the
distinct transitions, according to our selection criteria. Regarding insignificant main effects in
the next step, age is waived as predictor for the transition from "healthy" to "progression"
(model D) due to insignificance. Finally, we waive the effect of FIGO staging for the transitions
into "death" (model E). Table 5 shows the model fit criteria of the corresponding models.

Following AIC, the most restrictive model E and model D provide a similar goodness of fit.
The likelihood ratio test does not show significant differences between the reduced sub-models.
We prefer the parsimonious model and finally specify the restricted multi-state model E. In
this model, age is supposed to affect only the transitions into death and is not informative for
progression. FIGO staging only correlates with progression and has no effect on transitions
into "death". Residual tumour is supposed to have equal effects across transitions. The timing
of progression impacts the prognosis after progression. The hazard functions for the final re-
stricted multi-state model E are specified as in formula (3),

a01ðt0Þ ¼ a01;0ðt0Þ exp ðb1 � res tumþ b01;2 � stageÞ
a02ðt0Þ ¼ a02;0ðt0Þ exp ðb1 � res tumþ b02;3 � ageÞ
a12ðt1; t001Þ ¼ exp ðgÞa02;0ðt1Þ expðb1 � res tumþ b12;3 � ageþ b12;4 � t001Þ:

ð3Þ

Fig 3. The log-log plot to test the assumption of proportional baseline hazards. Parallelism of the curves in a log-log plot indicates proportionality of the
baseline hazard curves. This plot does not contradict the assumption of proportional baseline hazards for transitions into "death".

doi:10.1371/journal.pone.0123489.g003
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While ten coefficients have to be estimated in (1), the model in (3) gets along with only six. The
estimated hazard ratios from model (3), in the following called the "reduced PH model", are
presented in Table 6. The predicted transition probabilities for patients A and B are displayed
in Fig 5.

The prediction error curves of the three models and from a null model without covariates,
the Kaplan-Meier model, are displayed in Fig 6. It is visible that the three adapted multi-state
models have a better predictive ability than the null model. However, the full model, the PH
model and the reduced PH model show a very similar performance. From the final model we
summarize that the time to progression has a prognostic impact on survival after progression.
Every progression-free month decreases the mortality by about 2.8% (95%-CI [0.015–0.039],
p<0.001). Patients with high FIGO staging have an increased progression risk compared to pa-
tients with low FIGO staging (HR = 4.404, 95%-CI [2.889–6.713], p<0.001). A residual tumor
increases the risk for progression and death (HR = 1.807, 95%-CI [1.507–2.167], p<0.001).
Age increases mortality before progression by 5.4% per year (95%-CI [0.014–0.096], p = 0.008)
and after progression by 1.4% per year (95%-CI [0.001–0.026], p = 0.023). Mortality is highly
increased after the occurrence of progression. Yet, we renounce to interpret the unstable effect
estimate. It is encouraging that almost all confidence intervals are shortened compared to the
full model.

Discussion
We defined a systematic modeling procedure for reducing a semi-Markov multi-state model
for illness-death situations without recovery. This is useful in particular for small data sets with
low event counts for single transitions, as overfitting can be avoided and accuracy of predic-
tions can be improved. As an application example, we adapted a reduced multi-state model to
data from 434 ovarian cancer patients. The model specification process starts with defining the
time scale and testing the markovianity of the process. A semi-Markov multi-state model is
adapted using the clock-reset approach. Covariate effects vary freely across distinct transitions.
The sojourn time in the healthy state is included as prognostic covariate for the survival time
after progression.

Table 4. Results from the PHmodel.

Covariate HRa Lower 95%-CI Upper 95%-CI p-value

Transition 0!1

Age 1.003 0.992 1.014 0.579

Residual tumor 1.991 1.551 2.555 <0.001

FIGO iii/iv 4.146 2.691 6.389 <0.001

Transition 0!2

Age 1.054 1.014 1.096 0.008

Residual tumor 1.578 0.544 4.579 0.401

FIGO iii/iv 1.042 0.355 3.061 0.941

Transition 1!2

Age 1.015 1.003 1.027 0.015

Residual tumor 1.680 1.259 2.243 <0.001

FIGO iii/iv 0.712 0.442 1.145 0.161

Time to progression 0.972 0.960 0.984 <0.001

Progression 571.406 37.332 8745.913 <0.001

aHazard ratio

doi:10.1371/journal.pone.0123489.t004
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Step by step, additional assumptions are made to reduce the model. Proportional baseline
hazards for the transitions from "healthy" to "death" and from "progression" to "death" did not
change the results crucially: Effects for the transition from "healthy" to "progression" remain
unchanged, as this was not affected by the recent assumption. Estimates for the transitions into
"death" are also similar to results from the full model, supplemented by a hazard ratio describ-
ing the change of the mortality after entering the "progression" state. This estimate is very un-
stable, as the large confidence interval suggests. The curves for the estimated state probabilities
from the full model in Fig 2 and the PH model in Fig 4 look very similar.

Assumptions of equal covariate effects are tested with likelihood-ratio tests on interactions
between transitions and covariates. The resulting reduced model assumes equal effects for

Fig 4. Predicted state probabilities from the PHmodel. Probabilities for patients A (left) and B (right) for being in distinct states after study onset (upper)
and immediately after progression (lower).

doi:10.1371/journal.pone.0123489.g004
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residual tumor across transitions, varying age effects for death before and after progression,
while progression is unaffected by age. FIGO staging is assumed to not affect transitions into
death, but to increase the probability of progression. The time in the healthy state is supposed
to impact survival after progression.

This final model improves the precision of the estimated hazard ratios by shrinking the con-
fidence intervals of the parameter estimates. But there is a trade-off relation between gaining
precision and inducing bias by further specification of the model through additional assump-
tions. This is confirmed in the present example, where the prediction error curves in Fig 6 are
very similar for the full model, the PH model and the reduced model. As the prediction error
curves refer to predictions from time 0 and since occurrence and timing of the intermediate
event is not known at study onset, information on the intermediate event is only considered for
transition 1!2 when a clock-reset approach is used. This curtails the predictive benefits of the
multi-state models. However, the estimated state probabilities for selected scenarios and simu-
lated patients in Fig 5 remain also more or less unchanged. This matter indicates that our as-
sumptions are reasonable and the bias due to misspecification is small (if we assume that the
semi-Markov model in (1) tells the truth!). All three model are equally right or wrong.

The restricted multi-state model optimally balances fit and parsimony. Especially in
smaller data sets, reducing the model may be useful to receive meaningful and stabilized re-
sults. However, the flexibility of the model can cause problems. For the restricted multi-state
model it is an essential requirement that model assumptions as well as considerations about

Table 5. Adapting a parsimonious model: tests for the equality of covariates across transitions and for omitting covariates.

Model Log-likelihood AIC df LR-testa p

PH model -2640 5301 11

B -2640 5298 9 B vs. A 0.657

C -2640 5297 8 C vs. B 0.506

D -2641 5295 7 D vs. C 0.517

E -2641 5295 6 E vs. D 0.158

E vs. A 0.594

aLikelihood-ratio test

doi:10.1371/journal.pone.0123489.t005

Table 6. Results of the reduced PHmodel.

Covariate HRa Lower 95%-CI Upper 95%-CI p-value

Transition 0!1

Residual tumor 1.807 1.507 2.167 <0.001

FIGO iii/iv 4.404 2.889 6.713 <0.001

Transition 0!2

Age 1.054 1.014 1.096 0.008

Residual tumor 1.807 1.507 2.167 <0.001

Transition 1!2

Age 1.014 1.002 1.026 0.023

Residual tumor 1.807 1.507 2.167 <0.001

Time to progression 0.973 0.961 0.985 <0.001

Progression 421.312 30.707 5780.573 <0.001

aHazard ratio

doi:10.1371/journal.pone.0123489.t006
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the baseline time scales are selected very carefully, taking clinical facts into account. In our
data, the time between onset and the date of progression as well as the sojourn time in the
progression state affect the prognosis after progression. Therefore, the use of a clock-reset
semi-Markov model was reasonable.

Inference fromMarkov- or semi-Markov models may be easier than from non-Markov
models. However, for non-Markov models, Gunnes et al. [33] provide statistical solutions. Fur-
thermore, the assumption of equal effects of a residual tumour on progression and death at any
time are realistic from a clinical point of view. Progression is sometimes understood as a

Fig 5. Predicted state probabilities from the reduced PHmodel. Probabilities for patients A (left) and B (right) for being in distinct states after study onset
(upper) and immediately after progression (lower).

doi:10.1371/journal.pone.0123489.g005
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surrogate endpoint for overall survival in ovarian cancer. Accordingly, associations between
predictive markers and the endpoints progression and death may be assumed to be similar
[34].

Generally, multi-state models provide a flexible framework for understanding clinical events
under consideration of the disease process as a whole, not only focusing on one single end-
point, like the classical Cox regression model does. Multi-state models are frequently used for
investigations on cancer [7,11,35], leukaemia and bone marrow transplantation [5,15,36–39],
joint replacements [10], HIV [40] and other fields [2,22,41]. Yet, the use of a reduced model
with more modeling assumptions is scarcer. The presented detailed exemplification on how to
specify a parsimonious model may help to further spread the use of restricted multi-
state models.

Most multi-state models can be modeled with every software that can handle the Cox re-
gression model. Specific programs are furthermore available, like the R packagemsm [42,43],
or themstate package [25,31,32] for semiparametric models including prognosis.

Fig 6. Prediction error curves. Time-dependent prediction errors for the null model (black), the full semi-Markov model (red), the proportional hazards
model (green) and the reduced PHmodel (blue).

doi:10.1371/journal.pone.0123489.g006
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